Academic literature on the topic 'Nanoparticle gold'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoparticle gold.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanoparticle gold"

1

Zhang, Liangmin. "Optical Conduction Resonance in Self-Assembled Metal Nanoparticle Array-Dielectric Thin Films." Journal of Nanomaterials 2018 (December 10, 2018): 1–9. http://dx.doi.org/10.1155/2018/8540805.

Full text
Abstract:
Optical conduction resonance- (OCR-) enhanced third-order optical nonlinearity of two dimensional (2D) periodic gold nanoparticle array-dielectric thin films has been investigated. The third-order optical susceptibility of periodic gold nanoparticle array embedded in silica thin film shows ~104 enhancement comparing to gold nanoparticle colloids. The 2D gold nanoparticle arrays were synthesized by using the electrostatic self-assembly (ESA) technique. During the fabrication process, the positively or negatively functionalized gold nanoparticles are automatically self-aligned to establish a 2D array with a very small interparticle spacing due to the polymer shell on the metal particles. Then, a monolayer of silica can be coated on the top of the 2D metal nanoparticle array. This type of 2D gold nanoparticle array-dielectric thin films has high volume fraction of gold nanoparticles. According to the extended Maxwell-Garnett theory, this kind of films can exhibit OCR. The OCR frequency can be tuned from visible to mid-infrared by controlling the gold nanoparticle volume fraction. During OCR, the real part of the composite dielectric constant is zero to make the induced electromagnetic waves in gold nanoparticles to couple effectively within the film. The open-aperture z-scan technique is used to measure the nonlinear optical properties of the ESA films.
APA, Harvard, Vancouver, ISO, and other styles
2

Mat Isa, Siti Zaleha, Rafidah Zainon, and Mahbubunnabi Tamal. "State of the Art in Gold Nanoparticle Synthesisation via Pulsed Laser Ablation in Liquid and Its Characterisation for Molecular Imaging: A Review." Materials 15, no. 3 (January 24, 2022): 875. http://dx.doi.org/10.3390/ma15030875.

Full text
Abstract:
With recent advances in nanotechnology, various nanomaterials have been used as drug carriers in molecular imaging for the treatment of cancer. The unique physiochemical properties and biocompatibility of gold nanoparticles have developed a breakthrough in molecular imaging, which allows exploration of gold nanoparticles in drug delivery for diagnostic purpose. The conventional gold nanoparticles synthetisation methods have limitations with chemical contaminations during the synthesisation process and the use of higher energy. Thus, various innovative approaches in gold nanoparticles synthetisation are under development. Recently, studies have been focused on the development of eco-friendly, non-toxic, cost-effective and simple gold nanoparticle synthesisation. The pulsed laser ablation in liquid (PLAL) technique is a versatile synthetic and convincing technique due to its high efficiency, eco-friendly and facile method to produce gold nanoparticle. Therefore, this study aimed to review the eco-friendly gold nanoparticle synthesisation method via the PLAL method and to characterise the gold nanoparticles properties for molecular imaging. This review paper provides new insight to understand the PLAL technique in producing gold nanoparticles and the PLAL parameters that affect gold nanoparticle properties to meet the desired needs in molecular imaging.
APA, Harvard, Vancouver, ISO, and other styles
3

Huynh, Ngoc Han, and James C. L. Chow. "DNA Dosimetry with Gold Nanoparticle Irradiated by Proton Beams: A Monte Carlo Study on Dose Enhancement." Applied Sciences 11, no. 22 (November 17, 2021): 10856. http://dx.doi.org/10.3390/app112210856.

Full text
Abstract:
Heavy atom nanoparticles, such as gold nanoparticles, are proven effective radiosensitizers in radiotherapy to enhance the dose delivery for cancer treatment. This study investigated the effectiveness of cancer cell killing, involving gold nanoparticle in proton radiation, by changing the nanoparticle size, proton beam energy, and distance between the nanoparticle and DNA. Monte Carlo (MC) simulation (Geant4-DNA code) was used to determine the dose enhancement in terms of dose enhancement ratio (DER), when a gold nanoparticle is present with the DNA. With varying nanoparticle size (radius = 15–50 nm), distance between the gold nanoparticle and DNA (30–130 nm), as well as proton beam energy (0.5–25 MeV) based on the simulation model, our results showed that the DER value increases with a decrease of distance between the gold nanoparticle and DNA and a decrease of proton beam energy. The maximum DER (1.83) is achieved with a 25 nm-radius gold nanoparticle, irradiated by a 0.5 MeV proton beam and 30 nm away from the DNA.
APA, Harvard, Vancouver, ISO, and other styles
4

Yao, Cuiping, Luwei Zhang, Jing Wang, Yulu He, Jing Xin, Sijia Wang, Hao Xu, and Zhenxi Zhang. "Gold Nanoparticle Mediated Phototherapy for Cancer." Journal of Nanomaterials 2016 (2016): 1–29. http://dx.doi.org/10.1155/2016/5497136.

