Journal articles on the topic 'NanoMagnets Logic'

To see the other types of publications on this topic, follow the link: NanoMagnets Logic.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'NanoMagnets Logic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Xueming Ju, S. Wartenburg, J. Rezgani, M. Becherer, J. Kiermaier, S. Breitkreutz, D. Schmitt-Landsiedel, W. Porod, P. Lugli, and G. Csaba. "Nanomagnet Logic from Partially Irradiated Co/Pt Nanomagnets." IEEE Transactions on Nanotechnology 11, no. 1 (January 2012): 97–104. http://dx.doi.org/10.1109/tnano.2011.2157974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Atulasimha, J., and S. Bandyopadhyay. "Bennett clocking of nanomagnetic logic using multiferroic single-domain nanomagnets." Applied Physics Letters 97, no. 17 (October 25, 2010): 173105. http://dx.doi.org/10.1063/1.3506690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Luo, Zhaochu, Trong Phuong Dao, Aleš Hrabec, Jaianth Vijayakumar, Armin Kleibert, Manuel Baumgartner, Eugenie Kirk, et al. "Chirally coupled nanomagnets." Science 363, no. 6434 (March 28, 2019): 1435–39. http://dx.doi.org/10.1126/science.aau7913.

Full text
Abstract:
Magnetically coupled nanomagnets have multiple applications in nonvolatile memories, logic gates, and sensors. The most effective couplings have been found to occur between the magnetic layers in a vertical stack. We achieved strong coupling of laterally adjacent nanomagnets using the interfacial Dzyaloshinskii-Moriya interaction. This coupling is mediated by chiral domain walls between out-of-plane and in-plane magnetic regions and dominates the behavior of nanomagnets below a critical size. We used this concept to realize lateral exchange bias, field-free current-induced switching between multistate magnetic configurations as well as synthetic antiferromagnets, skyrmions, and artificial spin ices covering a broad range of length scales and topologies. Our work provides a platform to design arrays of correlated nanomagnets and to achieve all-electric control of planar logic gates and memory devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Peng, Gyorgy Csaba, Vijay K. Sankar, Xueming Ju, Edit Varga, Paolo Lugli, X. Sharon Hu, Michael Niemier, Wolfgang Porod, and Gary H. Bernstein. "Direct Measurement of Magnetic Coupling Between Nanomagnets for Nanomagnetic Logic Applications." IEEE Transactions on Magnetics 48, no. 11 (November 2012): 4402–5. http://dx.doi.org/10.1109/tmag.2012.2202219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lambson, Brian, Zheng Gu, Morgan Monroe, Scott Dhuey, Andreas Scholl, and Jeffrey Bokor. "Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic." Applied Physics A 111, no. 2 (March 27, 2013): 413–21. http://dx.doi.org/10.1007/s00339-013-7654-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shah, Faisal A., Gyorgy Csaba, Katherine Butler, and Gary H. Bernstein. "Closely spaced nanomagnets by dual e-beam exposure for low-energy nanomagnet logic." Journal of Applied Physics 113, no. 17 (May 7, 2013): 17B904. http://dx.doi.org/10.1063/1.4794362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ding, J., and A. O. Adeyeye. "Ni80Fe20/Ni binary nanomagnets for logic applications." Applied Physics Letters 101, no. 10 (September 3, 2012): 103117. http://dx.doi.org/10.1063/1.4751259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arava, Hanu, Peter M. Derlet, Jaianth Vijayakumar, Jizhai Cui, Nicholas S. Bingham, Armin Kleibert, and Laura J. Heyderman. "Computational logic with square rings of nanomagnets." Nanotechnology 29, no. 26 (May 3, 2018): 265205. http://dx.doi.org/10.1088/1361-6528/aabbc3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Turvani, Giovanna, Laura D’Alessandro, and Marco Vacca. "Physical Simulations of High Speed and Low Power NanoMagnet Logic Circuits." Journal of Low Power Electronics and Applications 8, no. 4 (October 8, 2018): 37. http://dx.doi.org/10.3390/jlpea8040037.

Full text
Abstract:
Among all “beyond CMOS” solutions currently under investigation, nanomagnetic logic (NML) technology is considered to be one of the most promising. In this technology, nanoscale magnets are rectangularly shaped and are characterized by the intrinsic capability of enabling logic and memory functions in the same device. The design of logic architectures is accomplished by the use of a clocking mechanism that is needed to properly propagate information. Previous works demonstrated that the magneto-elastic effect can be exploited to implement the clocking mechanism by altering the magnetization of magnets. With this paper, we present a novel clocking mechanism enabling the independent control of each single nanodevice exploiting the magneto-elastic effect and enabling high-speed NML circuits. We prove the effectiveness of this approach by performing several micromagnetic simulations. We characterized a chain of nanomagnets in different conditions (e.g., different distance among cells, different electrical fields, and different magnet geometries). This solution improves NML, the reliability of circuits, the fabrication process, and the operating frequency of circuits while keeping the energy consumption at an extremely low level.
APA, Harvard, Vancouver, ISO, and other styles
10

Yilmaz, Yalcin, and Pinaki Mazumder. "Nonvolatile Nanopipelining Logic Using Multiferroic Single-Domain Nanomagnets." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, no. 7 (July 2013): 1181–88. http://dx.doi.org/10.1109/tvlsi.2012.2205594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Debashis, Punyashloka, Rafatul Faria, Kerem Y. Camsari, and Zhihong Chen. "Design of Stochastic Nanomagnets for Probabilistic Spin Logic." IEEE Magnetics Letters 9 (2018): 1–5. http://dx.doi.org/10.1109/lmag.2018.2860547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gavagnin, Marco, Heinz D. Wanzenboeck, Domagoj Belić, and Emmerich Bertagnolli. "Synthesis of Individually Tuned Nanomagnets for Nanomagnet Logic by Direct Write Focused Electron Beam Induced Deposition." ACS Nano 7, no. 1 (December 17, 2012): 777–84. http://dx.doi.org/10.1021/nn305079a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Peng, Gyorgy Csaba, Vijay K. Sankar, Xueming Ju, Paolo Lugli, X. Sharon Hu, Michael Niemier, Wolfgang Porod, and Gary H. Bernstein. "Switching behavior of lithographically fabricated nanomagnets for logic applications." Journal of Applied Physics 111, no. 7 (April 2012): 07B911. http://dx.doi.org/10.1063/1.3676220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dey, Himadri, Gyorgy Csaba, X. Sharon Hu, Michael Niemier, Gary H. Bernstein, and Wolfgang Porod. "Switching Behavior of Sharply Pointed Nanomagnets for Logic Applications." IEEE Transactions on Magnetics 49, no. 7 (July 2013): 3549–52. http://dx.doi.org/10.1109/tmag.2012.2237020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Faria, Rafatul, Kerem Yunus Camsari, and Supriyo Datta. "Low-Barrier Nanomagnets as p-Bits for Spin Logic." IEEE Magnetics Letters 8 (2017): 1–5. http://dx.doi.org/10.1109/lmag.2017.2685358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Fashami, Mohammad Salehi, Kamaram Munira, Supriyo Bandyopadhyay, Avik W. Ghosh, and Jayasimha Atulasimha. "Switching of Dipole Coupled Multiferroic Nanomagnets in the Presence of Thermal Noise: Reliability of Nanomagnetic Logic." IEEE Transactions on Nanotechnology 12, no. 6 (November 2013): 1206–12. http://dx.doi.org/10.1109/tnano.2013.2284777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

D’Souza, Noel, Mohammad Salehi Fashami, Supriyo Bandyopadhyay, and Jayasimha Atulasimha. "Experimental Clocking of Nanomagnets with Strain for Ultralow Power Boolean Logic." Nano Letters 16, no. 2 (January 11, 2016): 1069–75. http://dx.doi.org/10.1021/acs.nanolett.5b04205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Sen, Li Cai, Kai Qi, Xiaokuo Yang, Chaowen Feng, and Huanqing Cui. "Impact of nanomagnets size on switching behaviour of all spin logic devices." Micro & Nano Letters 11, no. 9 (September 2016): 508–13. http://dx.doi.org/10.1049/mnl.2016.0163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pablo-Navarro, Javier, Soraya Sangiao, César Magén, and José María de Teresa. "Magnetic Functionalization of Scanning Probes by Focused Electron Beam Induced Deposition Technology." Magnetochemistry 7, no. 10 (October 13, 2021): 140. http://dx.doi.org/10.3390/magnetochemistry7100140.

Full text
Abstract:
The fabrication of nanostructures with high resolution and precise control of the deposition site makes Focused Electron Beam Induced Deposition (FEBID) a unique nanolithography process. In the case of magnetic materials, apart from the FEBID potential in standard substrates for multiple applications in data storage and logic, the use of this technology for the growth of nanomagnets on different types of scanning probes opens new paths in magnetic sensing, becoming a benchmark for magnetic functionalization. This work reviews the recent advances in the integration of FEBID magnetic nanostructures onto cantilevers to produce advanced magnetic sensing devices with unprecedented performance.
APA, Harvard, Vancouver, ISO, and other styles
20

Melo, Luiz G. C., Thiago R. B. S. Soares, and Omar P. Vilela Neto. "Analysis of the Magnetostatic Energy of Chains of Single-Domain Nanomagnets for Logic Gates." IEEE Transactions on Magnetics 53, no. 9 (September 2017): 1–10. http://dx.doi.org/10.1109/tmag.2017.2704913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Salehi Fashami, Mohammad, Kamaram Munira, Supriyo Bandyopadhyay, Avik W. Ghosh, and Jayasimha Atulasimha. "Corrigendum to “Switching of Dipole Coupled Multiferroic Nanomagnets in the Presence of Thermal Noise: Reliability of Nanomagnetic Logic” [Nov 13 1206-1212]." IEEE Transactions on Nanotechnology 14, no. 1 (January 2015): 196–97. http://dx.doi.org/10.1109/tnano.2014.2365796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kaiser, Waldemar, Martina Kiechle, Grazvydas Ziemys, Doris Schmitt-Landsiedel, and Stephan Breitkreutz-von Gamm. "Engineering the Switching Behavior of Nanomagnets for Logic Computation Using 3-D Modeling and Simulation." IEEE Transactions on Magnetics 53, no. 6 (June 2017): 1–4. http://dx.doi.org/10.1109/tmag.2017.2654969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Vanstone, Alex, Jack C. Gartside, Kilian D. Stenning, Troy Dion, Daan M. Arroo, and Will R. Branford. "Spectral fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin ice." New Journal of Physics 24, no. 4 (April 1, 2022): 043017. http://dx.doi.org/10.1088/1367-2630/ac608b.

Full text
Abstract:
Abstract Artificial spin ices (ASIs) are magnetic metamaterials comprising geometrically tiled strongly-interacting nanomagnets. There is significant interest in these systems spanning the fundamental physics of many-body systems to potential applications in neuromorphic computation, logic, and recently reconfigurable magnonics. Magnonics focused studies on ASI have to date have focused on the in-field GHz spin-wave response, convoluting effects from applied field, nanofabrication imperfections (‘quenched disorder’) and microstate-dependent dipolar field landscapes. Here, we investigate zero-field measurements of the spin-wave response and demonstrate its ability to provide a ‘spectral fingerprint’ of the system microstate. Removing applied field allows deconvolution of distinct contributions to reversal dynamics from the spin-wave spectra, directly measuring dipolar field strength and quenched disorder as well as net magnetisation. We demonstrate the efficacy and sensitivity of this approach by measuring ASI in three microstates with identical (zero) magnetisation, indistinguishable via magnetometry. The zero-field spin-wave response provides distinct spectral fingerprints of each state, allowing rapid, scaleable microstate readout. As artificial spin systems progress toward device implementation, zero-field functionality is crucial to minimize the power consumption associated with electromagnets. Several proposed hardware neuromorphic computation schemes hinge on leveraging dynamic measurement of ASI microstates to perform computation for which spectral fingerprinting provides a potential solution.
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Jiahao, Xiaokuo Yang, Mingliang Zhang, Bo Wei, Cheng Li, Danna Dong, and Chuang Li. "Efficient Dipole Coupled Nanomagnetic Logic in Stress Induced Elliptical Nanomagnet Array." IEEE Electron Device Letters 40, no. 2 (February 2019): 220–23. http://dx.doi.org/10.1109/led.2018.2889707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhou, Peng, Luca Gnoli, Mustafa M. Sadriwala, Fabrizio Riente, Giovanna Turvani, Naimul Hassan, Xuan Hu, Marco Vacca, and Joseph S. Friedman. "Multilayer Nanomagnet Threshold Logic." IEEE Transactions on Electron Devices 68, no. 4 (April 2021): 1944–49. http://dx.doi.org/10.1109/ted.2021.3055163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Vacca, Marco, Fabrizio Cairo, Giovanna Turvani, Fabrizio Riente, Maurizio Zamboni, and Mariagrazia Graziano. "Virtual Clocking for NanoMagnet Logic." IEEE Transactions on Nanotechnology 15, no. 6 (November 2016): 962–70. http://dx.doi.org/10.1109/tnano.2016.2617866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Csaba, Gyorgy, and Markus Becherer. "Nanomagnet Logic: Computing by magnetic ordering." IEEE Nanotechnology Magazine 14, no. 1 (February 2020): 6–13. http://dx.doi.org/10.1109/mnano.2019.2952232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Shiliang Liu, Xiaobo Sharon Hu, J. J. Nahas, M. T. Niemier, W. Porod, and G. H. Bernstein. "Magnetic–Electrical Interface for Nanomagnet Logic." IEEE Transactions on Nanotechnology 10, no. 4 (July 2011): 757–63. http://dx.doi.org/10.1109/tnano.2010.2077645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Vacca, Marco, Mariagrazia Graziano, Luca Di Crescenzo, Alessandro Chiolerio, Andrea Lamberti, Davide Balma, Giancarlo Canavese, et al. "Magnetoelastic Clock System for Nanomagnet Logic." IEEE Transactions on Nanotechnology 13, no. 5 (September 2014): 963–73. http://dx.doi.org/10.1109/tnano.2014.2333657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Alam, Mohmmad Tanvir, Mohammad Jafar Siddiq, Gary H. Bernstein, Michael Niemier, Wolfgang Porod, and Xiaobo Sharon Hu. "On-Chip Clocking for Nanomagnet Logic Devices." IEEE Transactions on Nanotechnology 9, no. 3 (May 2010): 348–51. http://dx.doi.org/10.1109/tnano.2010.2041248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Siddiq, Mohammad A., Michael T. Niemier, Gyorgy Csaba, Alexei O. Orlov, Xiaobo Sharon Hu, Wolfgang Porod, and Gary H. Bernstein. "A Nanomagnet Logic Field-Coupled Electrical Input." IEEE Transactions on Nanotechnology 12, no. 5 (September 2013): 734–42. http://dx.doi.org/10.1109/tnano.2013.2273183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Niemier, M. T., G. H. Bernstein, G. Csaba, A. Dingler, X. S. Hu, S. Kurtz, S. Liu, et al. "Nanomagnet logic: progress toward system-level integration." Journal of Physics: Condensed Matter 23, no. 49 (November 25, 2011): 493202. http://dx.doi.org/10.1088/0953-8984/23/49/493202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Carlton, David B., Nathan C. Emley, Eduard Tuchfeld, and Jeffrey Bokor. "Simulation Studies of Nanomagnet-Based Logic Architecture." Nano Letters 8, no. 12 (December 10, 2008): 4173–78. http://dx.doi.org/10.1021/nl801607p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Siddiq, Mohammad Abu Jafar, Katherine Butler, Himadri Dey, Faisal Ahmed Shah, Peng Li, Edit Varga, Alexei Orlov, et al. "Nanomagnet Logic Gate With Programmable-Electrical Input." IEEE Transactions on Magnetics 50, no. 11 (November 2014): 1–4. http://dx.doi.org/10.1109/tmag.2014.2325853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Butler, Katherine C., Gary H. Bernstein, Gyorgy Csaba, Wolfgang Porod, X. Sharon Hu, and Michael Niemier. "Contiguous clock lines for pipelined nanomagnet logic." Journal of Computational Electronics 13, no. 3 (July 31, 2014): 763–68. http://dx.doi.org/10.1007/s10825-014-0598-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Crocker, Michael, Michael Niemier, and X. Sharon Hu. "A Reconfigurable PLA Architecture for Nanomagnet Logic." ACM Journal on Emerging Technologies in Computing Systems 8, no. 1 (February 2012): 1–25. http://dx.doi.org/10.1145/2093145.2093146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kiermaier, J., S. Breitkreutz, I. Eichwald, X. Ju, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer. "Programmable Input for Nanomagnetic Logic Devices." EPJ Web of Conferences 40 (2013): 16007. http://dx.doi.org/10.1051/epjconf/20134016007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

D'Souza, Noel, Jayasimha Atulasimha, and Supriyo Bandyopadhyay. "Four-state nanomagnetic logic using multiferroics." Journal of Physics D: Applied Physics 44, no. 26 (June 16, 2011): 265001. http://dx.doi.org/10.1088/0022-3727/44/26/265001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Vacca, Marco, Mariagrazia Graziano, and Maurizio Zamboni. "Asynchronous Solutions for Nanomagnetic Logic Circuits." ACM Journal on Emerging Technologies in Computing Systems 7, no. 4 (December 2011): 1–18. http://dx.doi.org/10.1145/2043643.2043645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Vacca, Marco, Mariagrazia Graziano, and Maurizio Zamboni. "Nanomagnetic Logic Microprocessor: Hierarchical Power Model." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21, no. 8 (August 2013): 1410–20. http://dx.doi.org/10.1109/tvlsi.2012.2211903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Eichwald, Irina, Stephan Breitkreutz, Josef Kiermaier, Gyorgy Csaba, Doris Schmitt-Landsiedel, and Markus Becherer. "Signal crossing in perpendicular nanomagnetic logic." Journal of Applied Physics 115, no. 17 (May 7, 2014): 17E510. http://dx.doi.org/10.1063/1.4863810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

DAS, JAYITA, SYED M. ALAM, and SANJUKTA BHANJA. "RECENT TRENDS IN SPINTRONICS-BASED NANOMAGNETIC LOGIC." SPIN 04, no. 03 (September 2014): 1450004. http://dx.doi.org/10.1142/s2010324714500040.

Full text
Abstract:
With the growing concerns of standby power in sub-100-nm CMOS technologies, alternative computing techniques and memory technologies are explored. Spin transfer torque magnetoresistive RAM (STT-MRAM) is one such nonvolatile memory relying on magnetic tunnel junctions (MTJs) to store information. It uses spin transfer torque to write information and magnetoresistance to read information. In 2012, Everspin Technologies, Inc. commercialized the first 64Mbit Spin Torque MRAM. On the computing end, nanomagnetic logic (NML) is a promising technique with zero leakage and high data retention. In 2000, Cowburn and Welland first demonstrated its potential in logic and information propagation through magnetostatic interaction in a chain of single domain circular nanomagnetic dots of Supermalloy ( Ni 80 Fe 14 Mo 5 X 1, X is other metals). In 2006, Imre et al. demonstrated wires and majority gates followed by coplanar cross wire systems demonstration in 2010 by Pulecio et al. Since 2004 researchers have also investigated the potential of MTJs in logic. More recently with dipolar coupling between MTJs demonstrated in 2012, logic-in-memory architecture with STT-MRAM have been investigated. The architecture borrows the computing concept from NML and read and write style from MRAM. The architecture can switch its operation between logic and memory modes with clock as classifier. Further through logic partitioning between MTJ and CMOS plane, a significant performance boost has been observed in basic computing blocks within the architecture. In this work, we have explored the developments in NML, in MTJs and more recent developments in hybrid MTJ/CMOS logic-in-memory architecture and its unique logic partitioning capability.
APA, Harvard, Vancouver, ISO, and other styles
43

Niemier, M. T., E. Varga, G. H. Bernstein, W. Porod, M. T. Alam, A. Dingler, A. Orlov, and X. S. Hu. "Shape Engineering for Controlled Switching With Nanomagnet Logic." IEEE Transactions on Nanotechnology 11, no. 2 (March 2012): 220–30. http://dx.doi.org/10.1109/tnano.2010.2056697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Vacca, M., M. Graziano, and M. Zamboni. "Majority Voter Full Characterization for Nanomagnet Logic Circuits." IEEE Transactions on Nanotechnology 11, no. 5 (September 2012): 940–47. http://dx.doi.org/10.1109/tnano.2012.2207965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shah, Faisal A., Gyorgy Csaba, Michael T. Niemier, Xiaobo S. Hu, Wolfgang Porod, and Gary H. Bernstein. "Error analysis for ultra dense nanomagnet logic circuits." Journal of Applied Physics 117, no. 17 (May 7, 2015): 17A906. http://dx.doi.org/10.1063/1.4915353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gonelli, Marco, Samuele Fin, Giovanni Carlotti, Himadri Dey, György Csaba, Wolfgang Porod, Gary H. Bernstein, and Diego Bisero. "Robustness of majority gates based on nanomagnet logic." Journal of Magnetism and Magnetic Materials 460 (August 2018): 432–37. http://dx.doi.org/10.1016/j.jmmm.2018.04.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gavagnin, Marco, Heinz D. Wanzenboeck, Stefan Wachter, Mostafa M. Shawrav, Anders Persson, Klas Gunnarsson, Peter Svedlindh, Michael Stöger-Pollach, and Emmerich Bertagnolli. "Free-Standing Magnetic Nanopillars for 3D Nanomagnet Logic." ACS Applied Materials & Interfaces 6, no. 22 (October 29, 2014): 20254–60. http://dx.doi.org/10.1021/am505785t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Varga, Edit, Alexei Orlov, Michael T. Niemier, X. Sharon Hu, Gary H. Bernstein, and Wolfgang Porod. "Experimental Demonstration of Fanout for Nanomagnetic Logic." IEEE Transactions on Nanotechnology 9, no. 6 (November 2010): 668–70. http://dx.doi.org/10.1109/tnano.2010.2060347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Papp, Adam, Michael T. Niemier, Arpad Csurgay, Markus Becherer, Stephan Breitkreutz, Josef Kiermaier, Irina Eichwald, et al. "Threshold Gate-Based Circuits From Nanomagnetic Logic." IEEE Transactions on Nanotechnology 13, no. 5 (September 2014): 990–96. http://dx.doi.org/10.1109/tnano.2014.2342659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kiermaier, J., S. Breitkreutz, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer. "Electrical input structures for nanomagnetic logic devices." Journal of Applied Physics 111, no. 7 (April 2012): 07E341. http://dx.doi.org/10.1063/1.3678584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography