Journal articles on the topic 'Nanomaterials - Optical Sensing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanomaterials - Optical Sensing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kumar, Santosh, Zhi Wang, Wen Zhang, Xuecheng Liu, Muyang Li, Guoru Li, Bingyuan Zhang, and Ragini Singh. "Optically Active Nanomaterials and Its Biosensing Applications—A Review." Biosensors 13, no. 1 (January 4, 2023): 85. http://dx.doi.org/10.3390/bios13010085.
Full textLi, Muyang, Ragini Singh, Yiran Wang, Carlos Marques, Bingyuan Zhang, and Santosh Kumar. "Advances in Novel Nanomaterial-Based Optical Fiber Biosensors—A Review." Biosensors 12, no. 10 (October 8, 2022): 843. http://dx.doi.org/10.3390/bios12100843.
Full textSperanza, Giorgio. "Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications." Nanomaterials 11, no. 4 (April 9, 2021): 967. http://dx.doi.org/10.3390/nano11040967.
Full textSondhi, Palak, Md Helal Uddin Maruf, and Keith J. Stine. "Nanomaterials for Biosensing Lipopolysaccharide." Biosensors 10, no. 1 (December 21, 2019): 2. http://dx.doi.org/10.3390/bios10010002.
Full textRezk, Marwan Y., Jyotsna Sharma, and Manas Ranjan Gartia. "Nanomaterial-Based CO2 Sensors." Nanomaterials 10, no. 11 (November 13, 2020): 2251. http://dx.doi.org/10.3390/nano10112251.
Full textZhang, Wenjia, Xingyu Zi, Jinqiang Bi, Guohua Liu, Hongen Cheng, Kexin Bao, Liu Qin, and Wei Wang. "Plasmonic Nanomaterials in Dark Field Sensing Systems." Nanomaterials 13, no. 13 (July 7, 2023): 2027. http://dx.doi.org/10.3390/nano13132027.
Full textTurel, Matejka, Tinkara Mastnak, and Aleksandra Lobnik. "Optical Chemical Nanosensors in Clinical Applications." Defect and Diffusion Forum 334-335 (February 2013): 387–96. http://dx.doi.org/10.4028/www.scientific.net/ddf.334-335.387.
Full textZhong, Zhi-Cheng, Zhao-Jun Jing, Kui-Yuan Liu, and Tong Liu. "Acetylene Sensing by ZnO/TiO2 Nanoparticles." Journal of Nanoelectronics and Optoelectronics 15, no. 1 (January 1, 2020): 41–45. http://dx.doi.org/10.1166/jno.2020.2726.
Full textLobnik, Aleksandra, and Špela Korent Urek. "Nano-Based Optical Chemical Sensors." Journal of Nano Research 13 (February 2011): 99–110. http://dx.doi.org/10.4028/www.scientific.net/jnanor.13.99.
Full textChen, Bing, Qianqian Su, Wei Kong, Yuan Wang, Peng Shi, and Feng Wang. "Energy transfer-based biodetection using optical nanomaterials." Journal of Materials Chemistry B 6, no. 19 (2018): 2924–44. http://dx.doi.org/10.1039/c8tb00614h.
Full textDevasena, T., N. Balasubramanian, Natarajan Muninathan, Kuppusamy Baskaran, and Shani T. John. "Curcumin Is an Iconic Ligand for Detecting Environmental Pollutants." Bioinorganic Chemistry and Applications 2022 (March 27, 2022): 1–12. http://dx.doi.org/10.1155/2022/9248988.
Full textQiao, Xiujuan, Jingyi He, Ruixi Yang, Yanhui Li, Gengjia Chen, Sanxiong Xiao, Bo Huang, Yahong Yuan, Qinglin Sheng, and Tianli Yue. "Recent Advances in Nanomaterial-Based Sensing for Food Safety Analysis." Processes 10, no. 12 (December 3, 2022): 2576. http://dx.doi.org/10.3390/pr10122576.
Full textLu, Danqing, Lei He, Ge Zhang, Aiping Lv, Ruowen Wang, Xiaobing Zhang, and Weihong Tan. "Aptamer-assembled nanomaterials for fluorescent sensing and imaging." Nanophotonics 6, no. 1 (January 6, 2017): 109–21. http://dx.doi.org/10.1515/nanoph-2015-0145.
Full textDang, Chao, Mingyang Liu, Zhiwei Lin, and Wei Yan. "Selenium nanomaterials enabled flexible and wearable electronics." Chemical Synthesis 3, no. 2 (2023): 14. http://dx.doi.org/10.20517/cs.2022.33.
Full textMarques, Carlos, Arnaldo Leal-Júnior, and Santosh Kumar. "Multifunctional Integration of Optical Fibers and Nanomaterials for Aircraft Systems." Materials 16, no. 4 (February 8, 2023): 1433. http://dx.doi.org/10.3390/ma16041433.
Full textZhou, Jie, Jiajie Chen, Yanqi Ge, and Yonghong Shao. "Two-dimensional nanomaterials for Förster resonance energy transfer–based sensing applications." Nanophotonics 9, no. 7 (April 1, 2020): 1855–75. http://dx.doi.org/10.1515/nanoph-2020-0065.
Full textBasso, Caroline R., Bruno P. Crulhas, Gustavo R. Castro, and Valber A. Pedrosa. "Recent Advances in Functional Nanomaterials for Diagnostic and Sensing Using Self-Assembled Monolayers." International Journal of Molecular Sciences 24, no. 13 (June 28, 2023): 10819. http://dx.doi.org/10.3390/ijms241310819.
Full textAlsaiari, Norah Salem, Khadijah Mohammedsaleh M. Katubi, Fatimah Mohammed Alzahrani, Saifeldin M. Siddeeg, and Mohamed A. Tahoon. "The Application of Nanomaterials for the Electrochemical Detection of Antibiotics: A Review." Micromachines 12, no. 3 (March 15, 2021): 308. http://dx.doi.org/10.3390/mi12030308.
Full textLi, Kaiwei, Wenchao Zhou, and Shuwen Zeng. "Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence." Sensors 18, no. 10 (September 30, 2018): 3295. http://dx.doi.org/10.3390/s18103295.
Full textRajamanikandan, Ramar, Kandasamy Sasikumar, Saikiran Kosame, and Heongkyu Ju. "Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials." Nanomaterials 13, no. 2 (January 10, 2023): 290. http://dx.doi.org/10.3390/nano13020290.
Full textWang, Yi-Han, Liu-Liu He, Ke-Jing Huang, Ying-Xu Chen, Shu-Yu Wang, Zhen-Hua Liu, and Dan Li. "Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays." Analyst 144, no. 9 (2019): 2849–66. http://dx.doi.org/10.1039/c9an00081j.
Full textBhalla, Nikhil, and Pedro Estrela. "Exploiting the signatures of nanoplasmon–exciton coupling on proton sensitive insulator–semiconductor devices for drug discovery applications." Nanoscale 10, no. 28 (2018): 13320–28. http://dx.doi.org/10.1039/c8nr04540b.
Full textCennamo, Nunzio, Francesco Arcadio, Fiore Capasso, Devid Maniglio, Luigi Zeni, and Alessandra Maria Bossi. "Non-Specific Responsive Nanogels and Plasmonics to Design MathMaterial Sensing Interfaces: The Case of a Solvent Sensor." Sensors 22, no. 24 (December 19, 2022): 10006. http://dx.doi.org/10.3390/s222410006.
Full textXu, Zhida, Meng Lu, Hyunjong Jin, Tao Chen, and Tiziana C. Bond. "Nanomaterials for Optical Sensing and Sensors: Plasmonics, Raman, and Optofluidics." Journal of Nanomaterials 2015 (2015): 1–3. http://dx.doi.org/10.1155/2015/162537.
Full textLy, Nguyễn Hoàng, Sang Jun Son, Soonmin Jang, Cheolmin Lee, Jung Il Lee, and Sang-Woo Joo. "Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures." Nanomaterials 11, no. 10 (October 5, 2021): 2619. http://dx.doi.org/10.3390/nano11102619.
Full textVajhadin, Fereshteh, Mohammad Mazloum-Ardakani, Alireza Sanati, Reihaneh Haghniaz, and Jadranka Travas-Sejdic. "Optical cytosensors for the detection of circulating tumour cells." Journal of Materials Chemistry B 10, no. 7 (2022): 990–1004. http://dx.doi.org/10.1039/d1tb02370e.
Full textTran Ngoc Lan, Nguyen Tran Thuat, Hoang Ngoc Lam Huong, and Nguyen Van Quynh. "Effects of silver incorporation on electrical and optical properties of CuAlxOy thin films." Journal of Military Science and Technology, FEE (December 23, 2022): 294–302. http://dx.doi.org/10.54939/1859-1043.j.mst.fee.2022.294-302.
Full textŁysoń-Sypień, B., K. Zakrzewska, M. Gajewska, and M. Radecka. "Hydrogen Sensor Of TiO2-Based Nanomaterials." Archives of Metallurgy and Materials 60, no. 2 (June 1, 2015): 935–40. http://dx.doi.org/10.1515/amm-2015-0233.
Full textBagheri, Samira, Amin TermehYousefi, and Javad Mehrmashhadi. "Carbon dot-based fluorometric optical sensors: an overview." Reviews in Inorganic Chemistry 39, no. 4 (December 18, 2019): 179–97. http://dx.doi.org/10.1515/revic-2019-0002.
Full textYadav, Sangeeta, Sheethal S. Nair, V. V. R. Sai, and Jitendra Satija. "Nanomaterials based optical and electrochemical sensing of histamine: Progress and perspectives." Food Research International 119 (May 2019): 99–109. http://dx.doi.org/10.1016/j.foodres.2019.01.045.
Full textUpadhyay, S. B., and P. P. Sahay. "Structure, Optical and Formaldehyde Sensing Properties of Co-Precipitated Fe-Doped WO3 Nanomaterials." Nano 10, no. 08 (November 23, 2015): 1550113. http://dx.doi.org/10.1142/s1793292015501131.
Full textKałużyński, Piotr Dariusz, Marcin Procek, and Agnieszka Stolarczyk. "Impact of UV radiation on sensing properties of conductive polymer and ZnO blend for NO2 gas sensing at room temperature." Photonics Letters of Poland 11, no. 3 (September 30, 2019): 69. http://dx.doi.org/10.4302/plp.v11i3.911.
Full textGupta, Banshi D., Anisha Pathak, and Vivek Semwal. "Carbon-Based Nanomaterials for Plasmonic Sensors: A Review." Sensors 19, no. 16 (August 13, 2019): 3536. http://dx.doi.org/10.3390/s19163536.
Full textSzunerits, Sabine, Tamazouzt Nait Saada, Dalila Meziane, and Rabah Boukherroub. "Magneto-Optical Nanostructures for Viral Sensing." Nanomaterials 10, no. 7 (June 29, 2020): 1271. http://dx.doi.org/10.3390/nano10071271.
Full textOwolabi, Taoreed O., Tawfik A. Saleh, Olubosede Olusayo, Miloud Souiyah, and Oluwatoba Emmanuel Oyeneyin. "Modeling the Specific Surface Area of Doped Spinel Ferrite Nanomaterials Using Hybrid Intelligent Computational Method." Journal of Nanomaterials 2021 (August 18, 2021): 1–13. http://dx.doi.org/10.1155/2021/9677423.
Full textPan, Mingfei, Jingying Yang, Kaixin Liu, Zongjia Yin, Tianyu Ma, Shengmiao Liu, Longhua Xu, and Shuo Wang. "Noble Metal Nanostructured Materials for Chemical and Biosensing Systems." Nanomaterials 10, no. 2 (January 25, 2020): 209. http://dx.doi.org/10.3390/nano10020209.
Full textJuang, Feng-Renn, Yi-Hsiang Huang, Hung-Chieh Lan, and Ming-Che Tsai. "Nanocomposite of Tin Oxide and Tungsten Oxide for Ethanol Sensing Applications." ECS Journal of Solid State Science and Technology 11, no. 4 (April 1, 2022): 045013. http://dx.doi.org/10.1149/2162-8777/ac6698.
Full textChen, Shu, Yawen Wang, Xiuli Liu, and Longhua Ding. "Recent Advances for Imidacloprid Detection Based on Functional Nanomaterials." Chemosensors 11, no. 5 (May 18, 2023): 300. http://dx.doi.org/10.3390/chemosensors11050300.
Full textCapocefalo, Angela, Thomas Bizien, Simona Sennato, Neda Ghofraniha, Federico Bordi, and Francesco Brasili. "Responsivity of Fractal Nanoparticle Assemblies to Multiple Stimuli: Structural Insights on the Modulation of the Optical Properties." Nanomaterials 12, no. 9 (May 1, 2022): 1529. http://dx.doi.org/10.3390/nano12091529.
Full textLee, Eunkwang, and Hocheon Yoo. "Self-Powered Sensors: New Opportunities and Challenges from Two-Dimensional Nanomaterials." Molecules 26, no. 16 (August 20, 2021): 5056. http://dx.doi.org/10.3390/molecules26165056.
Full textKu, Chin-An, and Chen-Kuei Chung. "Advances in Humidity Nanosensors and Their Application: Review." Sensors 23, no. 4 (February 20, 2023): 2328. http://dx.doi.org/10.3390/s23042328.
Full textKumar, Harsh, Kamil Kuča, Shashi Kant Bhatia, Kritika Saini, Ankur Kaushal, Rachna Verma, Tek Chand Bhalla, and Dinesh Kumar. "Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens." Sensors 20, no. 7 (April 1, 2020): 1966. http://dx.doi.org/10.3390/s20071966.
Full textWang, Bei, Ling Sun, Martin Schneider-Ramelow, Klaus-Dieter Lang, and Ha-Duong Ngo. "Recent Advances and Challenges of Nanomaterials-Based Hydrogen Sensors." Micromachines 12, no. 11 (November 21, 2021): 1429. http://dx.doi.org/10.3390/mi12111429.
Full textLanghammer, Christoph, Elin M. Larsson, Bengt Kasemo, and Igor Zorić. "Indirect Nanoplasmonic Sensing: Ultrasensitive Experimental Platform for Nanomaterials Science and Optical Nanocalorimetry." Nano Letters 10, no. 9 (September 8, 2010): 3529–38. http://dx.doi.org/10.1021/nl101727b.
Full textGurbatov, Stanislav, Vladislav Puzikov, Evgeny Modin, Alexander Shevlyagin, Andrey Gerasimenko, Eugeny Mitsai, Sergei A. Kulinich, and Aleksandr Kuchmizhak. "Ag-Decorated Si Microspheres Produced by Laser Ablation in Liquid: All-in-One Temperature-Feedback SERS-Based Platform for Nanosensing." Materials 15, no. 22 (November 15, 2022): 8091. http://dx.doi.org/10.3390/ma15228091.
Full textDehghan Banadaki, Arash, and Amir Kajbafvala. "Recent Advances in Facile Synthesis of Bimetallic Nanostructures: An Overview." Journal of Nanomaterials 2014 (2014): 1–28. http://dx.doi.org/10.1155/2014/985948.
Full textBagga, K., D. F. Brougham, T. E. Keyes, and D. Brabazon. "Magnetic and noble metal nanocomposites for separation and optical detection of biological species." Physical Chemistry Chemical Physics 17, no. 42 (2015): 27968–80. http://dx.doi.org/10.1039/c5cp01219h.
Full textNaccache, Rafik. "(Invited) Carbon Dots – Unlocking Optical Properties for Applications in Imaging, Sensing and Energy." ECS Meeting Abstracts MA2022-02, no. 36 (October 9, 2022): 1294. http://dx.doi.org/10.1149/ma2022-02361294mtgabs.
Full textLyson-Sypien, B., A. Czapla, M. Lubecka, E. Kusior, K. Zakrzewska, M. Radecka, A. Kusior, A. G. Balogh, S. Lauterbach, and H. J. Kleebe. "Gas sensing properties of TiO2–SnO2 nanomaterials." Sensors and Actuators B: Chemical 187 (October 2013): 445–54. http://dx.doi.org/10.1016/j.snb.2013.01.047.
Full textChandran, Sajith Kumar. "NANOMATERIAL SENSORS FOR ENVIRONMENTAL POLLUTANTS." Journal of Advanced Scientific Research 12, no. 03 (August 31, 2021): 42–49. http://dx.doi.org/10.55218/jasr.202112306.
Full text