Full text
Abstract:
Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations.
APA, Harvard, Vancouver, ISO, and other styles
5

Yuan, Juan, Qing Quan Guo, Xiang Zhu He, and Yan Ping Liu. "Researching on the Adsorption of Protein on Gold Nanoparticles." Advanced Materials Research 194-196 (February 2011): 462–66. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.462.

Full text
Abstract:
Because of their unique properties, gold nanoparticles(NPs) show a wide range of applications such as surface-enhanced raman characteristics, biological sensing, biomedical and other fields. Different initial concentrations of Bull Serum Albumin(BSA) and egg white lysozyme respectively react with different size of gold nanoparticles. The condition of adsorption is determined by spectrometry method, then the area of protein with different molecular mass on the surface of a gold nanoparticle is calculated. The results show that the larger particle size of a gold nanoparticle is, the more protein the surface a gold nanoparticle adsorbs; the smaller the molecular mass of protein is, the more protein is adsorbed by gold nanoparticles surface.
APA, Harvard, Vancouver, ISO, and other styles
6

Chang, Chia-Chen, Chie-Pein Chen, Tzu-Heng Wu, Ching-Hsu Yang, Chii-Wann Lin, and Chen-Yu Chen. "Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications." Nanomaterials 9, no. 6 (June 6, 2019): 861. http://dx.doi.org/10.3390/nano9060861.

Full text
Abstract:
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
APA, Harvard, Vancouver, ISO, and other styles
7

Yuan, Qunying, Manjula Bomma, and Zhigang Xiao. "Enhanced Extracellular Synthesis of Gold Nanoparticles by Soluble Extracts from Escherichia coli Transformed with Rhizobium tropici Phytochelatin Synthase Gene." Metals 11, no. 3 (March 12, 2021): 472. http://dx.doi.org/10.3390/met11030472.

Full text
Abstract:
Phytochelatins, the enzymatic products of phytochelatin synthase, play a principal role in protecting the plants from heavy metal and metalloid toxicity due to their ability to scavenge metal ions. In the present study, we investigated the capacity of soluble intracellular extracts from E. coli cells expressing R. tropici phytochelatin synthase to synthesize gold nanoparticle. We discovered that the reaction mediated by soluble extracts from the recombinant E. coli cells had a higher yield of gold nanoparticles, compared to that from the control cells. The compositional and morphological properties of the gold nanoparticles synthesized by the intracellular extracts from recombinant cells and control cells were similar. In addition, this extracellular nanoparticle synthesis method produced purer gold nanoparticles, avoiding the isolation of nanoparticles from cellular debris when whole cells are used to synthesize nanoparticles. Our results suggested that phytochelatins can improve the efficiency of gold nanoparticle synthesis mediated by bacterial soluble intracellular extracts, and the potential of extracellular nanoparticle synthesis platform for the production of nanoparticles in large quantity and pure form is worth further investigation.
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Jian-Yuan, Min-Hua Chen, and Feng-Huei Lin. "The Synthesis and Characterization of PEG-SH-Modified Gold Nanoparticle in One-Pot Synthesis by Stenotrophomonas maltophilia." Journal of Nanoscience and Nanotechnology 19, no. 11 (November 1, 2019): 7278–84. http://dx.doi.org/10.1166/jnn.2019.16625.

Full text
Abstract:
Colloidal gold nanoparticles have been researched and utilized in many technical applications. However, the conventionalmethods to produce polyethyleneglycol (PEG) immobilized gold nanoparticles have to take several steps, including residual solvent removing. In the study, we propose an idea green route to synthesize gold nanoparticles by using Stenotrophomonas maltophilia in a one-pot reaction. The relationship between Au precursor and S. maltophilia was evaluated systematically. After PEG-SH addition, the bacterial cell wall was broken down and the synthetic nanoparticles could be released into culture medium. Furthermore, we identified that the crystal structure of synthetic gold nanoparticle was face-center cubic and PEG-SH was immobilized on synthetic gold nanoparticle ideally. The size of Au-PEG-SH was smaller than 30 nm. These findings suggest that gold nanoparticle with PEG-SH modification could be prepared in an eco-friendly one-pot reaction through the metabolic activity of S. maltophilia.
APA, Harvard, Vancouver, ISO, and other styles
9

Compostella, Federica, Olimpia Pitirollo, Alessandro Silvestri, and Laura Polito. "Glyco-gold nanoparticles: synthesis and applications." Beilstein Journal of Organic Chemistry 13 (May 24, 2017): 1008–21. http://dx.doi.org/10.3762/bjoc.13.100.

