Academic literature on the topic 'Nanomaterials - Catalytic Applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanomaterials - Catalytic Applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanomaterials - Catalytic Applications"
Duan, Sibin, Zhe Du, Hongsheng Fan, and Rongming Wang. "Nanostructure Optimization of Platinum-Based Nanomaterials for Catalytic Applications." Nanomaterials 8, no. 11 (November 17, 2018): 949. http://dx.doi.org/10.3390/nano8110949.
Full textNasrollahzadeh, Mahmoud, Mohaddeseh Sajjadi, Siavash Iravani, and Rajender S. Varma. "Trimetallic Nanoparticles: Greener Synthesis and Their Applications." Nanomaterials 10, no. 9 (September 9, 2020): 1784. http://dx.doi.org/10.3390/nano10091784.
Full textMin, Shengyi, Qiao Yu, Jiaquan Ye, Pengfei Hao, Jiayu Ning, Zhiqiang Hu, and Yu Chong. "Nanomaterials with Glucose Oxidase-Mimicking Activity for Biomedical Applications." Molecules 28, no. 12 (June 7, 2023): 4615. http://dx.doi.org/10.3390/molecules28124615.
Full textYang, Hualin, Yu Zhou, and Juewen Liu. "Porphyrin metalation catalyzed by DNAzymes and nanozymes." Inorganic Chemistry Frontiers 8, no. 9 (2021): 2183–99. http://dx.doi.org/10.1039/d1qi00105a.
Full textZhang, Qiao, and Yadong Yin. "Nanomaterials engineering and applications in catalysis." Pure and Applied Chemistry 86, no. 1 (January 22, 2014): 53–69. http://dx.doi.org/10.1515/pac-2014-5000.
Full textYu, Feng, and Lanbo Di. "Plasma for Energy and Catalytic Nanomaterials." Nanomaterials 10, no. 2 (February 15, 2020): 333. http://dx.doi.org/10.3390/nano10020333.
Full textMassaro, Marina, Renato Noto, and Serena Riela. "Halloysite Nanotubes: Smart Nanomaterials in Catalysis." Catalysts 12, no. 2 (January 25, 2022): 149. http://dx.doi.org/10.3390/catal12020149.
Full textWang, Jiaqing, and Hongwei Gu. "Novel Metal Nanomaterials and Their Catalytic Applications." Molecules 20, no. 9 (September 17, 2015): 17070–92. http://dx.doi.org/10.3390/molecules200917070.
Full textShaik, Mohammed Rafi, Syed Farooq Adil, and Mujeeb Khan. "Novel Nanomaterials for Catalytic and Biological Applications." Crystals 13, no. 3 (March 1, 2023): 427. http://dx.doi.org/10.3390/cryst13030427.
Full textPal, Nabanita, Debabrata Chakraborty, Eun-Bum Cho, and Jeong Gil Seo. "Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials." Nanomaterials 13, no. 15 (July 26, 2023): 2184. http://dx.doi.org/10.3390/nano13152184.
Full textDissertations / Theses on the topic "Nanomaterials - Catalytic Applications"
Zhang, Rui. "Transition-metal-based composite and hybrid nanomaterials for catalytic applications." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19224.
Full textHigh-performance catalysts play a key role in the development of technologies for sustainable production, storage, and conversion of energy. In this thesis, transition-metal-based catalysts, including TiO2/carbon composites, hybrid organic-inorganic NiFe phosphonates, and Ni phosphides are synthesized, characterized, and investigated in photocatalytic or electrocatalytic reactions. TiO2 is frequently combined with carbon materials, such as reduced graphene oxide (rGO), to produce composites with improved properties. TiO2 is more efficiently stabilized at the surface of rGO than amorphous carbon. Rapid heating of the reaction mixture results in a stronger coupling between the nanoparticles and carbon, more uniform coatings, and smaller particles with narrower size distributions. The more efficient attachment of the oxide leads to better photocatalytic performance. Layered hybrid NiFe-phenylphosphonate compounds are synthesized in benzyl alcohol, and their oxygen evolution reaction (OER) performance in alkaline medium is investigated. The hybrid particles transformed in situ into NiFe hydroxide nanosheets. X-ray absorption spectroscopy measurements suggest the metal sites in the active catalyst inherited partly the distorted coordination. The combination of the synergistic effect between Ni and Fe with the structural properties of the hybrid results in an efficient catalyst that generates a current density of 10 mA cm-2 at an overpotential of 240 mV. Moreover, nickel phosphides are synthesized through thermal treatment under H2(5%)/Ar of layered nickel phenyl- or methylphosphonates that act as single-source precursors. Ni12P5, Ni12P5-Ni2P and Ni2P nanoparticles coated with a thin shell of carbonaceous material are produced. Ni12P5-Ni2P and Ni2P NPs efficiently catalyze the hydrogen evolution reaction (HER) in acidic medium. Co2P and CoP NPs are also synthesized following this method.
Papa, Letizia. "Synthesis of hybrid nanosheets of graphene oxide, titania and gold and palladium nanoparticles for catalytic applications." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/46/46136/tde-19062017-083751/.
Full textA nanocatálise surgiu nas últimas décadas como uma interface entre catálise homogênea e heterogênea, oferecendo soluções simples a problemas que os materiais convencionais não conseguiram resolver. De fato, o design de nanocatalisadores permite obter estruturas com grande área superficial, reatividade e estabilidade, e ao mesmo tempo apresentando boa seletividade e facilidade de separação de misturas reacionais. Neste trabalho apresentamos a preparação de estruturas híbridas compostas por nanopartículas de ouro, paládio e prata (Au, Pd e Ag NPs), nanofolhas de titanato (TixO2), óxido de grafeno (GO) e óxido de grafeno parcialmente reduzido (prGO). Focamos em híbridos do tipo M/TixO2, M/(pr)GO e M/TixO2/(pr)GO (M = Au, Pd ou Ag) e desenvolvemos métodos de preparação simples, versáteis e ambientalmente amigáveis, com ênfase no controle sobre tamanho, forma e composição. Para explorar as potencialidades catalíticas utilizamos a redução do 4-nitrofenol como reação modelo, e em seguida a oxidação assistida por luz do p-aminotiofenol (PATP). Com esses testes, investigamos interações metal-suporte e efeitos cooperativos que tornam as estruturas hibridas superiores a cada um dos materiais que as compõem.
Godfrey, Ian. "Synthesis, structure and catalytic applications of monometallic and bimetallic gold-silver nanomaterials." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10040860/.
Full textQazzazie, Dureid [Verfasser], and Gerald A. [Akademischer Betreuer] Urban. "Research and development of novel hybrid nanomaterials for use as catalytic electrodes in fuel cell applications." Freiburg : Universität, 2017. http://d-nb.info/1144828961/34.
Full textKrawiec, Piotr. "Nanostructured Porous High Surface Area Ceramics for Catalytic Applications." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1170181622265-56905.
Full textZhang, Rui [Verfasser], Nicola [Gutachter] Pinna, and Yan [Gutachter] Lu. "Transition-metal-based composite and hybrid nanomaterials for catalytic applications / Rui Zhang ; Gutachter: Nicola Pinna, Yan Lu." Berlin : Humboldt-Universitaet zu Berlin, 2018. http://d-nb.info/1175995266/34.
Full textKrawiec, Piotr. "Nanostructured Porous High Surface Area Ceramics for Catalytic Applications." Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A24989.
Full textKoneti, Siddardha. "In situ and 3D environmental transmission electron microscopy of Pd-Al2O3 nano catalysts : Fast tomography with applications to other catalytic systems in operando conditions and to electron beam sensitive nanomaterials." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI123/document.
Full textIn the beginning of the XXIst century, Environmental Transmission Electron Microscopy has become one of the reliable characterization techniques of nanomaterials in conditions mimicking their real life. ETEM is now able to follow the dynamic evolution of nanomaterials under various conditions like high temperature, liquid or various gas pressures. Among various fields of research, catalysis can benefit significantly from Environmental Microscopy. This contribution starts with the study of the Palladium-Alumina catalytic system. Pd nanoparticles supported by α-Al2O3 and δ-Al2O3 are of an important physicochemical and environmental interest, particularly in the field of selective hydrogenation in petrochemistry, for the synthesis of polymers or CO2 hydrogenation for methane production. We first performed 2D analyses at different steps of the synthesis process, then the same synthesis steps were performed under in situ conditions. The motivation of this approach was to compare post mortem treatments with ETEM observations. In general, 2D data provide limited insights on, for example, the morphology and position of supported nanoparticles. We have then developed a new fast acquisition approach to collect tomographic tilt series in very short times, enabling to reconstruct nano-systems in 3D during their dynamical evolution. Taking advantage of this approach, we have determined the activation energy for soot combustion on YSZ oxidation catalysts for diesel motors from volumetric data extracted from in situ experiments. Fast electron tomography was also applied to electron beam sensitive materials, like polymer nanocomposites and biological materials, showing the wide spectrum of possible applications for rapid 3D characterization of nanomaterials
Han, Chenhui. "Nanomaterials stabilized pickering emulsions and their applications in catalysis." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134131/1/Chenhui%20Han%20Thesis_Redacted.pdf.
Full textHuh, Seong. "Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications." Ames, Iowa : Oak Ridge, Tenn. : Ames Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/837271-xREJ4t/webviewable/.
Full textPublished through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2397" Seong Huh. US Department of Energy 12/19/2004. Report is also available in paper and microfiche from NTIS.
Books on the topic "Nanomaterials - Catalytic Applications"
Varghese, Anitha, and Gurumurthy Hegde. Emerging Nanomaterials for Catalysis and Sensor Applications. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003218708.
Full textZhou, Meng, ed. Catalysis by Metal Complexes and Nanomaterials: Fundamentals and Applications. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1317.
Full textToxic Gas Sensors and Biosensors. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901175.
Full textHussain, Chaudhery Mustansar, Sudheesh K. Shukla, and Bindu Mangla, eds. Functionalized Nanomaterials for Catalytic Application. Wiley, 2021. http://dx.doi.org/10.1002/9781119809036.
Full textHussain, Chaudhery Mustansar, Sudheesh K. Shukla, and Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Limited, John, 2021.
Find full textHussain, Chaudhery Mustansar, Sudheesh K. Shukla, and Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Incorporated, John, 2021.
Find full textHussain, Chaudhery Mustansar, Sudheesh K. Shukla, and Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Incorporated, John, 2021.
Find full textHussain, Chaudhery Mustansar, Sudheesh K. Shukla, and Bindu Mangla. Functionalized Nanomaterials for Catalytic Application. Wiley & Sons, Incorporated, John, 2021.
Find full textHegde, Gurumurthy, and Anitha Varghese. Emerging Nanomaterials for Catalysis and Sensor Applications. Taylor & Francis Group, 2022.
Find full textEmerging Nanomaterials for Catalysis and Sensor Applications. Taylor & Francis Group, 2022.
Find full textBook chapters on the topic "Nanomaterials - Catalytic Applications"
Denicourt-Nowicki, Audrey, and Alain Roucoux. "Metallic Nanoparticles in Neat Water for Catalytic Applications." In Nanomaterials in Catalysis, 55–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527656875.ch2.
Full textRossetti, Ilenia, and Lucio Forni. "Oxide Nanomaterials for the Catalytic Combustion of Hydrocarbons." In Synthesis, Properties, and Applications of Oxide Nanomaterials, 563–601. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470108970.ch18.
Full textSehgal, B., and G. B. Kunde. "Recent Advances in the Catalytic Applications of Magnetic Nanomaterials." In Emerging Applications of Low Dimensional Magnets, 9–31. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003196952-2.
Full textRubiyah, M. H., Krishnakumar Melethil, Albin James, Sharon Varghese, and Bejoy Thomas. "Cellulose Nanocrystals (CNCs) Supported Inorganic Nanomaterials for Catalytic Applications." In Handbook of Biopolymers, 1–33. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6603-2_34-1.
Full textMelethil, Krishnakumar, Sharon Varghese, Albin James, M. H. Rubiya, and Bejoy Thomas. "Bacterial Nanocellulose (BNCs) Supported Inorganic Nanomaterials for Catalytic Applications." In Handbook of Biopolymers, 1–34. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-16-6603-2_35-1.
Full textRubiya, M. H., Krishnakumar Melethil, Albin James, Sharon Varghese, and Bejoy Thomas. "Cellulose Nanocrystals (CNCs) Supported Inorganic Nanomaterials for Catalytic Applications." In Handbook of Biopolymers, 907–39. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0710-4_34.
Full textMelethil, Krishnakumar, Sharon Varghese, Albin James, M. H. Rubiya, and Bejoy Thomas. "Bacterial Nanocellulose (BNCs) Supported Inorganic Nanomaterials for Catalytic Applications." In Handbook of Biopolymers, 941–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0710-4_35.
Full textBinish, C. J., and A. V. Vijayasankar. "Correlation of Surface Properties and Catalytic Activity of Metal Aluminophosphates." In Emerging Nanomaterials for Catalysis and Sensor Applications, 49–63. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003218708-4.
Full textYoo, Je Min. "Catalytic Degradation of Phenols by Recyclable CVD Graphene Films." In Studies on Graphene-Based Nanomaterials for Biomedical Applications, 15–27. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2233-8_2.
Full textKeshri, Kumer Saurav, and Biswajit Chowdhury. "Ceria-Based Nano-composites: A Comparative Study on Their Contributions to Important Catalytic Processes." In Synthesis and Applications of Nanomaterials and Nanocomposites, 361–94. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1350-3_13.
Full textConference papers on the topic "Nanomaterials - Catalytic Applications"
Oleksenko, Ludmila, Igor Matushko, Nelly Maksymovych, George Fedorenko, Larisa Lutsenko, and Hanna Arinarkhova. "Morphology, Gas Sensitive and Catalytic Properties of Ce-containing Nanomaterials Based on Tin Dioxide Doped with Sb." In 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2019. http://dx.doi.org/10.1109/nap47236.2019.216988.
Full textKansara, Shivam, Sanjeev K. Gupta, and Yogesh Sonvane. "Catalytic activity of Cu4-cluster to adsorb H2S gas: h-BN nanosheet." In INTERNATIONAL CONFERENCE ON NANOMATERIALS FOR ENERGY CONVERSION AND STORAGE APPLICATIONS: NECSA 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5035254.
Full textShved, Elena, Yuliia Bespalko, Oksana Gorban, Kseniia Yutilova, and Evgeniia Bakhalova. "The Influence of Nanosized Zirconium (IV) Oxide on the Catalytic Curing of Epoxy Resin ED-20 with Isomethyltetrahydrophthalic Anhydride." In 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2020. http://dx.doi.org/10.1109/nap51477.2020.9309566.
Full textKytsya, A., L. Bazylyak, O. Pobigun-Halaiska, I. Opeida, P. Simon, and I. Zelenina. "Synthesis and Catalytic Properties of Ni©Ag Bimetallic Nanostructures." In 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8915129.
Full textKhalameida, Svitlana, Volodymyr Sydorchuk, Volodymyr Starchevskyy, and Iryna Koval. "Synthesis of nano-dispersed perovskites under sonochemical treatment and their catalytic properties." In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190153.
Full textSukhov, V. N., Z. V. Bloshenko, and A. L. Samsonik. "Effect of the residual gases catalytic activity on the island tin films crystallization." In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190144.
Full textKlivenko, A., A. Yergaziyeva, and S. Kudaibergenov. "Gold nanoparticles stabilized by amphoteric cryogel-perspective flow-through catalytic reactor for oxidation and reduction processes." In 2016 International Conference on Nanomaterials: Application & Properties (NAP). IEEE, 2016. http://dx.doi.org/10.1109/nap.2016.7757304.
Full textKarakurkchi, A., N. Sakhnenko, M. Ved, I. Parsadanov, and S. Menshov. "Nanostructured Oxide-Metal Catalysts for Intra-Cylinder Catalysis." In 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8914840.
Full textBlyzniuk, B. V., V. E. Diyuk, and V. V. Lisnyak. "Catalytic Decomposition of Hydrogen Peroxide over Nanoporous Activated Carbon: Effects of Oxidative and Thermal Treatments." In 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8915255.
Full textMajumdar, Dibyarup. "Nanoparticles: Synthesis & application in catalysis & effluent treatment." In 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609251.
Full textReports on the topic "Nanomaterials - Catalytic Applications"
Huh, Seong. Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/837271.
Full textChaudhary, Umesh. Synthesis of high surface area nanomaterials and their application in catalysis. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1342582.
Full textRadu, Daniela Rodica. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/837277.
Full text