Academic literature on the topic 'Nanomaterials- Semiconductors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanomaterials- Semiconductors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanomaterials- Semiconductors"
Zhang, Li-De, and Xiao-Sheng Fang. "Controlled Growth and Characterization Methods of Semiconductor Nanomaterials." Journal of Nanoscience and Nanotechnology 8, no. 1 (January 1, 2008): 149–201. http://dx.doi.org/10.1166/jnn.2008.n02.
Full textDang, Chao, Mingyang Liu, Zhiwei Lin, and Wei Yan. "Selenium nanomaterials enabled flexible and wearable electronics." Chemical Synthesis 3, no. 2 (2023): 14. http://dx.doi.org/10.20517/cs.2022.33.
Full textMa, Liang, Shuang Chen, Yun Shao, You-Long Chen, Mo-Xi Liu, Hai-Xia Li, Yi-Ling Mao, and Si-Jing Ding. "Recent Progress in Constructing Plasmonic Metal/Semiconductor Hetero-Nanostructures for Improved Photocatalysis." Catalysts 8, no. 12 (December 7, 2018): 634. http://dx.doi.org/10.3390/catal8120634.
Full textLu, Yuzheng, Youquan Mi, Junjiao Li, Fenghua Qi, Senlin Yan, and Wenjing Dong. "Recent Progress in Semiconductor-Ionic Conductor Nanomaterial as a Membrane for Low-Temperature Solid Oxide Fuel Cells." Nanomaterials 11, no. 9 (September 3, 2021): 2290. http://dx.doi.org/10.3390/nano11092290.
Full textCai, Jiabai, and Shunxing Li. "Photocatalytic Treatment of Environmental Pollutants using Multilevel- Structure TiO2-based Organic and Inorganic Nanocomposites." Current Organocatalysis 7, no. 3 (November 30, 2020): 161–78. http://dx.doi.org/10.2174/2213337207999200701214637.
Full textZhu, Hongliang, Li Fan, Kaili Wang, Hao Liu, Jiawei Zhang, and Shancheng Yan. "Progress in the Synthesis and Application of Tellurium Nanomaterials." Nanomaterials 13, no. 14 (July 12, 2023): 2057. http://dx.doi.org/10.3390/nano13142057.
Full textFeliczak-Guzik, Agnieszka. "Nanomaterials as Photocatalysts—Synthesis and Their Potential Applications." Materials 16, no. 1 (December 25, 2022): 193. http://dx.doi.org/10.3390/ma16010193.
Full textBARDUS, I., S. KOVACHОV, I. BOHDANOV, and Y. SUCHIKOVA. "PROFESSIONAL COMPETENCE OF A SPECIALIST IN THE FIELD OF NANOMATERIAL SCIENCE TO CREATE INNOVATIVE NANOSTRUCTURES ON THE SURFACE OF SEMICONDUCTORS." Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 1, no. 3 (December 7, 2022): 237–48. http://dx.doi.org/10.31494/2412-9208-2022-1-3-237-248.
Full textMintcheva, Neli, Shigeru Yamaguchi, and Sergei A. Kulinich. "Hybrid TiO2-ZnO Nanomaterials Prepared Using Laser Ablation in Liquid." Materials 13, no. 3 (February 5, 2020): 719. http://dx.doi.org/10.3390/ma13030719.
Full textD., Nirmal. "HIGH PERFORMANCE FLEXIBLE NANOPARTICLES BASED ORGANIC ELECTRONICS." December 2019 2019, no. 02 (December 24, 2019): 99–106. http://dx.doi.org/10.36548/jei.2019.2.005.
Full textDissertations / Theses on the topic "Nanomaterials- Semiconductors"
Cozzarini, Luca. "Nanomaterials based on II-VI Semiconductors." Doctoral thesis, Università degli studi di Trieste, 2012. http://hdl.handle.net/10077/7359.
Full textThis thesis describes: (i) synthesis and characterization of colloidal nanocrystals of II-VI semiconductor compounds; (II) development of two novel materials using such nanocrystals as “building blocks”: (IIa) a nanocrystals/polymer composite, to be used as phosphor in LED-based lighting devices; (IIb) an inorganic, nano-structured multiphase material, showing a promising geometry as an electronic intermediate band material. Different typologies of nanocrystals (single-phase, alloyed or core-shells) were successfully synthesized using air-stable, safe reagents. Their optical properties (absorption spectrum, fluorescence wavelength and fluorescence quantum yield) were mapped as function of different parameters. Good results in engineering optical properties were achieved by: (a) changing size and/or composition in single-phase nanocrystals; (b) tuning shell composition and thickness and/or mutually diffusing one material into the other in multi-phase nanocrystals. The influence of different surface ligands on optical properties and on solubility in different media was also studied. Nanocrystal/polymer composite lenses were obtained from nanocrystals with desired fluorescence wavelength and quantum yield, mixed in an appropriate solvent with polymer pellets. The mixture was drop casted or tape casted on a solid substrate, obtaining solid, transparent lenses after solvent evaporation. A nano-structured, all-inorganic material (composed of semiconducor nanocrystals embedded into a wider bandgap semiconductor) was obtained through self-assembly and densification of colloidal core-shells nanocrystals. The realization of this composite supracrystal was achieved via a multi-step process: (i) colloidal synthesis of core-shell nanocrystals; (ii) surface ligands exchange; (iii) assembly; (iv) heat treatment. Evolution of the optical properties during heat treatment suggests that it is possible to sinter the shell material without altering the internal nano-heterostructure, if temperature and time of the treatment are controlled properly.
In questa tesi sono descritti: (I) la sintesi colloidale e la caratterizzazione di nanocristalli di semiconduttori II-VI; (II) lo sviluppo, utilizzando i suddetti nanocristalli quali “unità da costruzione”, di due materiali innovativi: (IIa) un composito nanocristalli/polimero, da usare come fosforo in dispositivi per illuminazione basati su LED; (IIb) un materiale inorganico nano-strutturato multifase, con una geometria promettente quale materiale a banda elettronica intermedia. Differenti semiconduttori II-VI sono stati sintetizzati in forma di nanocristalli (monofasici, in forma di lega o in struttura di tipo “core-shell”) usando reagenti sicuri e stabili in atmosfera. Le loro proprietà ottiche (spettro di assorbimento, lunghezza d’onda di fluorescenze e resa quantica di fluorescenza) sono state mappate in funzione di numerosi parametri. Sono stati raggiunti ottimi risultati nel controllo delle proprietà ottiche sia in nanocristalli a fase singola (modificandone le dimensioni o la composizione chimica) che in nanocristalli multifase (regolandone la composizione e lo spessore della “shell”, nonché mutualmente diffondendo un materiale nell’altro). È stata anche studiata l’influenza di differenti leganti superficiali sulle proprietà ottiche e sulla solubilità dei nanocristalli in differenti solventi. Lenti composite di nanocristalli/polimero sono state ottenute a partire da nanocristalli aventi la lunghezza d’onda e la resa quantica di fluorescenza desiderate, mescolandoli con pellet di polimero in solventi appropriati. La miscela è stata depositata su un supporto, tramite drop casting o tape casting, ottenendo lenti solide trasparenti dopo l’evaporazione del solvente. Un materiale inorganico nano strutturato (costituito da nanocristalli di semiconduttore racchiusi all’interno di un secondo materiale semiconduttore a bandgap maggiore) è stato ottenuto tramite l’autoassemblaggio e la densificazione di nanocristalli core-shell sintetizzati con procedure di chimica colloidale. La realizzazione di suddetto sovra-cristallo si è svolta in più fasi: (i) sintesi colloidale; (ii) sostituzione dei leganti superficiali; (iii) assemblaggio; (iv) trattamento termico. I risultati derivanti dallo studio dell’evoluzione delle proprietà ottiche durante il trattamento termico suggeriscono che sia possibile sinterizzare il materiale della shell senza alterare la nano-eterostruttura interna, se la temperatura e il tempo del trattamento sono scelti opportunamente.
XXIV Ciclo
1983
Tassi, Nancy Gattuso. "Manipulation of organic nanomaterials." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 51 p, 2008. http://proquest.umi.com/pqdweb?did=1459918081&sid=5&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textZhang, Shaolin. "Wide band gap nanomaterials and their applications." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B41758225.
Full textBerestok, Taisiia. "Assembly of colloidal nanocrystals into porous nanomaterials." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663275.
Full textEsta tesis se centra en la síntesis coloidal de nanocristales (NCs), en la exploración de su química de superficie y en su ensabanado en nanomateriales porosos funcionales. Para demostrar la versatilidad de aplicación de dichas estructuras, en este estudio se han considerado NCs de distintos tipos de materiales: metales (Au), óxidos metálicos (CeO2, TiO2, Fe2O3), calcogenuros metálicos (In2S3, ZnS, PbS, CuGaS2,Cu2ZnSnSe4) y sus materiales compuestos. El trabajo se dividió en dos bloques. En el primero se desarrolló y optimizó la síntesis de NCs de óxidos y calcogenuros metálicos y se evaluó su potencial para aplicaciones de catálisis y fotocatálisis. Se investigó en profundidad la síntesis de NCs de CeO2, poniendo énfasis en controlar su morfología. Se consiguió producir NCs de CeO2 de forma controlada (esférica, octapodo ramificado, cúbico ramificado y romboidal) y con tamaño controlado (7-45 nm). Asimismo, se obtuvieron NCs de Cu2ZnSnSe4 con una fina distribución de tamaños y composición controlada. En el segundo bloque se establecieron y estudiaron procedimientos para fabricar nanomateriales porosos mono- o multicomponentes a partir del ensamblado de NCs. Se desarrolló una estrategia basada en el ajuste de la química de superficie de NCs de óxidos metálicos (CeO2, Fe2O3,TiO2) y de calcogenuros metálicos (In2S3, CuGaS2-ZnS) que permitió su ensamblaje controlado en estructuras porosas de tipo gel y aerogel. En el caso de los óxidos metálicos, se determinó que el ensamblado se inicia con la adición de un epóxido a NCs funcionalizados con glutamina, causando la gelación. La desorción oxidativa de ligandos basada en la formación de enlaces calcogenuro-calcogenuro se propuso como mecanismo de gelación en calcogenuros mono- (In2S3) y multicomponente (CuGaS2-ZnS). Se investigó el impacto del empleo de distintos ligandos en la eficiencia foto-electrocatalítica de NCs en forma coloidal, ensamblados en geles y soportados en sustratos. Se desarrolló y estudió el ajuste de la química de superficie de NCs para la obtención de ensamblajes multicomponente mediante interacción electrostática de coloides en suspensión. El mecanismo de gelación fue investigado al detalle para materiales compuestos de NCs de oxido metálico (CeO2) con NCs de óxido de calcogenuro (PbS-CeO2) y metálicos (Au-CeO2). Los aerogeles de Au-CeO2 demostraron potencial para la oxidación de CO.
Zhang, Shaolin, and 張少林. "Wide band gap nanomaterials and their applications." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B41758225.
Full textYu, Zhang. "Solution Processed Chalcogenide Nanomaterials for Thermoelectric Application." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/670923.
Full textLa ingeniería de nanomateriales a partir del procesado en solución es de particular interés para optimizar el rendimiento de los materiales y dispositivos termoeléctricos. . Esta tesis estáse centra en el diseño y el ensamblaje racional de nanomateriales termoeléctricos de alto rendimiento a través de procesado en solución. La tesis se divide en 5 capítulos. El Capítulo 1 aborda la introducción fundamental del enfoque sintético para producir nanomateriales funcionales. Los capítulos 2 y 3 presentan un método rápido y simple basado en soluciones para producir nanomateriales SnSe2 y SnSe con textura cristalográfica. Dado que los calcogenuros de estaño son materiales especialmente interesantes para la conversión de energía termoeléctrica, se sintetizaron nanoplacas SnSe y SnSe2 controlables por forma mediante una estrategia basada en tinta molecular para lograr una figura de mérito termoeléctrica sin precedentes por dopaje con Te/Cu. Ambos nanomateriales mostraron una textura cristalográfica significativa después del prensado en caliente, lo que dio como resultado unas propiedades de transporte de carga calor altamente anisotrópicas. Los capítulos 4 y 5 describen dos estrategias diferentes para producir nanocompuestos Bi2Te3-Cu2-xTe basados en la consolidación de nanoestructuras. La presencia de Cu2-xTe da como resultado un fuerte aumento del coeficiente de Seebeck. Este aumento está relacionado con el filtrado de los portadores de carga en función de su energía en las barreras de energía dentro de los dominios Bi2Te3 creados por la acumulación de electrones en las regiones cercanas a las uniones Cu2-xTe / Bi2Te3. En general, se obtiene una mejora significativa de la figura de mérito con nanocompuestos Bi2Te3-Cu2-xTe. Finalmente, en el último capítulo se presentan las principales conclusiones de esta tesis y algunas perspectivas para trabajos futuros.
Liu, Yu. "Bottom-up Engineering of Chalcogenide Thermoelectric Nanomaterials." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663274.
Full textLos nanocristales (NCs) coloidales tienen excelentes propiedades para diferentes aplicaciones, como la conversión de energía, la catálisis, los dispositivos electrónicos y optoelectrónicos, entre otros. Así mismo, la síntesis coloidal de NCs tiene ventajas en el control del tamaño, forma y composición a nivel de la nanoescala; las bajas temperaturas de reacción; y la no necesidad de equipos especializados. Este proyecto se concentra en el diseño racional y la ingeniería de materiales termoeléctricos (TE) nanoestructurados de alta eficiencia, usando la estrategia del ensamblado ascendente (bottom-up) de NCs coloidales. Primero, se diseñó una ruta de síntesis de bajo costo, alto rendimiento, con la cual, se obtuvieron NCs de AgSbSe2 y Cu3SbSe4. La optimización de la concentración de dopaje resultó en valores para la figura de mérito TE, ZT, de 1.10 a 640 K para AgSb0.98Bi0.02Se2, y de 1.26 at 673 K para Cu3Sb0.88Sn0.10Bi0.02Se4. El material con mejores propiedades se usó para la producción de un generador TE en forma de anillo, para acoplarlo a los tubos de escape de gases, obteniendo una potencia eléctrica de 1mW por elemento TE con una diferencia de temperatura de 160 °C. En la segunda parte, se presenta el trabajo de la producción de nanocopuestos de PbS-metal (Cu y Sn) usando un procedimiento versátil de mezcla de NCs. La función de trabajo del metal es capaz de inyectar electrones a la matriz intrínseca de PbS. El factor de potencia TE, se ve dramáticamente incrementado debido al aumento en la conductividad eléctrica en los nanocompuestos TE. Consecuentemente, el valor máximo de ZT se vio excepcionalmente incrementado por el doble del valor comparado con el material original PbS. Finalmente, se presenta el proceso de producción de materiales texturizados cristalográficamente, produciendo materiales tipo p BixSb2-xTe3 y tipo n Bi2Te3-xSex. Se controló la estequiometria durante el procesamiento en solución y la textura cristalográfica, por medio de la sinterización en fase líquida con un procedimiento de múltiples pasos de presión y relajación a una temperatura de 480°C. Los valores de la figura de mérito TE presentan el record de: ZT=1.83 a 420 K para Bi0.5Sb2.5Te3 y ZT=1.31 para Bi2Te2.7Se0.3 a 440 K.
Cress, Cory D. "Effects of ionizing radiation on nanomaterials and III-V semiconductor devices /." Online version of thesis, 2008. http://hdl.handle.net/1850/6278.
Full textHsieh, Chien-Wen. "Formation of composite organic thin film transistors with one-dimensional nanomaterials." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609276.
Full textBecerril-Garcia, Hector Alejandro. "DNA-Templated Nanomaterials." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1823.pdf.
Full textBooks on the topic "Nanomaterials- Semiconductors"
Manasreh, Mahmoud Omar. Introduction to nanomaterials and devices. Hoboken, N.J: Wiley-Interscience, 2012.
Find full text(Society), SPIE, ed. Nanoepitaxy: Homo- and heterogeneous synthesis, characterization, and device integration of nanomaterials : 3-4 August 2009, San Diego, California, United States. Bellingham, Wash: SPIE, 2009.
Find full textIslam, M. Saiful. Nanoepitaxy: Homo- and heterogeneous synthesis, characterization, and device integration of nanomaterials II : 1-2 and 4 August 2010, San Diego, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2010.
Find full textRahimi-Iman, Arash. Semiconductor Photonics of Nanomaterials and Quantum Structures. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69352-7.
Full textSemiconductor Nanomaterials. Wiley-VCH Verlag GmbH, 2010.
Find full textCo, Business Communications. Nanomaterials in Nanoelectronics. Business Communications Company, 2004.
Find full textManasreh, Omar. Introduction to Nanomaterials and Devices. Wiley & Sons, Incorporated, John, 2011.
Find full textManasreh, Omar. Introduction to Nanomaterials and Devices. Wiley & Sons, Incorporated, John, 2011.
Find full textManasreh, Omar. Introduction to Nanomaterials and Devices. Wiley & Sons, Incorporated, John, 2011.
Find full textManasreh, Omar. Introduction to Nanomaterials and Devices. Wiley & Sons, Limited, John, 2011.
Find full textBook chapters on the topic "Nanomaterials- Semiconductors"
Mathews, Manoj, Ammathnadu S. Achalkumar, and Quan Li. "Self-assembled 1D Semiconductors: Liquid Crystalline Columnar Phase." In Anisotropic Nanomaterials, 241–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3_7.
Full textYang, Jun, and Hui Liu. "Nanocomposites of Gold and Semiconductors." In Metal-Based Composite Nanomaterials, 31–91. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12220-5_3.
Full textAravind, Arun, and M. K. Jayaraj. "Zno-Based Dilute Magnetic Semiconductors." In Materials Horizons: From Nature to Nanomaterials, 233–69. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3314-3_8.
Full textAtanacio, A. J., Tad Bak, Dewei Chu, Mihail Ionescu, and Janusz Nowotny. "Segregation-Induced Low-Dimensional Surface Structures in Oxide Semiconductors." In Handbook of Nanomaterials Properties, 891–910. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31107-9_4.
Full textZhang, Xiandi, Chui-Shan Tsang, and Lawrence Yoon Suk Lee. "Nanostructured Semiconductors for Photocatalytic CO2 Reduction." In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 2839–74. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-36268-3_103.
Full textZhang, Xiandi, Chui-Shan Tsang, and Lawrence Yoon Suk Lee. "Nanostructured Semiconductors for Photocatalytic CO2 Reduction." In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-11155-7_103-1.
Full textSetia, Rupali, Harshita Chawla, and Seema Garg. "Enhancement in Degradation of Antibiotics Using Photocatalytic Semiconductors under Visible Light Irradiation." In Nanomaterials for Water Treatment and Remediation, 69–92. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003118749-2.
Full textNakayama, Yasuo, and Hisao Ishii. "Exploration into the Valence Band Structures of Organic Semiconductors by Angle-Resolved Photoelectron Spectroscopy." In Surface Science Tools for Nanomaterials Characterization, 367–404. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44551-8_10.
Full textAzarov, Alexander, Anders Hallén, and Henry H. Radamson. "Electrical Characterization of Semiconductors: I–V, C–V and Hall Measurements." In Analytical Methods and Instruments for Micro- and Nanomaterials, 197–240. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26434-4_7.
Full textShijeesh, M. R., M. Jasna, and M. K. Jayaraj. "Metal-Oxide Transistors and Calculation of the Trap Density of States in the Band Gap of Semiconductors." In Materials Horizons: From Nature to Nanomaterials, 303–18. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3314-3_10.
Full textConference papers on the topic "Nanomaterials- Semiconductors"
Górska, M., L. Kilanski, A. Podgórni, W. Dobrowolski, R. Szymczak, J. R. Anderson, I. V. Fedorchenko, S. F. Marenkin, V. E. Slynko, and E. I. Slynko. "Magnetic properties of clusters in IV-VI and II-IV-V2diluted magnetic semiconductors." In International Symposium on Clusters and Nanomaterials, edited by Puru Jena and Anil K. Kandalam. SPIE, 2016. http://dx.doi.org/10.1117/12.2234914.
Full textYong, Chaw Keong, Andrew J. Musser, Jenny Clark, John E. Anthony, David Beljonne, Richard H. Friend, and Henning Sirringhaus. "Direct observation of entangled multiexciton states in organic semiconductors (Conference Presentation)." In Physical Chemistry of Interfaces and Nanomaterials XV, edited by Artem A. Bakulin, Natalie Banerji, and Robert Lovrincic. SPIE, 2016. http://dx.doi.org/10.1117/12.2238499.
Full textMigliorato, M. A., J. Pal, R. Garg, G. Tse, H. Y. S. Al-Zahrani, U. Monteverde, S. Tomić, et al. "A review of non linear piezoelectricity in semiconductors." In ELECTRONIC, PHOTONIC, PLASMONIC, PHONONIC AND MAGNETIC PROPERTIES OF NANOMATERIALS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4870192.
Full textHill, Eric. "Synthesis of Semiconductors Confined in Nanoscopic Colloidal Templates toward Heterostructured Nanomaterials." In Internet NanoGe Conference on Nanocrystals. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.008.
Full textBeck, Sebastian, Sabina Hillebrandt, and Annemarie Pucci. "IR spectroscopic investigation of charge transfer at interfaces of organic semiconductors (Conference Presentation)." In Physical Chemistry of Interfaces and Nanomaterials XV, edited by Artem A. Bakulin, Natalie Banerji, and Robert Lovrincic. SPIE, 2016. http://dx.doi.org/10.1117/12.2238493.
Full textIzquierdo, Ricardo. "Combination of Nanomaterials and Organic Semiconductors for Electronic and Optoelectronic Device Fabrication." In International Conference of Theoretical and Applied Nanoscience and Nanotechnology. Avestia Publishing, 2017. http://dx.doi.org/10.11159/tann17.3.
Full textGan'shina, E., G. Zykov, L. Golik, Z. Kun'kova, A. Rukovishnikov, M. Temiryazeva, Y. Markin, and V. Lesnikov. "Spectroscopic and microscopic investigations of InFeSb diluted magnetic semiconductors prepared by laser ablation." In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190382.
Full textBondarenko, I. N., V. A. Nikolaenko, and A. V. Polishchuk. "The cavity with the Tunnel Diodes and Corbino-Electrodes for Analyze Dielectrics and Semiconductors." In 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2019. http://dx.doi.org/10.1109/nap47236.2019.219085.
Full textHepplestone, S. P., G. P. Srivastava, M. R. Singh, and R. H. Lipson. "Atomic Theory Of Phononic Gaps In Nano-patterned Semiconductors." In TRANSPORT AND OPTICAL PROPERTIES OF NANOMATERIALS: Proceedings of the International Conference—ICTOPON-2009. AIP, 2009. http://dx.doi.org/10.1063/1.3183421.
Full textKang, Ki Moon, Hyo-Won Kim, Il-Wun Shim, and Ho-Young Kwak. "Syntheses of Specialty Nanomaterials at the Multibubble Sonoluminescence Condition." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68320.
Full textReports on the topic "Nanomaterials- Semiconductors"
Forde, Aaron. Non -Equilibrium and Novel Photo-Physics in Semiconductor Nanomaterials and Bio-Organic Systems. Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1972085.
Full textArmstrong, Neal R. Asymmetric Semiconductor Nanorod/Oxide Nanoparticle Hybrid Materials: Model Nanomaterials for Light-Activated Formation of Fuels from Sunlight. Formal Progress Report -- Award DE-FG02-05ER15753. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1365549.
Full text