Full text
Abstract:
Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.
APA, Harvard, Vancouver, ISO, and other styles
10

RAJASULOCHANA, P., R. DHAMOTHARAN, P. MURUGAKOOTHAN, S. MURUGESAN, and P. KRISHNAMOORTHY. "BIOSYNTHESIS AND CHARACTERIZATION OF GOLD NANOPARTICLES USING THE ALGA Kappaphycus alvarezii." International Journal of Nanoscience 09, no. 05 (October 2010): 511–16. http://dx.doi.org/10.1142/s0219581x10007149.

Full text
Abstract:
As a part of our ongoing investigation into the use of algae for gold nanoparticle synthesis, we screened the marine alga Kappaphycus alvarezii, to investigate its efficiency to reduce gold ions as well as the formation of gold nanoparticles. In the present work, we report the reaction condition of the alga K. alvarezii with aqueous gold ions for gold nanoparticle synthesis within the biomass extracellularly. The formation of gold nanoparticles was characterized by UV–Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) method. Moreover, we have found that the reaction of gold ions with the K. alvarezii biomass under stationary conditions results in the rapid extracellular formation of gold nanoparticles of spherical morphology. The gold nanoparticles are not toxic to the cells that continued to grow after the biosynthesis of the gold nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanoparticle gold"

1

Derrien, Thomas. "Gold nanoparticle-lipid bilayer interactions." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86727.

Full text
Abstract:
The interactions of ligand-capped gold nanoparticles with lipid bilayers are investigated. The properties determining the mechanism of nanoparticle interaction using synthetic membrane models are explored. First, a specific interaction, incorporation of nanoparticles into the bilayers, is examined using novel imaging and nanoparticle synthesis techniques. Mixed ligand capped gold nanoparticles are synthesized with assorted ligand arrangements in order to relate ligand composition and structure to interaction mechanism using a dye leakage assay. Finally, in vivo experiments are conducted using peptide labeled fluorescent gold nanoparticles in live HeLa cells. It was found that gold nanoparticles are capable of crossing lipid bilayers, implying energy-independent cellular uptake mechanisms may occur. It is concluded that the structure and composition of the protecting ligands are critical in determining the magnitude of bilayer disruption.
L'interaction des nanoparticules d'or avec les bicouches lipidiques est présentée dans ce mémoire. Les facteurs influençant cette interaction ont été explorés en utilisant des bicouches lipidiques synthétiques. L'interaction due à l'incorporation des nanoparticules au sein des bicouches a été étudiée par des techniques d'imagerie. Un test de fuite de fluorophore a été employé afin de déterminer l'influence de la composition et de la structure des ligands protégeant les nanoparticules sur leur incorporation dans les bicouches de lipides. Pour cela, nous avons développer une synthèse de nanoparticules protégées par deux types de ligands. Des expériences in vivo ont été réalises avec des nanoparticules d'or fonctionnalisées avec des peptides ainsi que des fluorophores, mis en contact avec des cellules vivantes de type HeLa. Nous avons constaté que les nanoparticules d'or sont capables de franchir les bicouches lipidiques en utilisant des mécanismes indépendants d'énergie. Nous concluons que la structure et la composition des ligands protégeant les nanoparticules ont une grande influence sur la perturbation qu'elles induisent dans la structure des bicouches lipidiques.
APA, Harvard, Vancouver, ISO, and other styles
2

Manohar, Nivedh Harshan. "Quantitative imaging of gold nanoparticle distribution for preclinical studies of gold nanoparticle-aided radiation therapy." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54877.

Full text
Abstract:
Gold nanoparticles (GNPs) have recently attracted considerable interest for use in radiation therapy due to their unique physical and biological properties. Of interest, GNPs (and other high-atomic-number materials) have been used to enhance radiation dose in tumors by taking advantage of increased photoelectric absorption. This physical phenomenon is well-understood on a macroscopic scale. However, biological outcomes often depend on the intratumoral and even intracellular distribution of GNPs, among other factors. Therefore, there exists a need to precisely visualize and accurately quantify GNP distributions. By virtue of the photoelectric effect, x-ray fluorescence (XRF) photons (characteristic x-rays) from gold can be induced and detected, not only allowing the distribution of GNPs within biological samples to be determined but also providing a unique molecular imaging option in conjunction with bioconjugated GNPs. This work proposes the use of this imaging modality, known as XRF imaging, to develop experimental imaging techniques for detecting and quantifying sparse distributions of GNPs in preclinical settings, such as within small-animal-sized objects, tissue samples, and superficial tumors. By imaging realistic GNP distributions, computational methods can then be used to understand radiation dose enhancement on an intratumoral scale and perhaps even down to the nanoscopic, subcellular realm, elucidating observed biological outcomes (e.g., radiosensitization of tumors) from the bottom-up. Ultimately, this work will result in experimental and computational tools for developing a better understanding of GNP-mediated dose enhancement and associated radiosensitization within the scope of GNP-aided radiation therapy.
APA, Harvard, Vancouver, ISO, and other styles
3

Jones, Bernard. "Monte Carlo calculations of microscopic dose enhancement for gold nanoparticle-aided radiation therapy." Thesis, Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/34746.

Full text
Abstract:
Gold Nanoparticle-Aided Radiation Therapy (GNRT) is a new paradigm in radiation therapy which seeks to make a tumor more susceptible to radiation damage by modifying its photon interaction properties with an infusion of a high-atomic-number substance. The purpose of this study was to quantify the energy deposition due to secondary electrons from gold nanoparticles on a micrometer scale and to calculate the corresponding microscopic dose enhancement factor during GNRT. The Monte Carlo code EGSnrc was modified to obtain the spectra of secondary electrons from atoms of gold and molecules of water under photon irradiation of a tumor infused with 0.7 wt. % gold. Six different photon sources were used: 125I, 103Pd, 169Yb, 192Ir, 50kVp, and 6MV x-rays. Treating the scored electron spectra as point sources within an infinite medium of water, the event-by-event Monte Carlo code NOREC was used to quantify the radial dose distribution, giving rise to gold and water electron dose point kernels. These kernels were applied to a scanning electron microscope (SEM) image of a gold nanoparticle distribution in tissue. The dose at each point was then calculated, enabling the determination of the microscopic dose enhancement at each point. For the lower energy sources 125I, 103Pd, 169Yb, and 50 kVp, the secondary electron fluence was increased by as much as two orders of magnitude, leading to a one-to-two order of magnitude increase in the electron dose point kernel over radial distances up to 50 um. The dose was enhanced by 100% within 5 um of the nanoparticles, and by 5% as far away as 30 um. This study demonstrates a remarkable microscopic dose enhancement due to gold nanoparticles and low energy photon sources. Given that the dose enhancement exceeds 100% within very short distances from the nanoparticles, the maximum radiobiological benefit may be derived from active targeting strategies that concentrate nanoparticles in close proximity to the cancer cell and/or its nucleus.
APA, Harvard, Vancouver, ISO, and other styles
4

Crew, Elizabeth. "Nanoparticle-based analytical/bioanalytical probes investigation of interactions and reactivities between gold nanoparticles and homocysteine /." Diss., Online access via UMI:, 2005. http://wwwlib.umi.com/dissertations/fullcit/1425749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kanaras, Antonios G. "Enzymatic manipulation of DNA/gold nanoparticle assemblies." Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bennett, Samantha E. "Fabrication of water-soluble gold nanoparticle aggregates." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35074.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2006.
Includes bibliographical references (leaves 23-24).
Mixed monolayer protected gold nanoparticles were linked using octanedithiol to form aggregates containing hundreds of nanoparticles. These aggregates are an interesting material, posing potential applications in the fields of chemistry, biology and materials science. This study examined the dependence of aggregate size and morphology on temperature of formation, using AFM and TEM imaging. The aggregates formed at 70°C averaged 105nm in width, as compared to 70nm for the room temperature aggregates. The TEM images showed increased density for the 70°C aggregates. In a further study, the room temperature aggregates were functionalized through a place exchange reaction with 1 -mercapto-undecane- l-sodiumsulfonate (MUS), a thiolated ligand with a polar head group. A two-phase test of the water-solubility indicated that the aggregates were fully soluble. TEM images showed a slight increase in size, though similar morphology to the insoluble aggregates. The ability to induce water solubility in the aggregates opens up many potential applications in the field of bionanomaterials.
by Samantha E. Bennett.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
7

Zarate-Triviño, D. G., Acosta E. M. Valenzuela, E. Prokhorov, G. Luna-Bárcenas, Padilla C. Rodríguez, and Molina M. A. Franco. "Chitosan-Gold Nanoparticle Composites for Biomedical Application." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35404.

Full text
Abstract:
The aim of this work is to synthesize chitosan-gold nanoparticles films by direct chemical reduction of HAuCl4 in a chitosan solution and to investigate the influence of gold nanoparticles concentration on the structure of films, conductivity and healing effect on mice skin after surgery. Results obtained have shown that new chitosan-gold nanoparticle-collagen bionananocomposites demonstrated better healing effect on the mice skin after surgery than control performed on commercial TheraFormTM material. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35404
APA, Harvard, Vancouver, ISO, and other styles
8

García, Fernández Lorena. "Introducing gold nanoparticle bioconjugates within the biological machinery." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/120221.

