Academic literature on the topic 'Nanoparticle dispersions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoparticle dispersions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanoparticle dispersions"
Metin, Cigdem, Roger T. Bonnecaze, and Quoc P. Nguyen. "The Viscosity of Silica Nanoparticle Dispersions in Permeable Media." SPE Reservoir Evaluation & Engineering 16, no. 03 (July 24, 2013): 327–32. http://dx.doi.org/10.2118/157056-pa.
Full textBouaziz, Amina Manel, M. N. Bouaziz, and A. Aziz. "Influences of Zero Mass Flux and Active Conditions on the Predictions of Double Dispersion and Double Diffusive Boundary Layer in Darcy/Non Darcy Nanofluid Flow." International Journal of Engineering Research in Africa 57 (November 9, 2021): 49–65. http://dx.doi.org/10.4028/www.scientific.net/jera.57.49.
Full textLópez, Israel, and Idalia Gómez. "Microwave-Assisted Synthesis of Cadmium Sulfide Nanoparticles: Effect of Hydroxide Ion Concentration." MRS Proceedings 1617 (2013): 151–56. http://dx.doi.org/10.1557/opl.2013.1178.
Full textLorenzo, Arnaldo T., Ramakrishna Ponnapati, Tirtha Chatterjee, and Ramanan Krishnamoorti. "Structural characterization of aqueous solution poly(oligo(ethylene oxide) monomethyl methacrylate)-grafted silica nanoparticles." Faraday Discussions 186 (2016): 311–24. http://dx.doi.org/10.1039/c5fd00137d.
Full textPeiris, T. A. Nirmal, Juan Benitez, Luke Sutherland, Manoj Sharma, Monika Michalska, Andrew D. Scully, Doojin Vak, Mei Gao, Hasitha C. Weerasinghe, and Jacek Jasieniak. "A Stable Aqueous SnO2 Nanoparticle Dispersion for Roll-to-Roll Fabrication of Flexible Perovskite Solar Cells." Coatings 12, no. 12 (December 12, 2022): 1948. http://dx.doi.org/10.3390/coatings12121948.
Full textBartucci, Roberta, Alex Z. van der Meer, Ykelien L. Boersma, Peter Olinga, and Anna Salvati. "Nanoparticle-induced inflammation and fibrosis in ex vivo murine precision-cut liver slices and effects of nanoparticle exposure conditions." Archives of Toxicology 95, no. 4 (February 8, 2021): 1267–85. http://dx.doi.org/10.1007/s00204-021-02992-7.
Full textVippola, M., GCM Falck, HK Lindberg, S. Suhonen, E. Vanhala, H. Norppa, K. Savolainen, A. Tossavainen, and T. Tuomi. "Preparation of nanoparticle dispersions for in-vitro toxicity testing." Human & Experimental Toxicology 28, no. 6-7 (June 2009): 377–85. http://dx.doi.org/10.1177/0960327109105158.
Full textShalaev, P. V., P. A. Monakhova, and S. A. Tereshchenko. "Study of colloidal dispersions of gold nanorods using light scattering methods." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 23, no. 2 (September 15, 2020): 116–26. http://dx.doi.org/10.17073/1609-3577-2020-2-116-126.
Full textZhu, Chunxiao, Hugh Daigle, and Steven L. Bryant. "Paramagnetic nanoparticles as nuclear magnetic resonance contrast agents in sandstone: Importance of nanofluid-rock interactions." Interpretation 4, no. 2 (May 1, 2016): SF55—SF65. http://dx.doi.org/10.1190/int-2015-0137.1.
Full textOrlandi, Silvia, Erika Benini, Isabella Miglioli, Dean R. Evans, Victor Reshetnyak, and Claudio Zannoni. "Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape." Physical Chemistry Chemical Physics 18, no. 4 (2016): 2428–41. http://dx.doi.org/10.1039/c5cp05754j.
Full textDissertations / Theses on the topic "Nanoparticle dispersions"
Alele, Nkem [Verfasser], and Mathias [Akademischer Betreuer] Ulbricht. "Membrane-based purification of nanoparticle dispersions / Nkem Alele. Betreuer: Mathias Ulbricht." Duisburg, 2016. http://d-nb.info/1106854527/34.
Full textMilette, Jonathan. "Study of nanoparticle - liquid crystal dispersions using optical microscopy and solid-state NMR." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106294.
Full textCette Thèse présente la synthèse d'une nouvelle famille de nanoparticules (NPs) d'or enrobées de cristaux liquides (CLs) afin de rationaliser leur miscibilité et assemblage dans des matrices faites de cristaux liquides. Un nouveau protocole basé sur la réaction d'échange de ligand thiol-pour-diméthylaminopyridine (DMAP) a été développé afin de préparer des NPs d'or de 4 à 5 nm de diamètre avec une monocouche simple et binaire faite d'alcanethiol (CH3(CH2)mSH; m = 5, 11) et du ligand CL 4'-(n-mercaptoalkoxy)biphényle-4-carbonitriles (CBO(CH2)nSH; n = 8, 12, 16). Nous avons découvert que les NPs d'or avec un ratio de 1:1 des ligands CH3(CH2)5SH/CBO(CH2)12SH possèdent une miscibilité sans précédent jusqu'à 25% en poids d'or dans la phase isotrope des CLs 4-n-pentyl-4'-cyanobiphényle (5CB) and 4-n-octyl-4'-cyanobiphényle (8CB). Bien qu'une faible concentration en NPs soit normallement utilisée afin d'éviter la formation d'agrégats, les dispersions concentrées de ces NPs d'or forment de nouvelles structures à la tansition de phase du CL par l'entremise du couplage des forces d'attraction interparticulaires avec les intéractions élastiques du CL. En refroidissant à TN-I, les NPs d'or forment de manière réversible un réseau à l'échelle microscopique en se concentrant à l'interphase nématique-isotrope. La topologie et l'orientation du domaine des directeurs CL sont controllées par la vitesse de refroidissement, l'alignement de surface, l'épaisseur du film, et la concentration et composition de la monocouche des NPs d'or. Des structures tout à fait différentes sont formées à la transition de phase nématique à smectique. Les NPs d'or dispersées dans des films de CLs alignés homotropiquement forment de manière réversible des domaines macroscopique de rayures parallèles courbées ou droites ayant une périodicité microscopique. Selon la variation des rayures en function des limites de surface, nous proposons que les NPs d'or se concentrent aux défauts des dislocations coin dans la phase smectique.Les intéractions moléculaires qui déterminent la miscibilité et l'assemblage des NPs d'or dans des CLs ont été étudiées avec l'aide la RMN multinucléaire à l'état solide, et de NPs d'or et CLs marqués isotopiquement. L'intéraction de la matrice CL avec la surface des NPs d'or se manisfeste de manière surprenante par l'alignement partielle des ligands. La détection d'une région biphasique isotrope-nématique de la matrice CL en-dessous de TN-I est une découverte importante qui va être utilisée afin de perfectionner les modèles thèoriques de la formation de réseaux. Finallement, un autre modèle de réseau fait de NPs, formé à partir de la dispersion d'aérosil dans un CL base de Shiff et ayant un moment dipolaire faible, a été étudié par la RMN du 2H. Nous avons examiné l'impact qu'a différentes forces d'ancrage de surface sur l'effet mémoire qu'affiche ces dispersions.
O'Brien, Kristen Wilson. "Synthesis of Functionalized Poly(dimethylsiloxane)s and the Preparation of Magnetite Nanoparticle Complexes and Dispersions." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/28869.
Full textPh. D.
Back, Markus. "Out-of-plane Ferromagnetic Resonance (FMR) measurements on magnetic nanoparticle dispersions for biomedical sensor applications." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-410179.
Full textKosmala, A. "Development of high loading Ag nanoparticle inks for inkjet printing and Ag nanowire dispersions for conducting and transparent coatings." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7754.
Full textEdwards, Bronwyn K. "Effect of combined nanoparticle and polymeric dispersions on critical heat flux, nucleate boiling heat transfer coefficient, and coating adhesion." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/53288.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 123-126).
An experimental study was performed to determine thermal performance and adhesion effects of a combined nanoparticle and polymeric dispersion coating. The critical heat flux (CHF) values and nucleate boiling heat transfer coefficients (HTC) of nickel wires pre-coated using 1.0% alumina, 0.1% alumina, 500ppm polyallylamine hydrochloride (PAH), and 0.1% alumina combined with 500ppm PAH dispersions were determined using the pool-boiling method. The adhesion of 0.1% alumina and combined 0.1% alumina and 500ppm PAH coatings was evaluated using the tape and modified bend test methods. Results of the pool boiling experiments showed that the wire heaters pre-coated with combined 0.1% alumina and 500ppm PAH dispersion increase the CHF in water by -40% compared to bare wire heaters, compared to an enhancement of -37% with a 0.1% alumina coating. The combined 0.1% alumina and 500ppm PAH dispersion degrades the wire HTC by less than 1%, compared to a degradation of over 26% with a 0.1% alumina coating. Results from the tape test indicate qualitatively that the combined 0.1% alumina and 500ppm PAH dispersion coating adheres better than the 0.1% alumina nanoparticle coating. Results from the modified bend test showed that the combined 0.1% alumina and 500ppm PAH dispersion coating did not fail at the failure strain of the 0.1% alumina nanoparticle coating (8.108x 10-4). The addition of PAH to alumina nanofluid for creating a nanoparticle coating through boiling deposition was found to improve both coating thermal performance and adhesion over the pure alumina nanofluid.
by Bronwyn K. Edwards.
S.M.and S.B.
Gollamandala, Deepika Rao. "Brownian dynamic simulations of nanoparticle dispersions in polymer solutions a thesis presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2009. http://proquest.umi.com/pqdweb?index=13&did=1913184241&SrchMode=1&sid=1&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1265056184&clientId=28564.
Full textRhodes, Rhys William. "Controlling the morphology of nanoparticle-polymer composite films for potential use in solar cells." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/controlling-the-morphology-of-nanoparticlepolymer-composite-films-for-potential-use-in-solar-cells(6bc2a3cc-7c11-4615-a202-bead6360af99).html.
Full textQuant, Carlos Arturo. "Colloidal chemical potential in attractive nanoparticle-polymer mixtures: simulation and membrane osmometry." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7616.
Full textLe, Hong Duc. "Modelling of nanoparticles laden jet from a conveying pipe leakage." Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/21454/1/LE_Hong_Duc.pdf.
Full textBooks on the topic "Nanoparticle dispersions"
Yūki bunsankei no bunsan, gyōshū gijutsu: Dispersion and aggregation technology for organic dispersions. Tōkyō-to Chiyoda-ku: Shīemushī Shuppan, 2013.
Find full textLight Scattering from Polymer Solutions and Nanoparticle Dispersions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71951-9.
Full textLight Scattering from Polymer Solutions and Nanoparticle Dispersions. Springer, 2007.
Find full textSchärtl, Wolfgang. Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Springer, 2010.
Find full textSchärtl, Wolfgang. Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Springer London, Limited, 2007.
Find full textAraújo, Ana Cláudia Vaz de. Síntese de nanopartículas de óxido de ferro e nanocompósitos com polianilina. Brazil Publishing, 2021. http://dx.doi.org/10.31012/978-65-5861-120-2.
Full textBook chapters on the topic "Nanoparticle dispersions"
Kordás, Krisztián, Jarmo Kukkola, Géza Tóth, Heli Jantunen, Mária Szabó, András Sápi, Ákos Kukovecz, Zoltán Kónya, and Jyri-Pekka Mikkola. "Nanoparticle Dispersions." In Springer Handbook of Nanomaterials, 729–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20595-8_20.
Full textCapek, Ignác. "Iron Oxide Nanoparticle Dispersions." In Colloid Stability and Application in Pharmacy, 1–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631117.ch1.
Full textCapek, Ignác. "Iron Oxide Nanoparticle Dispersions." In Colloid Stability, 1–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631193.ch27.
Full textHaruna, Maje A., and Saminu M. Magami. "Nanoparticle Dispersions for Engineering Application." In Science and Applications of Nanoparticles, 369–405. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003280293-11.
Full textLoza, Kateryna, Matthias Epple, and Michael Maskos. "Stability of Nanoparticle Dispersions and Particle Agglomeration." In Biological Responses to Nanoscale Particles, 85–100. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12461-8_4.
Full textZeng, Yan. "Structuring of Nanoparticle Suspensions Confined Between Two Smooth Solid Surfaces." In Colloidal Dispersions Under Slit-Pore Confinement, 37–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34991-1_4.
Full textBuchhammer, Heide-M., Mandy Mende, and Marina Oelmann. "Preparation of monodisperse polyelectrolyte complex nanoparticles in dilute aqueous solution." In Aqueous Polymer Dispersions, 98–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b12146.
Full textBuchhammer, Heide-M., Mandy Mende, and Marina Oelmann. "Preparation of monodisperse polyelectrolyte complex nanoparticles in dilute aqueous solution." In Aqueous Polymer Dispersions, 98–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-36474-0_20.
Full textKolikov, Victor, and Philip Rutberg. "Water Dispersions of Nanoparticles." In Pulsed Electrical Discharges for Medicine and Biology, 81–119. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18129-5_6.
Full textRouxel, Didier, Solenne Fleutot, and Van Son Nguyen. "Dispersion and Characterization of Nanoparticles." In Biomedical Application of Nanoparticles, 23–52. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152363-2.
