Academic literature on the topic 'Nanomateriale'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanomateriale.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanomateriale"
Lobnik, Aleksandra, Marijana Lakić, Aljoša Košak, Matejka Turel, and Špela Korent Urek. "Introduction to Nanomaterials for Use in Textiles." Tekstilec 56, no. 2 (June 10, 2013): 137–44. http://dx.doi.org/10.14502/tekstilec2013.56.137-144.
Full textS, Lakshmana Prabu. "Toxicity Interactions of Nanomaterials in Biological System: A Pressing Priority." Bioequivalence & Bioavailability International Journal 6, no. 2 (July 15, 2022): 1–6. http://dx.doi.org/10.23880/beba-16000173.
Full textZhang, Yanli, Qiang Zhang, Xiangming He, Li Wang, Jingxin Wang, Liangliang Dong, Yingpeng Xie, and Yongsheng Hao. "A Novel Sugar-Assisted Solvothermal Method for FeF2 Nanomaterial and Its Application in LIBs." Materials 16, no. 4 (February 8, 2023): 1437. http://dx.doi.org/10.3390/ma16041437.
Full textGulumian, Mary, and Charlene Andraos. "In Search of a Converging Cellular Mechanism in Nanotoxicology and Nanomedicine in the Treatment of Cancer." Toxicologic Pathology 46, no. 1 (October 15, 2017): 4–13. http://dx.doi.org/10.1177/0192623317735776.
Full textCard, Jeffrey W., and Bernadene A. Magnuson. "A Method to Assess the Quality of Studies That Examine the Toxicity of Engineered Nanomaterials." International Journal of Toxicology 29, no. 4 (July 2010): 402–10. http://dx.doi.org/10.1177/1091581810370720.
Full textWang, Jiali, Guo Zhao, Liya Feng, and Shaowen Chen. "Metallic Nanomaterials with Biomedical Applications." Metals 12, no. 12 (December 12, 2022): 2133. http://dx.doi.org/10.3390/met12122133.
Full textKim, Jeongho, and Il Je Yu. "National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets." BioMed Research International 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/8389129.
Full textMa, Haohua, Xin Qiao, and Lu Han. "Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications." Biomimetics 8, no. 1 (March 22, 2023): 128. http://dx.doi.org/10.3390/biomimetics8010128.
Full textQu, Juntian, and Xinyu Liu. "Recent Advances on SEM-Based In Situ Multiphysical Characterization of Nanomaterials." Scanning 2021 (June 9, 2021): 1–16. http://dx.doi.org/10.1155/2021/4426254.
Full textKladko, Daniil V., Aleksandra S. Falchevskaya, Nikita S. Serov, and Artur Y. Prilepskii. "Nanomaterial Shape Influence on Cell Behavior." International Journal of Molecular Sciences 22, no. 10 (May 17, 2021): 5266. http://dx.doi.org/10.3390/ijms22105266.
Full textDissertations / Theses on the topic "Nanomateriale"
Souza, Caio Guilherme Secco de. "Nanomateriais luminomagnéticos visando aplicações biológicas: síntese, propriedades, funcionalização e estabilidade coloidal." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/75/75134/tde-11082015-090833/.
Full textHere, luminomagnetic nanomaterials were obtained for potential biological applications. We have studied two different types of luminomagnetic nanomaterials, which are: formation of silica-coated FePt/Fe3O4-CdSe heteronanostructures; and formation of luminomagnetic nanomaterials from covalent bond between FePt/Fe3O4-Dopa-PIMA-PEG-NH2 magnetic nanoparticles and CdSe/ZnS-LA-PEG-COOH luminescent quantum dots. For the first type of luminomagnetic nanomaterials obtained, two methodologies were studied for formation of heteronanostructures, which are: modification of colloidal stability by addition of small amounts of NaCl into a solution with hydrophobic magnetic nanoparticles and luminescent quantum dots; and hot injection method of selenium precursor into a solution with magnetic nanoparticles seeds, cadmium precursors and surface agents. The hot injection method obtained better results than the other method studied for formation of heteronanostructures. To provide colloidal stability in aqueous solution and biocompatibility, the heteronanostructures were coated using silica shell. After silica coating, the heteronanostructures showed average diameter of 25 nm and polidispersivity of 8.4%, with Ms = 11.1 emu.g-1 and superparamagnetic behavior. Moreover, these nanomaterials showed two emission peaks centered at 452 and 472 nm. For the second type of nanomaterials obtained, FePt/Fe3O4 magnetic nanoparticles were synthesized by modified polyol method coupled to seeded-mediated growth, and CdSe/ZnS luminescent quantum dots were obtained by thermal decomposition of organometallic precursors. For the ligand exchange to transfer the nanostructures from organic media to aqueous solution, were used Dopa-PIMA-PEG-NH2 and LA-PEG-COOH polymers to provide colloidal stability and biocompatibility on magnetic nanoparticle surface and quantum dot surface, respectively. The chemical conjugation between FePt/Fe3O4-Dopa-PIMA-PEG-NH2 and CdSe/ZnS-LA-PEG-COOH nanostructures was obtained by EDC coupling in aqueous solution, which linked amine and carboxylate groups in each nanostructure to provide the formation of amide bond. The luminomagnetic nanomaterials obtained showed colloidal stability in aqueous solution, narrow size distribution, with RH equal to 79.96 nm, MS around 10 emu.g-1 with low coercivity and remanent magnetization, and intense emission peak centered at 580 nm. We expect these luminomagnetic nanomaterials be promisor nanomaterials with multifunctional properties for potential biological applications.
Ahmad, Abo Markeb Ahmad Mohamed. "Environmental applications of engineered nanomaterials: synthesis and characterization." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/454768.
Full textThis thesis is based on the development (synthesis) of different nanomaterials for their application as adsorbent materials for the removal of pollutants from water (inorganic anions, heavy metals and pesticides) and for the adsorption of methane gas. The development of the different materials has been based on an extensive bibliographical search of the state of the art of the materials currently used for this application, and it has been tried to improve the efficiency of the process by using nanomaterials. Thus, magnetic (magnetite) nanoparticles are synthesized by different methods. These are functionalized with organic groups to adapt and/or improve their adsorption function or stabilize in supports (polymers, zeolites, sponges, etc.) to improve their application on a real scale. In addition, a new method for the formation of core-shell nanoparticles with a magnetite core is developed. All the synthesized nanomaterials have been characterized in depth, using the most advanced techniques for the characterization of nanomaterials. Techniques such as electron microscopy, X-ray diffraction, among others, allow to know the characteristics and properties of the materials (size, dispersion, crystallinity, structure, etc.) and thus conclude their contribution to the efficiency of their application with adsorbent material. As for the contaminants in water, the work focuses on fluoride, phosphates, nitrates, cadmium, nickel and pesticides, obtaining outstanding results for the nanoparticles of Ce-Ti @Fe3O4. In the case of gas treatment, on the one hand has developed a new nanomaterial based on magnetic nanoparticles stabilized in polyurethane sponges which present interesting results for the adsorption of methane and great applicability on a real scale. In addition, we have collaborated with the Institut Català de Nanotecnologia for the applicability of Metal Organic Frameworks in the oxidation of CO. Another application that has been given to magnetic nanoparticles has been its use to separate algae from wastewater treatment processes, in order to substitute the current sedimentation processes. With all this, the thesis offers a range of nanomaterials for different uses in environmental engineering, with the possibility of investigating and developing on its applicability on a large scale. To this end, different solutions are provided for the improvement of the environment.
Russo, Lorenzo. "Designing advanced nanomaterials for next generation in vitro diagnostics: development of optical and electrochemical biosensors for determination of viral and bacterial infections based on hollow AuAg nanoparticles." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/666751.
Full textIn this PhD thesis, the rational design of advanced nanomaterials with controlled properties was applied for their employment in biosensing, leading to the development of two diagnostic platforms for the determination of viral and bacterial infections. Firstly, a highly reproducible and robust synthetic method for the production of monodisperse AuAg alloy NSs based on GRR was developed. The protocol described allows the precise control over the particles’ morphology, in terms of shell thicknesses and void sizes, the relative composition and topological distribution of their constituting noble metals, as well as their surface roughness and porosity. This synthetic predictability, tested over a range of sizes, has been achieved through a systematic study of the convoluted interplay of each co-reagent, together with a detailed characterization of the material’s composition and structure through an array of techniques. Moreover, the analysis of AuAg NSs’ plasmonic properties evolution during their structural transformation, which spanned through almost the whole visible spectrum up to NIR wavelengths, revealed a tight dependence with their morphological and compositional features. These results, also confirmed by calculations based on Mie’s theory, provided the basis for their application as signal enhancers in the SERS-based LFA developed. Secondly, for the first time the electrochemical behavior of AuAg NSs was reported. Triggered by the controlled corrosion of Ag atoms contained in the particles’ residual cores and thin alloy shells, the voltammetric study of these hollow nanocrystals has been found to be strongly dependent on their relative elemental composition and, partially, to their size and morphology. Indeed, a peculiar electrocatalytic effect appeared only for AuAg NSs possessing a high-enough Au/Ag ratio to let the catalytic electrodeposition of Ag+ on the NSs’ surfaces occur at potentials less negative than Ag standard reduction one. Interestingly, this unreported feature was shown to be triggered only by the mild oxidating character of the electrolyte used, without the need of any other co-reagent or oxidizer. These findings constituted the rational basis for developing AuAg NSs with desirable properties to be applied in the electrochemical assay described. Taking advantage of the tunable plasmonic properties of AuAg NSs, the development of a SERS-based LFA for the sensitive and quantitative detection of MxA, a biomarker commonly associated to viral infections, was achieved. Thanks to the enhanced plasmons intensities displayed by AuAg NSs, resulting from the plasmonic cavity effect commonly observed in hollow nanostructures, their surfaces acted as a continuous hot-spot, amplifying any Raman signal emitted by the reporters thereby attached. Moreover, the possibility to precisely adjust AuAg NSs’ LSPR maximum wavelength to match the NIR excitation laser used during SERS measurements allowed to further improve the overall analytical performance. Thus, AuAg NSs were easily conjugated with anti-MxA antibodies and integrated in a LFA in order to reveal its presence in spiked serum samples. After careful optimization of the point-of-care platform parameters, MxA protein could be successfully detected down to the analytically-relevant LOD of few ng/mL. Finally, the capability to precisely modulate AuAg NSs elemental composition lead to the design of a proof-of-concept electrochemical assay for the rapid detection of two model bacterial strains, Escherichia coli and Salmonella typhimurium. AuAg NSs were used as electrochemical reporters because of the ease of generation of the electrochemical signal, triggered by the sole mild oxidating character of the biological sample matrix. Besides, the polymeric coating of the hollow particles provided the non-specific, affinity-based interaction with bacterial cells in solution, avoiding the need for costly and fragile antibodies. With this low-cost strategy, E.coli could be detected in PBS down to 102 CFU/mL, while the semi-selective discrimination of the current-concentration profiles of the two model bacterial strains was also achieved.
Spångberg, Christian. "En studie om regleringen av nanomaterial : - i The Toxic Substances Control Act (TSCA) och Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)." Thesis, Uppsala universitet, Juridiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-327381.
Full textLEPORE, EMILIANO. "An experimental study on adhesive or antiadhesiveand strong bio-inspired nanomaterials." Doctoral thesis, Politecnico di Torino, 2012. http://hdl.handle.net/11583/2498977.
Full textGarzón, Manjón Alba. "Synthesis of Metal Oxide Nanoparticles for Superconducting Nanocomposites and Other Applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/399330.
Full textThermal and microwave methodologies are used to synthesize different metal oxides nanoparticles such as magnetite (Fe3O4), cerium oxide (CeO2). By modifying the precursors (Fe(R2diket)3 (R= Ph, tBu and CF3), Ce(acac)3 and Ce(OAc)3), and following the same synthetic route, it is possible to control the size and shape of the nanocrystals obtained. The general route is carried out in triethylene glycol (TREG) or benzyl alcohol (BnOH) media, due to its high boiling point and, which acts also as a capping ligand of the nanoparticles, stabilizing them in polar solvents. Nanoparticles have been characterized by several common physical laboratory techniques: High Resolution Transmission Electron Microscopy (HR TEM), infrared spectroscopy (IR), X-ray Powder Diffraction (XRPD), magnetometry via Superconducting Quantum Interference Device (SQUID), Nuclear Magnetic Resonance (RMN), Gas Chromatography-Mass Spectroscopy (GC-MS), X-ray Photoelectron Spectroscopy (XPS) and Thermogravimetric Analysis (TGA). With all these techniques, the final size, shape, composition, crystal structure, magnetic behaviour and capping ligand interaction have been studied, showing the high quality crystals generated. In addition, we demonstrate the high efficiency of all two one-pot methodologies that have been optimized to synthesize different families of nanoparticles. The stable colloidal solutions obtained in ethanol have been used to generate ex-situ hybrid YBa2Cu3O7-δ (YBCO) superconducting layers because the critical current can be increased when the nanoparticles are embedded. Finally, a new application as an antioxidant behaviour in human cells is tested for the case of CeO2 nanoparticles due to their specifically properties that make them really interested in this new field.
Rodrigues, Carolina Martins. "Desenvolvimento de materiais nanoestruturados baseados em oxidos mistos de metais de transição (Ti, Zr)." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/249015.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica
Made available in DSpace on 2018-08-08T23:15:36Z (GMT). No. of bitstreams: 1 Rodrigues_CarolinaMartins_M.pdf: 50415494 bytes, checksum: b98d1323abe212ba30a7712dd028ce6f (MD5) Previous issue date: 2007
Resumo: Esta dissertação visa à obtenção de nanoestruturas partindo do óxido misto Ti1-xZrxO2. O óxido precursor foi preparado pelo método de precipitação homogênea, via tetracloreto de titânio e oxicloreto de zircônio, usando uréia como reagente precipitante. Esses óxidos foram submetidos ao tratamento hidrotérmico em autoclave, em solução de NaOH, empregando temperatura de 140 e 170°C com intervalo de tempo de 2 a 7 dias. De acordo com as caracterizações físico-químicas feitas foi observado que os produtos obtidos via tratamento hidrotérmico com x < 0,50 apresentaram morfologia de nanotubos, nanoplacas e nanobastões. Entretanto, para x acima de 0,05 mostraram a existência de duas fases cristalinas, titanato de sódio e ZrO2 tetragonal. Para x > 0,50 não apresentaram mudanças morfológicas, tendo como fase formada o ZrO2 tetragonal. Quando o precursor com x = 0,50 (fase ZrTiO4) é observado no produto do tratamento hidrotérmico manutenção da estrutura cristalina e presença de nanotubos. Foi também mostrado, para x = 0,15, que o aumento de volume da solução na autoclave promove aumento da cristalinidade e destruição da organização das partículas. O aumento do tempo e da temperatura de reação proporcionou maior cristalinidade aos produtos hidrotérmicos com x = 0,15 e 0,50; para x = 0 aumento de nanotubos e para x = 0,15 diminuição das nanoplacas e para x = 0,80 e 1 não apresentaram mudanças nem na morfologia, nem na cristalinidade. Foi avaliada a reatividade dos nanotubos (x=0) e nanobastões/nanoplacas (x = 0,15) frente às moléculas orgânicas. Foi observado que os nanotubos interagem melhor com moléculas ácidas, e que tais moléculas promovem a destruição da morfologia e mudança da estrutura cristalina, sendo estas mais drásticas quando com aquecimento. Os nanobastões/nanoplacas interagem mais fortemente com as moléculas ácidas, porém sem perda de morfologia e estrutura cristalina
Abstract: The main of this Dissertation is the preparation of nanostructures from T1-xZrxO2 mixed oxide. The precursor oxide was prepared by the homogeneous precipitation method, from titanium tetrachloride and zirconium oxichloride, using urea as the precipitating agent. The oxides were hydrothermally treated in autoclave, in NaOH solution, at temperatures of 140 and 170 °C, for period of 2 to 7 days. According to the physical-chemical characterizations, it was observed that the products prepared by the hydrohermal treatment with x < 0.50 presented morphologies like nanotubes, nanosheets and nanorods. However, for x > 0.05, it was observed the presence of two crystalline phases, sodium titanate and tetragonal ZrO2. For x > 0.50, it was not observed morphological changes, being tetragonal ZrO2 the obtained phase. Starting from the mixed oxide with x = 0.50, ZrTiO4 phase, it was observed nanotubes with the same crystalline phase. For x = 0.15, it was also observed that the increase of solution volume in the autoclave causes a crystallinity increase and destruction of the particles organization. The increase in time and temperature of reaction caused an increase in the crystallinity of the hydrothermal products for x = 0.15 e 0. 50; for x = 0, it was observed more quantity of nanotubes; and for x = 0.15, fewer nanosheets; for x = 0.80 and 1, it was not observed either morphological neither crystalline changes. The reactivity of the nanotubes (x = 0) and nanorods/nanosheets (x = 0.15) with organic molecules, which promote the morphology destructions and changes in the crystalline structure. These effects were increased with heating. The nanorods/nanosheets strongly interact with acid molecules, without loosing of morphology or the original crystalline structures
Mestrado
Quimica Inorganica
Mestre em Química
Rodríguez, Rodríguez Jordi. "Síntesis y Caracterización de Óxido de Grafeno Reducido Funcionalizado con Nanopartículas Metálicas. Aplicación en el Desarrollo de Sensores Amperométricos Basados en Materiales Nanoestructurados." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671817.
Full textEl desarrollo de nuevos (bio)sensores es un campo en desarrollo dentro de la Química Analítica y, en general, de la sociedad. El uso de sensores está altamente extendido en la vida cotidiana de las personas. En el mercado, se encuentran disponibles distintos tipos de glucómetros, que pueden informar de la concentración de glucosa en sangre en tiempo real del paciente. También existe una demanda de nuevos test de diagnosis para enfermedades como la provocada por el virus SARS-COVID-19. El grafeno se ha convertido en un material de gran interés entre la comunidad científica, debido a las propiedades eléctricas, térmicas y mecánicas únicas que este material posee respecto a otros materiales carbonáceos y 2D. Debido a sus excepcionales características y propiedades el uso de grafeno como material conductor alternativo en el desarrollo de transductores electroquímicos se ha extendido ampliamente y convertido en uno de los principales recursos. Los nanocompósitos se sitúan como una alternativa muy interesante en el desarrollo de sensores amperométricos. Debido a la capacidad de integrar varios materiales con diferentes características con la finalidad de obtener un nuevo material con propiedades físicas, mecánicas y eléctricas muy diferentes a los materiales originales que lo constituyen. El uso de nanocompósitos presenta una serie de ventajas respecto a los conductores puros. Por ejemplo, versatilidad, durabilidad, facilidad de regeneración de la superficie y su capacidad de integración de otros modificadores, cualidades que proporcionan un valor añadido a los dispositivos desarrollados. Las propiedades electroquímicas de los nanocompósitos están altamente influenciadas por la naturaleza de las partículas conductoras que lo forman, así como la cantidad y la distribución espacial de estas en la matriz del nanocompósito. Una de las características más relevantes que poseen estos materiales es la similitud en su comportamiento electroquímico respecto a un haz de microelectrodos. La presencia de partículas conductoras, separadas por áreas no conductoras o aislantes en la superficie del electrodo, mimetiza la distribución más o menos ordenada de microelectrodos separados entre sí por un aislante eléctrico, configurando así un haz de microelectrodos. La respuesta electroanalítica de un haz de microelectrodos depende fundamentalmente de las dimensiones y separación entre las partículas conductoras. Por este motivo, es necesaria una optimización de la cantidad de material conductor y de su distribución con el objetivo de obtener la mejor eficacia analítica. Bajo este contexto, la primera etapa de esta Tesis es la síntesis de óxido de grafeno reducido (rGO) mediante el método de Hummers. Este método permite obtener rGO utilizando grafito comercial como material de partida para la fabricación de electrodos nanocompósitos basados en rGO y una resina epoxi (EpoTek H77). Posteriormente, se ha implementado un conjunto de técnicas instrumentales que, aplicadas de forma estratégica y sistemática, han permitido la caracterización y optimización de la composición del material conductor; así como la mejora de las propiedades electroquímicas de los electrodos nanocompósitos desarrollados con los diferentes materiales conductores sintetizados. Una vez optimizadas las propiedades de los transductores electroquímicos se procedió a la mejora de las propiedades de estos sensores, mediante la incorporación de diferentes nanopartículas (NPs) metálicas, con el objetivo de introducir un efecto electrocatalítico en el dispositivo analítico. Se desarrolló una metodología sintética que permite incorporar ad hoc NPs de diferentes metales (e.g Au, Ag, Pd) en la superficie del rGO, de una manera sencilla y mediante química verde. Finalmente, se ha desarrollado un (bio)sensor utilizando la enzima glucosa oxidasa (GOD), basado en un nanocompósito de 2Au/3Pd-NP@rGO. Estudiando el efecto catalítico que tienen las NPs bimetálicas de Au y Pd frente al H2O2. Para finalizar, se estudió el efecto de la presencia del ácido ascórbico en las medidas electroanalíticas.
The development of new (bio)sensors is a field in full development within the needs of Analytical Chemistry and society in general. The use of sensors is highly extended in people’s daily life. Different types of glucometers are available on the market, which can report the concentration of glucose in the patient’s blood in real time. Also, one can see today’s need to develop new diagnostic tests for diseases, such as that caused by the SARS-COVID-19 virus. Graphene has become a material of great interest among the scientific community, due to the unique electrical, thermal and mechanical properties that this material possesses with respect to other carbonaceous and 2D materials. Due to its exceptional characteristics and properties, the use of graphene as an alternative conductor material in the development of electrochemical transducers has become widespread and one of the main resources. Nanocomposites are a very interesting alternative in the development of amperometric sensors. Due, especially, to the capacity of integrating several materials with different characteristics in order to obtain a new material with very different physical, mechanical and electrical properties from the original materials that constitute it. The use of nanocomposites has a series of advantages over pure conductors. These advantages are, for example, versatility, durability, ease of surface regeneration and its ability to integrate other modifiers, qualities that provide added value to the developed devices. The electrochemical properties of nanocomposites are highly influenced by the nature of the conductive particles that form it as well as their amount and spatial distribution in the matrix of the nanocomposite. One of the most relevant characteristics of these materials is the similarity in their electrochemical behavior with respect to a microelectrode array. The presence of conductive particles, separated by non-conductive or insulating areas on the electrode surface, mimics the more or less ordered distribution of microelectrodes separated by an electrical insulator, forming the equivalent of a microelectrode array. The electro-analytical response of a microelectrode array depends mainly on the dimensions and separation between the conductive particles. For this reason, it is necessary to optimize the quantity of conductive material and its distribution to obtain the best analytical efficiency. In this context, the first stage of this Thesis is the synthesis of reduced graphene oxide (rGO) by Hummers’ method. This method allows obtaining rGO, from commercial graphite as a starting material, for the manufacture of nanocomposite electrodes based on rGO and an epoxy resin (EpoTek H77). Subsequently, a set of instrumental techniques have been implemented, which, applied in a strategic and systematic way, have allowed the characterization and optimization of the composition of the conductive material as well as the improvement of the electrochemical properties of the nanocomposite electrodes developed with different synthesized conductive materials. Once the properties of the electrochemical transducers were optimized, it was time to improve the analytical properties of these electrochemical sensors through the incorporation of different metallic nanoparticles (NPs) with the aim of introducing an electrocatalytic effect into the analytical device. This way a synthetic methodology was developed, allowing the incorporation ad hoc of different metal NPs (e.g. Au, Ag, Pd) on the rGO’s surface in a simple way and by means of green chemistry. Finally, a (bio)sensor has been developed using the enzyme glucose oxidase (GOD), based on a 2Au/3Pd-NP@rGO nanocomposite. Studying the catalytic effect that bimetallic Au and Pd NPs have upon H2O2. Finally, the effect of ascorbic acid’s presence in electroanalytical measurements (an interferent present in many biological samples) was studied.
Universitat Autònoma de Barcelona. Programa de Doctorat en Química
Molet, Bachs Pau. "Managing light in optoelectronic devices with resonant optical nanostructures." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673260.
Full textActualmente, uno de los retos en el ámbito de la manipulación de la luz a la nanoescala es la transición del laboratorio a aplicaciones reales. A pesar del gran potencial demostrado por algunas estructuras fotónicas para incrementar la eficiencia de instrumentos optoelectrónicos, su implementación en dispositivos de mercado muchas veces es obstruida por la necesidad de utilizar técnicas de fabricación poco escalables y de alto coste. Esta tesis está dedicada al diseño e implementación de estrategias de manipulación de la luz para mejorar la eficiencia en la recolección de energía de placas solares y fotodetectores, así como la mejora de la emisión en dispositivos de iluminación, mediante métodos de nanoestructuración escalables como la nano-litografía suave. Esta técnica tiene la capacidad de producir patrones y estructures con una resolución de pocos nanómetros con gran fidelidad en áreas grandes. Encima, es compatible con el procesamiento a gran escala mediante el sistema de impresión en cadena “roll-to-roll” (carrete-a-carrete). También se trata de una tecnología muy versátil, puesto que permite el uso de diferentes tipos de sustratos, es poco invasiva y generalmente puede ser introducida en el esquema de fabricación sin tener que modificar ningún paso. Con la ayuda de esta técnica de nanofabricación, exploramos una variedad de arquitecturas fotónicas y las diferentes resonancias fotónicas que las hacen especiales. Entre estas últimas podemos encontrar resonancias de Mie, modos de Brewster y modos de cristal fotónico, que proveerán al sistema con una mayor interacción luz-materia a la capa activa del dispositivo, mejorar sus capacidades ópticas. Primero, hemos desarrollado una estrategia para conseguir una absorción óptima de banda ancha en semiconductores ultra-finos, con menos de 100 nm de grosor, para todas las energías por encima de su energía de banda prohibida. La sinergia de las fuertes resonancias de interferencia de capas finas presentes y los modos del cristal fotónico de la estructura (con un alto índice de refracción) hacen que la estructura logre hasta un 81% de absorción en un amplio rango de longitudes de omda (de 400 a 1500 nm). En segundo lugar, hemos combinado la litografía suave con la deposición química de vapor (CVD en inglés) para obtener una matriz de semiesferas de silicio sobre de una guía de ondas de alto índice de refracción. Hemos estudiado las resonancias de Mie características del sustrato, como hibridan con modos casi-guiados de la guía de olas y como esto afecta en el campo próximo de la metasuperfície. Hemos ido un paso más allá estudiando como la modificación de los parámetros del diseño de la estructura afecta a las resonancias mencionadas. Finalmente, hemos demostrado una posible aplicación como sustrato para incrementar la emisión de luz por parte de una molécula emisora. En la tercera parte de la tesis, nos hemos enfocado en la implementación de estructuras de cristal fotónico bidimensional a tres dispositivos diferentes para la mejora de su eficiencia. En particular, mejoramos la eficiencia en la recolección de fotones de infrarrojo próximo en células solares de puntos cuánticos coloidales (PbS) y en fotodetectores orgánicos (P3HT: PC60BM y PBTTT: PC70BM), y mejoramos la emisión de luz de capas de nanofósforos (nanocristales de GdVO4:Eu3+). Hemos desarrollado sistemas fotónicos adaptados a cada caso y hemos hecho una caracterización óptica y electrónica de todos los dispositivos. La nanoestructuración en forma de cristal fotónico bidimensional provee a las capas activas con propiedades de guías de onda resonantes, mejorando sus propiedades de confinamiento de la luz en las longitudes de onda deseadas, demostrando así la posibilidad de implementar las arquitecturas.
Currently, one of the main challenges in light management at the nanoscale is the transition from the laboratory to real applications. Despite the great potential shown by photonic architectures to optically improve the performance of many devices, transitioning into marketable devices is often hampered by the low-throughput and expensive nanofabrication techniques involved. This thesis is devoted to the design and development of subwavelength light managing strategies to improve the light harvesting or out-coupling in solar cells, photodetectors and light emitters while using a scalable nanostructuration such as soft nanoimprint lithography (NIL). This technique has been proven to achieve resolutions down to few tens of nanometers with high fidelity in large areas, being compatible with roll to roll processing. It is also versatile regarding the materials where it can be used, non-invasive, and can be seamlessly introduced in the devices fabrication scheme. With the aid of this technique, we explore a variety of photonic architectures and the different types of resonances sustained, from Brewster modes to Mie resonances, in order to enhance the light-matter interaction with the active layer of the device. First, we develop a strategy to achieve broadband optimal absorption in ultra-thin semiconductor materials (less than 100 nm thick) for all energies above their bandgap. The interplay of strong interference thin film resonances and photonic crystal modes sustained by a high refractive index nanostructure on a gold film renders the system with a 81% total absorption over a broad spectral range (from 400 to 1500 nm). Second, we combine soft NIL and chemical vapor deposition to obtain an array of silicon hemispheres on top of a high refractive index dielectric waveguide. We study the Mie resonances supported by the substrate, how these hybridize with the guided modes of the waveguide and how their interaction influences the electromagnetic near field of the metasurface. We further explore the tunability of such resonances with the design parameters of the structure and we demonstrate a potential application of it as a substrate for enhanced photoluminescence. In the third part of the thesis, we focus on the implementation of 2D photonic structures within the active layer of three different devices to improve performance. In particular we enhance the near infrared (NIR) photon harvesting efficiency in a colloidal quantum dot solar cell (PbS-CQD) and in organic photodetectors (P3HT: PC60BM and PBTTT: PC70BM) and improve the light out coupling from a nanophosphor layer (GdVO4:Eu3+ nanocrystals). We developed photonic systems tailored for each device and provide the complete optical and electronic characterization for each case. The nanostructuration with a 2D periodic arrangement renders the active layers with resonant waveguide properties enhancing its light trapping properties in the targeted spectral ranges, hence demonstrating the possibility to implement photonic schemes within actual devices.
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
Ballesteros, Ribera Sandra. "New end-points to assess nanomaterials exposure effects." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673866.
Full textLos nanomateriales (NMs) son considerados contaminantes emergentes cuya detección está creciendo en las diferentes matrices ambientales, provocando riesgos potenciales para la salud humana y para los ecosistemas. En este sentido, el principal objetivo de esta Tesis ha sido proporcionar nuevas aproximaciones metodológicas para la evaluación del peligro de los NMs a través de modelos in vitro y ex vivo avanzados, así como de nuevos biomarcadores. En nuestro primer estudio se desarrolló un modelo novedoso para comprender el riesgo de exposición de los seres humanos a las nanopartículas de poliestireno (NPPS), como modelo de micro-nanoplásticos (MNPL). Para ello, las muestras de sangre procedentes de 5 donantes se expusieron ex vivo a varias dosis de NPPS y se evaluaron diferentes biomarcadores en diversos subconjuntos de glóbulos blancos periféricos. Los resultados mostraron marcadas diferencias en la internalización de NPPS, con una absorción muy limitada en los linfocitos y muy alta en los monocitos. Además, la evaluación del daño genotóxico del ADN reveló una sensibilidad celular específica, siendo las células polimorfonucleares y monocitos aquellas células con los niveles más significativos de daño genotóxico. Además, la exposición a NPPS desencadenó cambios en el secretoma sanguíneo, con un aumento significativo en la expresión de citoquinas relacionadas con la respuesta inflamatoria e inmunitaria, el estrés y la proliferación celular. En el segundo estudio, se utilizó el modelo ex vivo antes mencionado para evaluar el impacto a nivel del secretoma sanguíneo de tres nanomateriales diferentes basados en grafeno (NMBG). Para ello, se analizó un gran panel de citoquinas y los resultados mostraron importantes cambios en su expresión, estando la mayoría de ellos relacionados con la respuesta inmunitaria e inflamatoria. Al mismo tiempo, se utilizó el ensayo de soft-agar indirecto para analizar las consecuencias funcionales de estos cambios de citoquinas. Los resultados mostraron que el secretoma alterado por NMBG puede inhibir la capacidad de crecimiento celular independiente del anclaje de las células HeLa, utilizadas como modelo de línea celular. En el tercer estudio, las propiedades de transformación celular del nanocerio se confirmaron mediante un modelo in vitro de dosis bajas a largo plazo. Se analizaron las propiedades relacionadas con las células madre cancerosas, el crecimiento independiente del anclaje y las capacidades de invasión, ya que se consideran características oncogénicas importantes impulsadas por la exposición a los NMs. Asimismo, se confirmaron sus posibles interacciones con el condensado de tabaco, como modelo de contaminante cancerígeno ambiental, mostrando una interacción positiva en la inducción de la transformación celular. Además, se evaluó una batería de microARNs relacionados con la adquisición del fenotipo tumoral, revelando que las nanopartículas de dióxido de cerio y la co-exposición producían una toxicidad potencial a nivel del transcriptoma. Finalmente, en nuestro cuarto estudio se evaluaron las posibles consecuencias epigenéticas de la exposición a largo plazo a nanopartículas de titanio y nanotubos de carbono de múltiples capas, específicamente los cambios en la expresión de microARNs. La batería de microARNs analizada reveló un gran impacto en el perfil de expresión de las células expuestas a ambos nanomateriales. Además, a partir de nuestra batería inicial, se seleccionó un pequeño conjunto de cinco microARNs como posibles biomarcadores de efecto después de la exposición a los NMs. Este conjunto fue probado en las líneas celulares BEAS-2B y MEF, previamente expuestas a largo plazo a diferentes NMs, mostrando efectos positivos en todas las muestras probadas, confirmando la idoneidad de esta batería.
Nanomaterials (NMs) are considered emerging pollutants that are increasingly detected in different environmental matrices, with potential risks for human health and the ecosystems. In this sense, the focus of this Thesis has been directed to provide new approach methodologies for hazard assessment of NMs via advanced in vitro and ex vivo models, as well as novel biomarkers. From our first study, a novel approach was developed to understand the risk of polystyrene nanoparticles (PSNPs) exposure for humans, as a model of micro-nanoplastics (MNPLs). Thus, ex vivo whole blood samples from 5 donors were exposed to several doses of PSNPLs and different end-points were evaluated in diverse subsets of white peripheral blood cells (WBCs). The results showed sharp differences in PSNPLs internalization with very limited uptake in lymphocytes and high uptake in monocytes. Moreover, the genotoxic DNA damage evaluation revealed a specific cellular sensitivity, being polymorphonuclear cells (PMNs), and monocytes those cells with the most significant levels of genotoxic damage. Additionally, PSNPLs exposure triggered changes in the whole blood secretome, with a significant increase in the expression of cytokines related to the inflammatory, immune, and stress response, as well as cell proliferation. In the second study, the before-mentioned whole blood ex vivo model was used to evaluate the impact of three different graphene-based nanomaterials (GBNMs) at the level of the blood secretome. For that purpose, a large panel of cytokines was analysed, and the results showed important cytokine expression changes, most of them related with the immune and inflammatory response. At the same time, the indirect soft-agar assay, was used to unravel the functional consequences of these cytokine changes. The results showed that the GBNMs-altered secretome can inhibit the anchorage-independent cell growth capacity of HeLa cells, used as a model cell-line. In the third study, the cell-transforming properties of nanoceria were confirmed through a long-term low-dose in vitro model. Stem-like properties, anchorage-independent growth, and invasion abilities were analysed as they are considered important oncogenic features driven by NMs exposure. Also, their potential interactions with cigarette smoke condensate (CSC), as a model of environmental carcinogenic pollutant were confirmed, showing a positive interaction in the induction of cell transformation. Besides, a battery of microRNAs related to the acquisition of the tumoral phenotype was assessed, revealing that cerium dioxide nanoparticles (CeO2NPs) and the co-exposure produced potential toxicity at the transcriptome level. Finally, our fourth study evaluated the potential epigenetic consequences of long-term exposure to titanium nanoparticles (TiO2NPs) and multi-walled carbon nanotubes (MWCNT), specifically the microRNAs expression changes. The analysed microRNA battery revealed a big impact on the expression profiling in cells exposed to both nanomaterials. Moreover, from our initial battery, a small set of five microRNAs were selected as potential biomarkers of effect after NMs’ exposures. This set was tested in BEAS-2B and MEF cells previously long-term exposed to different NMs, showing positive effects in all the tested samples, confirming the suitability of this battery.
Universitat Autònoma de Barcelona. Programa de Doctorat en Genètica
Books on the topic "Nanomateriale"
Al-Douri, Yarub. Nanomaterials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3881-8.
Full textDeutsche Forschungsgemeinschaft DFG, ed. Nanomaterials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527673919.
Full textSingh, Subhash Chandra, Haibo Zeng, Chunlei Guo, and Weiping Cai, eds. Nanomaterials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527646821.
Full textRamesh, K. T. Nanomaterials. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09783-1.
Full textSingh, Dheeraj Kumar, Sanjay Singh, and Prabhakar Singh, eds. Nanomaterials. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7963-7.
Full textJaworska, Lucyna. Nanomaterials. Krakow: Institute of Advanced Manufacturing Technology, 2010.
Find full textCapco, David G., and Yongsheng Chen, eds. Nanomaterial. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8739-0.
Full textAltavilla, Claudia, ed. Upconverting Nanomaterials. Boca Raton : Taylor & Francis, 2016. | Series: Nanomaterials and: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535.
Full textGogotsi, Yury, ed. Nanomaterials Handbook. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2017. | Series: Advanced materials and technologies series: CRC Press, 2017. http://dx.doi.org/10.1201/9781315371795.
Full textZhou, Kun, ed. Carbon Nanomaterials. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, [2020]: CRC Press, 2019. http://dx.doi.org/10.1201/9781351123587.
Full textBook chapters on the topic "Nanomateriale"
Fahlman, Bradley D. "Nanomaterials." In Materials Chemistry, 457–583. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0693-4_6.
Full textMo, Yiqun, Rong Wan, David J. Tollerud, and Qunwei Zhang. "Nanomaterials." In Cancer and Inflammation Mechanisms, 235–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118826621.ch17.
Full textGonçalves, M. Clara. "Nanomaterials." In Materials for Construction and Civil Engineering, 629–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08236-3_14.
Full textYoda, Minami, Jean-Luc Garden, Olivier Bourgeois, Aeraj Haque, Aloke Kumar, Hans Deyhle, Simone Hieber, et al. "Nanomaterials." In Encyclopedia of Nanotechnology, 1597. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100512.
Full textJain, Vimal Kumar. "Nanomaterials." In Solid State Physics, 467–70. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96017-9_15.
Full textLinkov, Igor, Emily Moberg, Benjamin D. Trump, Boris Yatsalo, and Jeffrey M. Keisler. "Nanomaterials." In Multi-Criteria Decision Analysis, 117–22. Second edition. | Boca Raton : CRC Press, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429326448-9.
Full textFahlman, Bradley D. "Nanomaterials." In Materials Chemistry, 275–356. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6120-2_6.
Full textAlves, Oswaldo L., Ana Carolina Mazarin de Moraes, Mateus Batista Simões, Leandro Carneiro Fonseca, Rafaella Oliveira do Nascimento, Raphael Dias Holtz, and Andreia Fonseca de Faria. "Nanomaterials." In Nanotoxicology, 1–29. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8993-1_1.
Full textVaseashta, A. "Nanomaterials." In Nanomaterials: Risks and Benefits, 397–407. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9491-0_31.
Full textRamesh, K. T. "Nanomaterials." In Nanomaterials, 1–20. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-09783-1_1.
Full textConference papers on the topic "Nanomateriale"
Gu, Ning, and Song Zhang. "Magnetic Nanomaterial and Its Applications in Biomedicine." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21599.
Full textAlyami, Noktan Mohammed, Vikrant Wagle, Abdullah Saleh Alyami, and Rajendra Kalgaonkar. "Anionic Nanoparticle Based Formulation to Control and Cure Moderate to Severe Losses." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211493-ms.
Full textLiang, Hong. "Synthesis, Characterization, and Tribological Applications of Nanomaterials." In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71057.
Full textJiao, Lihong Heidi, and Nael Barakat. "Incorporation of Hands-On Activities in Learning Nanomaterials." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62598.
Full textGernand, Jeremy M., and Elizabeth A. Casman. "Selecting Nanoparticle Properties to Mitigate Risks to Workers and the Public: A Machine Learning Modeling Framework to Compare Pulmonary Toxicity Risks of Nanomaterials." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62687.
Full textKujawski, Mark P., Leela Rakesh, Stanley Hirschi, Brad D. Falhman, Joana C. Finegan, Ekmagage Don N. Almeida, Nicole M. Bullard, Jason Hiller, Michael P. Lalko, and Jeremy V. Miller. "Steady Shear and Linear Viscoelastic Properties of Melt Mixed and Injection Molded Samples of Polypropylene, Polystyrene, and Polyethylene Nanocomposites With Carbon Black, Vapor Grown Carbon Fibers, and Carbon Nanotubes." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15814.
Full textHentges, Nicholas, Gurjap Singh, and Albert Ratner. "Experimental Investigation of the Settling of Carbon-Based Nanoparticles in Renewable Jet Fuel." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24157.
Full textLuo, Xiao-zhong James. "Nanomaterial Registry: A resource for biological and environmental interactions of nanomaterials." In 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW). IEEE, 2012. http://dx.doi.org/10.1109/bibmw.2012.6470262.
Full textAlsadi, Jamal, Ronald M. Hernandez, Sarah Haidar Hasham, Chandra Kumar Dixit, Alok Dubey, and Aziz Unnisa. "Critical Review on Recent Advancement in Nanotechnology for Biomedical Application." In International Conference on Recent Advancements in Biomedical Engineering. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/p-2rg620.
Full textTanguay, Robert L., Lisa Truong, Tatiana Zaikova, and James E. Hutchison. "Rapid In Vivo Assessment of the Nano/Bio Interface." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93153.
Full textReports on the topic "Nanomateriale"
Pietrass, Tanja, David Fredrick Teter, and Karen Elizabeth Kippen. Integrated Nanomaterials. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1425778.
Full textHellman, Frances. Energetics of Nanomaterials. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/898911.
Full textAlexandra Navrotsky, Brian Woodfield, Juliana Boerio-Goates, and Frances Hellman. Energetics of Nanomaterials. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/888867.
Full textNavrotsky, Alexandra. "Energetics of Nanomaterials". Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/836441.
Full textHermans-Blackburn, Leone, and Richard A. Maresca. Nanomaterials Commercialization Center. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada586723.
Full textDoorn, Stephen. Nanophotonics and Optical Nanomaterials. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1248576.
Full textHutchison, James E., Eric Johnson, Karen Guillemin, John Postlethwait, Mark Lonergan, Andy Berglund, Steve Kevan, Richard Taylor, and Dave Johnson. Safer Nanomaterials and Nanomanufacturing. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada584768.
Full textStauber, Rudolf, and Christina Cecco. Nanomaterials in Automotive Applications. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0201.
Full textKennedy, Alan, Jonathon Brame, Taylor Rycroft, Matthew Wood, Valerie Zemba, Charles Weiss, Matthew Hull, Cary Hill, Charles Geraci, and Igor Linkov. A definition and categorization system for advanced materials : the foundation for risk-informed environmental health and safety testing. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41803.
Full textAhtiainen, Jukka, and Elina Väänänen. Regulatory Safety Assessment of Nanomaterials. Nordic Council of Ministers, September 2012. http://dx.doi.org/10.6027/tn2012-515.
Full text