Full text
Abstract:
El rápido desarrollo de la Nanotecnología durante las últimas décadas ofrece amplias perspectivas en el uso de materiales a micro- y nanoescala en diferentes áreas de la industria, tecnología y medicina. Sin embargo, su uso y aplicación segura y eficaz en estas áreas requieren un control mucho mayor sobre sus propiedades físico-químicas y sus interacciones moleculares relacionadas con los seres vivos. El conocimiento actual de la comunidad científica está de acuerdo en que existe una brecha considerable en la comprensión de este tipo de interfaz "Nano-Bio". Dando un paso adelante en esta dirección, este trabajo de Tesis ha tenido como objetivo proporcionar conocimientos sobre la formación racional de bioconjugados de nanopartículas de oro para modular y comprender sus interacciones y los procesos celulares. En este contexto, la primera parte de esta Tesis se centra en la síntesis de nanopartículas de oro catiónicas y sus interacciones con células. La primera estrategia desarrollada para la síntesis de nanopartículas de oro cargadas positivamente se llevó a cabo mediante el uso simultáneo de un reductor débil y uno fuerte. Se ha demostrado que los dos reductores actúan de forma secuencial en el proceso sintético para producir nanopartículas de oro catiónicas monodispersas, con tamaños comprendidos entre 10.3 nm y 19.7 nm. Se describe también un método de crecimiento de nanopartículas de oro, en el que se obtienen nanopartículas monodispersas de mayor tamaño (de hasta ~ 28 nm) a partir de nanopartículas de oro previamente sintetizadas, mediante la adición de precursor y un reductor débil. La segunda estrategia desarrollada hace frente a la creciente demanda de nanopartículas de oro catiónicas de diferentes tamaños y ligandos, mediante el empleo de una metodología de transferencia de fase de medio orgánico a acuoso. Esta combinación de métodos de síntesis orgánica y acuosa da como resultado importantes beneficios. Esta estrategia se ha optimizado para preparar nanopartículas de oro catiónicas de 4.6, 8.9 y 13.4 nm de diámetro, usando un ligando alquílico tiolado con carga positiva. Además, su aplicación práctica se demostró mediante la producción de bioconjugados de oro de 13 nm con un péptido catiónico y otro aniónico. Las propiedades físico-químicas de estos bioconjugados en medios de cultivo celular, así como su internalización y toxicidad en fibroblastos humanos han sido estudiados. La segunda parte de esta Tesis se centra en la funcionalización racional de nanopartículas de oro con anticuerpos y la investigación de su interacción específica con receptores celulares. La formación de bioconjugados de oro con anticuerpos se ha estudiado utilizando una química selectiva, que ha permitido controlar el número de anticuerpos y su orientación en la nanopartícula. La obtención de bioconjugados bien definidos hizo posible la creación de nuevos autoensamblajes de nanopartículas mediante reconocimiento anticuerpo-antígeno. Esta estrategia también se exploró para la conjugación de un anticuerpo biológicamente relevante (Cetuximab) con nanopartículas de oro. Bioconjugados de oro con Cetuximab de configuración y multivalencia controlada se han utilizado para examinar su interacción con el receptor de superficie celular EGFR (receptor del factor de crecimiento epidérmico), un receptor de tirosina quinasa que es sobreexpresado en un gran número de cánceres.
The rapid development in Nanotechnology during the past few decades offers wide prospects in using micro- and nanoscale materials in different areas of industry, technology and medicine. However, their safe and efficient use and implementation in such areas require much greater control over their physicochemical properties and their related molecular interactions in living systems. Current knowledge in the scientific community agrees that a considerable gap exists in our understanding of such “Nano-Bio” interface. As a step forward in this direction, this Thesis work aimed to provide insights into the formation of rationally designed gold nanoparticle (Au NP) bioconjugate architectures to modulate and understand cellular interactions and processes. In such a context, the first part of this Thesis is focused on the synthesis of cationic Au NPs and their interactions with cells. A first strategy was developed in which the synthesis of positively charged Au NPs was performed by using simultaneously a weak and a strong reducer. It is shown that both reducers act sequentially in a one-pot synthesis to yield monodisperse cationic Au NPs with sizes comprised between 10.3 nm and 19.7 nm. A two-step seeding growth method is also described in which preformed Au NPs are grown larger (up to ~28 nm in size) by addition of fresh precursor solution and a weak reducer. A second strategy faces the rising demand of cationic Au NPs of different sizes and ligands by employing an organic-aqueous phase transfer methodology. Important benefits resulted from the combination of organic and aqueous synthetic methods. This strategy was optimized to prepare cationic Au NPs of 4.6, 8.9 and 13.4 nm in diameter using a positively charged alkanethiolate ligand. In addition, its practical application was demonstrated by producing ~ 13-nm-in-size cationic and anionic peptide-Au NP bioconjugates. The physicochemical properties of these bioconjugates in cell culture media as well as their uptake and toxicity on human fibroblast cells are discussed. The second part of this Thesis is focused on the rational functionalization of Au NPs with antibodies and investigating their interactions with cellular receptors. A site-directed chemistry was explored to prepare Antibody-Au NP bioconjugates with controlled ratio and orientation of bioconjugation. The formation of well-defined bioconjugates made possible the creation of novel NP-based assemblies using antibody-antigen cross-links. This strategy was also explored for the conjugation of a biologically relevant antibody (Cetuximab) with Au NPs. Cetuximab-Au NP bioconjugates of controlled configuration and multivalency were used to examine their interaction with the cell surface receptor EGFR (epidermal growth factor receptor), a receptor tyrosine kinase overexpressed in a large number of cancers.
APA, Harvard, Vancouver, ISO, and other styles
9