Full textConference papers on the topic "Nanoparticle dispersions"
Hammonds, James S., Kimani A. Stancil, and Olalekan S. Adewuyi. "Selective Infrared Energy Harvesting by Nanoparticle Dispersions in Solar Thermal Desalination Systems." In ASME 2020 14th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/es2020-1654.
Full textMonakhova, Polina A., Pavel V. Shalaev, and Iaroslav N. Gorev. "Rapid Characterization of Synthesized Nanoparticles’ Liquid Dispersions Using Nanoparticle Tracking Analysis." In IOCN 2023. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/iocn2023-14528.
Full textLv, Wei, Todd P. Otanicar, Patrick E. Phelan, Lenore Dai, Robert A. Taylor, and Rajasekaran Swaminathan. "Surface Plasmon Resonance Shifts of a Dispersion of Core-Shell Nanoparticles for Efficient Solar Absorption." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75090.
Full textMetin, Cigdem, Roger T. Bonnecaze, and Quoc Phuc Nguyen. "The Viscosity of Silica Nanoparticle Dispersions in Permeable Media." In SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/157056-ms.
Full textOlbricht, Benjamin C. "Simulation of heating by optical absorption in nanoparticle dispersions." In 2016 IEEE Photonics Conference (IPC). IEEE, 2016. http://dx.doi.org/10.1109/ipcon.2016.7831286.
Full textAlyami, Noktan Mohammed, Vikrant Wagle, Abdullah Saleh Alyami, and Rajendra Kalgaonkar. "Anionic Nanoparticle Based Formulation to Control and Cure Moderate to Severe Losses." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211493-ms.
Full textMaisch, Philipp, Kai Cheong Tam, Frank W. Fecher, Hans-Joachim Egelhaaf, Christoph J. Brabec, Horst Scheiber, and Eugen Maier. "Inkjet printing of highly conductive nanoparticle dispersions for organic electronics." In 2016 12th International Congress Molded Interconnect Devices (MID). IEEE, 2016. http://dx.doi.org/10.1109/icmid.2016.7738932.
Full textOlbricht, Benjamin C. "Simulation of heating by optical absorption in nanoparticle dispersions (Conference Presentation)." In Synthesis and Photonics of Nanoscale Materials XIV, edited by Andrei V. Kabashin, Jan J. Dubowski, and David B. Geohegan. SPIE, 2017. http://dx.doi.org/10.1117/12.2249179.
Full textXiaoming Liu, Hui-Jiuan Chen, Xiaodong Chen, Dongsheng Wen, Clive G. Parini, Stephen Hanham, and Junsheng Yu. "Dielectric measurement of gold nanoparticle dispersions using THz-Time domain spectroscopy." In 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012). IEEE, 2012. http://dx.doi.org/10.1109/irmmw-thz.2012.6380454.
Full textDragar, Črt, Tanja Potrč, Sebastjan Nemec, Robert Roškar, Nives Belcar, Sebastjan Nemec, Slavko Kralj, Mirjana Gašperlin, and Petra Kocbek. "Electrospinning as a novel method for drying iron-oxidebased magnetic nanoparticle dispersions." In IV. Symposium of Young Researchers on Pharmaceutical Technology,Biotechnology and Regulatory Science. Szeged: Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Faculty of Pharmacy, 2022. http://dx.doi.org/10.14232/syrptbrs.2022.19.
Full textReports on the topic "Nanoparticle dispersions"
Taurozzi, J. S., V. A. Hackley, and M. R. Wiesner. Preparation of Nanoparticle Dispersions from Powdered Material Using Ultrasonic Disruption - Version 1.1. National Institute of Standards and Technology, June 2012. http://dx.doi.org/10.6028/nist.sp.1200-2.
Full textTaurozzi, J. S., V. A. Hackley, and M. R. Wiesner. Reporting Guidelines for the Preparation of Aqueous Nanoparticle Dispersions from Dry Materials - Version 2.1. National Institute of Standards and Technology, June 2012. http://dx.doi.org/10.6028/nist.sp.1200-1.
Full textSagaiyaraj, Bernard. Increasing Energy Efficiency of Central Cooling Systems with Engineered Nanofluids. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau538344493.
Full textColeman, Jessica G., Alan J. Kennedy, and Ashley R. Harmon. Environmental Consequences of Nanotechnologies: Nanoparticle Dispersion in Aqueous Media: SOP-T-1. Fort Belvoir, VA: Defense Technical Information Center, February 2015. http://dx.doi.org/10.21236/ada613776.
Full text