Academic literature on the topic 'Nanomaterials fabrication molecule'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanomaterials fabrication molecule.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanomaterials fabrication molecule"
DAREHMIRAKI, MAJID. "A SEMI-GENERAL METHOD TO SOLVE THE COMBINATORIAL OPTIMIZATION PROBLEMS BASED ON NANOCOMPUTING." International Journal of Nanoscience 09, no. 05 (October 2010): 391–98. http://dx.doi.org/10.1142/s0219581x10007046.
Full textWang, Zhuqing, Shasha Wu, Jian Wang, Along Yu, and Gang Wei. "Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications." Nanomaterials 9, no. 7 (July 22, 2019): 1045. http://dx.doi.org/10.3390/nano9071045.
Full textYu, Xu Feng, Xiu Lan Cheng, and Peng Yu Lv. "A New SERS Substrate Based on TiO2 Nanorods Thin Film Assembled Gold Nanoparticles." Advanced Materials Research 1096 (April 2015): 481–85. http://dx.doi.org/10.4028/www.scientific.net/amr.1096.481.
Full textGuo, Linfan, Haibin Tang, Xiujuan Wang, Yupeng Yuan, and Chuhong Zhu. "Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids for Sensitive Surface-Enhanced Raman Scattering Detection." Chemosensors 10, no. 12 (December 16, 2022): 539. http://dx.doi.org/10.3390/chemosensors10120539.
Full textElim, Hendry Izaac. "Is Your Brain Strong Enough to Solve Hard Problems? : Brain Vitamins as a Simple Example for Multitasking Nanotechnology Scientis." SCIENCE NATURE 3, no. 1 (March 1, 2020): 244–56. http://dx.doi.org/10.30598/snvol3iss1pp244-256year2020.
Full textAbdal-hay, Abdalla, H. Fouad, Basheer A. ALshammari, and Khalil Abdelrazek Khalil. "Biosynthesis of Bonelike Apatite 2D Nanoplate Structures Using Fenugreek Seed Extract." Nanomaterials 10, no. 5 (May 9, 2020): 919. http://dx.doi.org/10.3390/nano10050919.
Full textLiew, Li-Anne, John M. Moreland, and Jonathan R. Pratt. "Design of a MEMS Force Sensor for Quantitative Measurement in the Nano- to Pico-Newton Range." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2010, DPC (January 1, 2010): 001841–68. http://dx.doi.org/10.4071/2010dpc-wp23.
Full textMaji, Subrata, Lok Kumar Shrestha, and Katsuhiko Ariga. "Nanoarchitectonics for Hierarchical Fullerene Nanomaterials." Nanomaterials 11, no. 8 (August 23, 2021): 2146. http://dx.doi.org/10.3390/nano11082146.
Full textCengiz, Busra, Tugce Nihal Gevrek, Laura Chambre, and Amitav Sanyal. "Self-Assembly of Cyclodextrin-Coated Nanoparticles:Fabrication of Functional Nanostructures for Sensing and Delivery." Molecules 28, no. 3 (January 20, 2023): 1076. http://dx.doi.org/10.3390/molecules28031076.
Full textZhang, Q., Y. J. Shin, F. Hua, L. V. Saraf, and D. W. Matson. "Fabrication of Transparent Capacitive Structure by Self-Assembled Thin Films." Journal of Nanoscience and Nanotechnology 8, no. 6 (June 1, 2008): 3008–12. http://dx.doi.org/10.1166/jnn.2008.075.
Full textDissertations / Theses on the topic "Nanomaterials fabrication molecule"
Skidin, Dmitry [Verfasser], Gianaurelio [Akademischer Betreuer] Cuniberti, Gianaurelio [Gutachter] Cuniberti, and Kornelius [Gutachter] Nielsch. "On-surface fabrication of functional molecular nanomaterials / Dmitry Skidin ; Gutachter: Gianaurelio Cuniberti, Kornelius Nielsch ; Betreuer: Gianaurelio Cuniberti." Dresden : Technische Universität Dresden, 2019. http://d-nb.info/1226942938/34.
Full textSethi, Vaishali. "Structural modification in reverse micelles and growth of anisotropic nanostructures." Thesis, 2018. http://eprint.iitd.ac.in:80//handle/2074/7976.
Full textSkidin, Dmitry. "On-surface fabrication of functional molecular nanomaterials." Doctoral thesis, 2018. https://tud.qucosa.de/id/qucosa%3A36435.
Full textPolycyclic organic molecules and their derivatives present the class of nanostructures that are currently in the focus of scientific research due to their perspectives for the versatile applications in molecular and organic electronics. To exploit their unique properties to full extent, one has to understand the behavior of molecular systems at the nanoscale and to develop a set of fabrication methods. In this work, molecular nanostructures are fabricated using the bottom-up on-surface synthesis approach, which allows precision of the desired products and control over their properties through careful precursors design. To study the reaction flow and the properties of the formed structures, scanning tunneling microscopy (STM) at low temperature and in ultra-high vacuum is the tool of choice. In this work, three molecular systems are studied in detail, with the focus of fabricating atomically precise nanostructures with tailored properties. A cyclodehydrogenation reaction is successfully applied to synthesize an asymmetric starphene molecule in the first part of the work. It is then shown that this molecule can function as a unimolecular NAND logic gate with its response to the attached single Au atoms measured as the position of the electronic resonance. A combination of the atomic and molecular lateral manipulation with the STM tip and scanning tunneling spectroscopy (STS) is used to demonstrate this behavior. The effect of the controllable shifting of the molecular resonances is due to the asymmetric shape of the starphene molecule and was initially predicted theoretically. More complex structures, molecular wires, are presented in the second part of the work by using the surface-assisted Ullmann coupling reaction. The monomer unit, consisting of the alternant donor and acceptor parts, was specifically designed to achieve highly-conductive flexible molecular wires. The conductance is measured by pulling the single wires with the STM tip off the surface. Theoretical calculations of the complex band structure of the wires confirm the obtained results and support the discussion of the importance of the balance between the strength of acceptor and donor units for the conductance of the resultant wires. Based on this, some model structures are proposed. Finally, the last part deals with a unimolecular reaction to create an anomalous combination of pentagon and heptagon rings in a single organic molecule. Such 5-7 moieties are analogous to the Stone-Wales defects in graphene and may significantly alter the electronic properties. The precise intramolecular structure of the reaction products is unambiguously assigned by high-resolution STM imaging with functionalized tips and further confirmed by DFT calculations.
Books on the topic "Nanomaterials fabrication molecule"
Aljabali, Alaa A., and Kaushik Pal, eds. Bionanotechnology: Next-Generation Therapeutic Tools. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150512781220101.
Full textHong, S., Y. K. Kwon, J. S. Ha, N. K. Lee, B. Kim, and M. Sung. Self-assembly strategy of nanomanufacturing of hybrid devices. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.10.
Full textRai, Dibya Prakash, ed. Advanced Materials and Nano Systems: Theory and Experiment - Part 2. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150499611220201.
Full textBook chapters on the topic "Nanomaterials fabrication molecule"
"Bio-Mediated Synthesis of Metal Nanomaterials for SERS Application." In Materials Research Foundations, 118–54. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901571-5.
Full text"Bio-Mediated Synthesis of Nanomaterials for Electrochemical Sensor Applications." In Materials Research Foundations, 224–62. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901571-8.
Full textBashir, Aneeqa, Azka Mehvish, and Maria Khalil. "Advanced Carbon Materials for Sustainable and Emerging Applications." In 21st Century Advanced Carbon Materials for Engineering Applications - A Comprehensive Handbook. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100213.
Full textHallan, S. S. "Biomedical Applications of Zinc Oxide Nano-Carriers: An Ingenious Tool." In ZnO and Their Hybrid Nano-Structures, 234–62. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902394-8.
Full textVijayan, Jyothy G. "Design and Characterization of Smart Supramolecular Nanomaterials and their Biohybrids." In Bio-Inspired Nanotechnology, 1–15. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815080179123010003.
Full textIbedita, J. "Hybrid Nanomaterials: Historical Developments, Classification and Biomedical Applications." In Emerging Nanomaterials and Their Impact on Society in the 21st Century, 152–77. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902172-7.
Full textHassen, Arafa, Adel M. El Sayed, Azza Al-Ghamdi, and Mohamed Shaban. "Synthesis of Some Functional Oxides and Their Composites Using Sol-Gel Method." In Sol-Gel Method - Recent Advances [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.111384.
Full textHarun-Ur-Rashid, M. "Engineered Nanomaterials for Energy Conversion Cells." In Applications of Emerging Nanomaterials and Nanotechnology, 103–26. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902554-4.
Full textSamuel, Ponpandian, Shenbagamoorthy Sundarraj, and D. N. P. Sudarmani. "Nanotechnology-Based Stem Cell Therapy: Current Status and Perspectives." In Possibilities and limitations in current translational stem cell research [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109275.
Full textPirposhte, M. A. "ZnO Thin Films: Fabrication Routes, and Applications." In ZnO and Their Hybrid Nano-Structures, 263–93. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902394-9.
Full textConference papers on the topic "Nanomaterials fabrication molecule"
Lee, HeaYeon, and JuKyung Lee. "Advanced Biomimetic Nanodevice Using Nanotechnology Addressable Lipid Rafts Nanoarrays Toward Advanced Nanomaterials." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93286.
Full textAwad, Walid, Amal Esawi, and Adham Ramadan. "Fabrication and Properties of Nylon-6/Layered Silicate Nanocomposites by Melt Blending." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47039.
Full textZhao, Lurui, Can Li, Didi She, Zhiqiang Wang, Jun Xu, and Wengang Wu. "Fabrication of anisotropic nanomaterial by precise and large-area nanowire operation with focused-ion-beam." In 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS2013). IEEE, 2013. http://dx.doi.org/10.1109/nems.2013.6559859.
Full textWong, Shing-Chung, Eric M. Sutherland, Suchitra Yerramaddu, Erwin Wouterson, Fawn M. Uhl, and Dean Webster. "Processing and Properties of Graphene-Based Nanocomposites." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61283.
Full text