Tombe, Sekai Lana. "Characterization and application of phthalocyanine-gold nanoparticle conjugates." Thesis, Rhodes University, 2013. http://hdl.handle.net/10962/d1004517.

Full text
Abstract:
This work presents the syntheses, photophysical and photochemical characterization of arylthio zinc phthalocyanines and their gold nanoparticle conjugates. Spectroscopic and microscopic studies confirmed the formation of the phthalocyanine-gold nanoparticle conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines. The studies showed that the presence of gold nanoparticles significantly lowered fluorescence quantum yields and lifetimes. However, this interaction did not restrict the formation of excited singlet and triplet states and hence the formation of singlet oxygen required for photocatalysis. The conjugates showed significantly higher singlet oxygen quantum yields and therefore enhanced photocatalytic activity compared to the phthalocyanines. The zinc phthalocyanines and their gold nanoparticle conjugates were successfully incorporated into electrospun polymer fibers. Spectral characteristics of the functionalized electrospun fibers indicated that the phthalocyanines and phthalocyanine-gold nanoparticle conjugates were bound and their integrity was maintained within the polymeric fiber matrices. The photophysical and photochemical properties of the complexes were equally maintained within the electrospun fibers. The functionalized fibers were applied for the photoconversion of 4-chlorophenol and Orange G as model organic pollutants.
Microsoft� Word 2010
Adobe Acrobat 9.53 Paper Capture Plug-in
APA, Harvard, Vancouver, ISO, and other styles
10

Mthethwa, Thandekile Phakamisiwe. "Metallophthalocyanine-gold nanoparticle conjugates for photodynamic antimicrobial chemotherapy." Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1017923.

Full text
Abstract:
This thesis presents the synthesis of neutral and cationic metallophthalocyanines and their gold nanoparticles conjugates. The spectroscopic characterization of these compounds is presented herein. The studies presented in this work shows that the conjugation of gold nanoparticles influenced both photophysical and photochemical properties. Gold nanoparticles were found to enhance the singlet oxygen quantum yield while lowering the fluorescence quantum yields. This work also looks at the effect of anisotropic gold nanoparticles such as nanorods and bipyramids on the photophysical behaviour of the metallophthalocyanines. The effect of the size of the gold nanorods was investigated herein. The results show that photophysical and photochemical properties can be influenced by both size and shape of the nanoparticles. Physical characterization about the loading of nanoparticles was also looked into. Parameters such as the surface area, the number of surface atoms, the number of atoms as well as the number of nanoparticles loaded on the surface of the phthalocyanines were studied. The self-assembled monolayers formed by phthalocyanines on gold surfaces were studied using the X-ray photoelectron spectroscopy (XPS). The gold nanoparticles synthesized herein include both organic and water soluble, different capping agents (citrate, tetraammonium bromide (TAOBr) and cetrimethylammonium bromide (CTAB). The concentration of the gold nanoparticles was measured on the inductively coupled plasma (ICP) and their size and shape were obtained from the transmission electron microscopy (TEM) images. A cationic aluminium phthalocyanine and its conjugates were used for photoinactivation of bacteria and fungi. The results show significant reduction and higher activity in the presence of gold nanoparticles, especially nanorods. A small chapter in this work presents an attempted work on the binding of metallothionein protein with protophorphyrin (IX). The pH and concentration dependent binding studies were investigated
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nanoparticle gold"

1

Kapil, Nidhi. Stable Supported Gold Nanoparticle Catalyst for Environmentally Responsible Propylene Epoxidation. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15066-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dey, G. R. Gold nanoparticles: Generation & characterization. Mumbai: Scientific Information Resource Division, Bhabha Atomic Research Centre, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dykman, Lev, and Nikolai Khlebtsov. Gold Nanoparticles in Biomedical Applications. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/b22465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kagakkai, Nihon, ed. Nano ryūshi. Tōkyō-to Bunkyō-ku: Kyōritsu Shuppan, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chow, P. E. Gold nanoparticles: Properties, characterization, and fabrication. Hauppauge, N.Y: Nova Science Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anghinolfi, Luca. Self-Organized Arrays of Gold Nanoparticles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30496-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mingos, D. Michael P., ed. Gold Clusters, Colloids and Nanoparticles II. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07845-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mingos, D. Michael P., ed. Gold Clusters, Colloids and Nanoparticles I. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07848-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rudolf, Rebeka, Vojkan Lazić, Peter Majerič, Andrej Ivanič, Gregor Kravanja, and Karlo T. Raić. Dental Gold Alloys and Gold Nanoparticles for Biomedical Applications. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98746-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Olivier, Pluchery, ed. Gold Nanoparticles for Physics, Chemistry and Biology. Singapore: World Scientific Pub. Co., 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanoparticle gold"

1

Thaxton, C. Shad, and Chad A. Mirkin. "DNA-Gold-Nanoparticle Conjugates." In Nanobiotechnology, 288–307. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602453.ch19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xue, Chenming, and Quan Li. "Liquid Crystal-Gold Nanoparticle Hybrid Materials." In Nanoscience with Liquid Crystals, 101–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04867-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Manuchehrabadi, Navid, and Liang Zhu. "Gold Nanoparticle-Based Laser Photothermal Therapy." In Handbook of Thermal Science and Engineering, 2455–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-26695-4_69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sengupta, Jayeeta, Sourav Ghosh, and Antony Gomes. "Anti-Arthritic Potential of Gold Nanoparticle." In 21st Century Nanoscience – A Handbook, 9–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429351587-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Manuchehrabadi, Navid, and Liang Zhu. "Gold Nanoparticle-Based Laser Photothermal Therapy." In Handbook of Thermal Science and Engineering, 1–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32003-8_69-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anghinolfi, Luca. "Self-Organized Nanoparticle Arrays: Morphological Aspects." In Self-Organized Arrays of Gold Nanoparticles, 59–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30496-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anghinolfi, Luca. "Self-Organized Nanoparticle Arrays: Optical Properties." In Self-Organized Arrays of Gold Nanoparticles, 71–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30496-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mehta, Tejal, Renuka Mishra, Chintan Pansara, Chetan Dhal, Namdev Dhas, Kartik Hariharan, and Jayvadan K. Patel. "Manufacturing Techniques for Carbon Nanotubes, Gold Nanoparticles, and Silver Nanoparticles." In Emerging Technologies for Nanoparticle Manufacturing, 397–420. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-50703-9_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Becker, Jan. "Single Gold Nanoparticle Growth Monitored in situ." In Springer Theses, 71–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31241-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Zhiguo, and Baofeng Yang. "Gold Nanoparticle Probe Method for miRNA Quantification." In MicroRNA Expression Detection Methods, 217–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04928-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanoparticle gold"

1

Chung, Jaewon, Seunghwan Ko, Nicole R. Bieri, Costas P. Grigoropoulos, and Dimos Poulikakos. "Laser Curing of Gold Nanoparticle Inks." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41650.

Full text
Abstract:
The concept of effective laser curing of nanoparticle suspensions (NPS) with a laser beam is presented in this paper. A toluene solvent is employed as the carrier of gold nanoparticles possessing a lower melting temperature than that of bulk gold. Using a modified drop-on-demand jetting system, the gold nanoparticle suspended solution is printed on a glass substrate and cured with laser irradiation. The laser energy coupling to the nanoparticles in conjunction with thermocapillary effects and the evaporation of the solvent are critical to the quality of the electrically conductive gold microlines. By employing a intensity-modulated double laser beam processing scheme, to optimize the curing process, it is demonstrated for the first time, that the gold nanoparticles could be sintered on a glass substrate to form a gold line of resistivity close to that of bulk gold. This is a noticeable result, compared to recently published microconductor manufacturing with nanoparticle suspensions with oven [1] or low power single laser beam [2] curing reporting resistivities four to five times higher than that of bulk gold. As a consequence, in addition to their scientific value, the current results demonstrate the potential of laser printing for use in the microelectronics manufacturing for the first time. It was also shown that the morphology of the gold line could be modified by appropriate design of the shape of the processing laser beam.
APA, Harvard, Vancouver, ISO, and other styles
2

Steinbrück, Andrea, Andrea Csaki, Kathrin Ritter, Martin Leich, J. Michael Köhler, Wolfgang Fritzsche, Wolfgang Fritzsche, and Frank Bier. "Formation Of Defined Nanoparticle Constructs Containing Gold, Silver, And Gold-Silver Nanoparticles." In DNA-BASED NANODEVICES: International Symposium on DNA-Based Nanodevices. AIP, 2008. http://dx.doi.org/10.1063/1.3012290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eunhye Jeong, Kihoon Kim, Younggeun Park, Yeonho Choi, Hyunjoo Lee, and Taewook Kang. "Controlled overgrowth of gold on gold/PS dimeric nanoparticle." In 2011 IEEE Nanotechnology Materials and Devices Conference (NMDC 2011). IEEE, 2011. http://dx.doi.org/10.1109/nmdc.2011.6155331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bromma, Kyle, Devika B. Chithrani, and Celina Yang. "Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy." In Colloidal Nanoparticles for Biomedical Applications XIII, edited by Xing-Jie Liang, Wolfgang J. Parak, and Marek Osiński. SPIE, 2018. http://dx.doi.org/10.1117/12.2295461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Covington, Elizabeth L., Richard W. Turner, Cagliyan Kurdak, Michael P. Rowe, Chao Xu, and Edward T. Zellers. "Electrical noise in gold nanoparticle chemiresistors." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gerasimov, Y. S., V. V. Shorokhov, E. S. Soldatov, and O. V. Snigirev. "Gold nanoparticle single-electron transistor simulation." In International Conference on Micro-and Nano-Electronics 2012, edited by Alexander A. Orlikovsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2017078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Wei, Lei Li, Xiaoqiang Zhu, and Yi Yang. "Gold nanoparticle sorting based on optofluidics." In International Conference on Optoelectronics and Microelectronics Technology and Application, edited by Yikai Su, Chongjin Xie, Shaohua Yu, Chao Zhang, Wei Lu, Jose Capmany, Yi Luo, et al. SPIE, 2017. http://dx.doi.org/10.1117/12.2267202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schade, Marco, Paul M. Donaldson, Alessandro Moretto, Claudio Toniolo, and Peter Hamm. "A Peptide Capping Layer over Gold Nanoparticle." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/up.2010.tue9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Forster, Robert J., Lynn Dennany, Michael Seery, and Tia E. Keyes. "Luminescence properties of metallopolymer-gold nanoparticle composites." In OPTO-Ireland, edited by John G. McInerney, Gerard Farrell, David M. Denieffe, Liam P. Barry, Harold S. Gamble, Padraig J. Hughes, and Alan Moore. SPIE, 2005. http://dx.doi.org/10.1117/12.606155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ieva, E., K. Buchholt, L. Colaianni, N. Cioffi, I. D. van der Werf, A. Lloyd Spetz, P. O. Kall, and L. Torsi. "Gold nanoparticle sensors for environmental pollutant monitoring." In 2nd IEEE International Workshop on Advances in Sensors and Interfaces, IWASI 2007. IEEE, 2007. http://dx.doi.org/10.1109/iwasi.2007.4420006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nanoparticle gold"

1

Krantz, Kelsie E., Jonathan H. Christian, Kaitlin Coopersmith, Aaron L. Washington, II, and Simona H. Murph. Gold Nanoparticle Microwave Synthesis. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1281776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Srivastava, Ishan, Brandon L. Peters, James Matthew Doyle Lane, Hongyou Fan, Gary S. Grest, and Michael K. Salerno. Mechanics of Gold Nanoparticle Superlattices at High Hydrostatic Pressure. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1476165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chavez, Jorge L., Grant M. Slusher, Joshua A. Hagen, Nancy Kelley-Loughnane, Juliann Leny, and Suzanne Witt. Plasmonic Aptamer-Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada612730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harrison, Ian. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1358579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karunamuni, Roshan. Targeted Gold Nanoparticle Contrast Agent for Digital Breast Tomosynthesis and Computed Tomography. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada524517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Karunamuni, Roshan. Targeted Gold Nanoparticle Contrast Agent for Digital Breast Tomosynthesis and Computed Tomography. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada559268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chavez, Jorge L., Nancy Kelley-Loughnane, Morley O. Stone, and Robert I. MacCuspie. Colorimetric Detection with Aptamer-Gold Nanoparticle Conjugates: Effect of Aptamer Length on Response. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada576582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Murph, Simona Hunyadi. Gold-manganese nanoparticles for targeted diagnostic and imaging. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1348898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gabriel Licina, Gabriel Licina. Can We Make Inexpensive, Functional Gold Nanoparticles with Biosynthesis? Experiment, September 2022. http://dx.doi.org/10.18258/29680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cho, Tae Joon, and Vincent A. Hackley. Assessing the chemical and colloidal stability of functionalized gold nanoparticles. Gaithersburg, MD: National Institute of Standards and Technology, June 2018. http://dx.doi.org/10.6028/nist.sp.1200-26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography