Journal articles on the topic 'Nanoionics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanoionics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Despotuli, A. L., and A. V. Andreeva. "Nanoionics - the Developing Informative System. Part. 2. From the First Works to the Current State of Nanoionics Abroad." Nano- i Mikrosistemnaya Tehnika 22, no. 9 (December 29, 2020): 463–84. http://dx.doi.org/10.17587/nmst.22.463-484.
Full textSchoonman, J. "Nanoionics." Solid State Ionics 157, no. 1-4 (February 2003): 319–26. http://dx.doi.org/10.1016/s0167-2738(02)00228-x.
Full textDespotuli, A. L., and A. V. Andreeva. "Nanoionics - the Developing Informative System. Part. 1. Stages of Formation and Modern State of Nanoionics in Russia." Nano- i Mikrosistemnaya Tehnika 22, no. 8 (October 23, 2020): 403–14. http://dx.doi.org/10.17587/nmst.22.403-414.
Full textDespotuli, A. L., and A. V. Andreeva. "Nanoionics - the Developing Informative System. Part 3. Generation of Prognostic Information and the Role of Strategic Innovation Management in the Development of Nanoionics." Nano- i Mikrosistemnaya Tehnika 23, no. 1 (February 24, 2021): 6–23. http://dx.doi.org/10.17587/nmst.23.6-23.
Full textKern, Klaus, and Joachim Maier. "Nanoionics and Nanoelectronics." Advanced Materials 21, no. 25-26 (June 24, 2009): 2569. http://dx.doi.org/10.1002/adma.200901896.
Full textDESPOTULI, A., and V. NIKOLAICHIK. "A step towards nanoionics." Solid State Ionics 60, no. 4 (April 1993): 275–78. http://dx.doi.org/10.1016/0167-2738(93)90005-n.
Full textHasegawa, Tsuyoshi, Kazuya Terabe, Toshitsugu Sakamoto, and Masakazu Aono. "Nanoionics Switching Devices: “Atomic Switches”." MRS Bulletin 34, no. 12 (December 2009): 929–34. http://dx.doi.org/10.1557/mrs2009.215.
Full textYamaguchi, Shu. "Nanoionics—Present and future prospects." Science and Technology of Advanced Materials 8, no. 6 (January 2007): 503. http://dx.doi.org/10.1016/j.stam.2007.10.002.
Full textDespotuli, A. L., and A. V. Andreeva. "Nanoionics: New materials and supercapacitors." Nanotechnologies in Russia 5, no. 7-8 (August 2010): 506–20. http://dx.doi.org/10.1134/s1995078010070116.
Full textDespotuli, A. L., A. V. Andreeva, and B. Rambabu. "Nanoionics of advanced superionic conductors." Ionics 11, no. 3-4 (May 2005): 306–14. http://dx.doi.org/10.1007/bf02430394.
Full textWaser, Rainer, and Masakazu Aono. "Nanoionics-based resistive switching memories." Nature Materials 6, no. 11 (November 2007): 833–40. http://dx.doi.org/10.1038/nmat2023.
Full textKim, Sangtae, Shu Yamaguchi, and James A. Elliott. "Solid-State Ionics in the 21st Century: Current Status and Future Prospects." MRS Bulletin 34, no. 12 (December 2009): 900–906. http://dx.doi.org/10.1557/mrs2009.211.
Full textLu, Wei, Doo Seok Jeong, Michael Kozicki, and Rainer Waser. "Electrochemical metallization cells—blending nanoionics into nanoelectronics?" MRS Bulletin 37, no. 2 (February 2012): 124–30. http://dx.doi.org/10.1557/mrs.2012.5.
Full textMaier, Joachim. "Nanoionics: ionic charge carriers in small systems." Physical Chemistry Chemical Physics 11, no. 17 (2009): 3011. http://dx.doi.org/10.1039/b902586n.
Full textMaier, J. "Nanoionics: size effects and storage in small systems." Journal of Electroceramics 34, no. 1 (December 22, 2013): 69–73. http://dx.doi.org/10.1007/s10832-013-9886-9.
Full textWaser, Rainer, and Ilia Valov. "Electrochemical Reactions in Nanoionics - Towards Future Resistive Switching Memories." ECS Transactions 25, no. 6 (December 17, 2019): 431–37. http://dx.doi.org/10.1149/1.3206642.
Full textBalakrishna Pillai, Premlal, and Maria Merlyne De Souza. "Nanoionics-Based Three-Terminal Synaptic Device Using Zinc Oxide." ACS Applied Materials & Interfaces 9, no. 2 (January 5, 2017): 1609–18. http://dx.doi.org/10.1021/acsami.6b13746.
Full textMaier, J. "Nanoionics: ion transport and electrochemical storage in confined systems." Nature Materials 4, no. 11 (November 2005): 805–15. http://dx.doi.org/10.1038/nmat1513.
Full textPervov, V. S., S. I. Ovchinnikova, A. E. Medvedeva, E. V. Makhonina, and N. V. Kireeva. "Nanoionics: Principles of ceramic materials fabrication for electrochemical power generation." Inorganic Materials 52, no. 1 (December 17, 2015): 83–88. http://dx.doi.org/10.1134/s002016851601012x.
Full textZhan, Hualin, Zhiyuan Xiong, Chi Cheng, Qinghua Liang, Jefferson Zhe Liu, and Dan Li. "Solvation‐Involved Nanoionics: New Opportunities from 2D Nanomaterial Laminar Membranes." Advanced Materials 32, no. 18 (December 23, 2019): 1904562. http://dx.doi.org/10.1002/adma.201904562.
Full textZhu, Xiaojian, Jiantao Zhou, Lin Chen, Shanshan Guo, Gang Liu, Run-Wei Li, and Wei D. Lu. "In Situ Nanoscale Electric Field Control of Magnetism by Nanoionics." Advanced Materials 28, no. 35 (June 27, 2016): 7658–65. http://dx.doi.org/10.1002/adma.201601425.
Full textWang, Zhiyong, Laiyuan Wang, Masaru Nagai, Linghai Xie, Mingdong Yi, and Wei Huang. "Nanoionics-Enabled Memristive Devices: Strategies and Materials for Neuromorphic Applications." Advanced Electronic Materials 3, no. 7 (May 12, 2017): 1600510. http://dx.doi.org/10.1002/aelm.201600510.
Full textLee, Shinbuhm, and Judith L. MacManus-Driscoll. "Research Update: Fast and tunable nanoionics in vertically aligned nanostructured films." APL Materials 5, no. 4 (April 2017): 042304. http://dx.doi.org/10.1063/1.4978550.
Full textDespotuli, Alexandr, and Alexandra Andreeva. "Method of uniform effective field in structure-dynamic approach of nanoionics." Ionics 22, no. 8 (March 10, 2016): 1291–98. http://dx.doi.org/10.1007/s11581-016-1668-3.
Full textDespotuli, Alexandr, and Alexandra Andreeva. "Dimensional factor and reciprocity theorem in structure-dynamic approach of nanoionics." Ionics 24, no. 1 (June 2, 2017): 237–41. http://dx.doi.org/10.1007/s11581-017-2168-9.
Full textDespotuli, A. L., and A. V. Andreeva. "Dimensional Factors and Non-Linear Processes in Structure-Dynamic Approach of Nanoionics." Nano- i Mikrosistemnaya Tehnika 19, no. 6 (June 25, 2017): 338–52. http://dx.doi.org/10.17587/nmst.19.338-352.
Full textDespotuli, Alexandr, and Alexandra Andreeva. "Maxwell displacement current and nature of Jonsher’s “universal” dynamic response in nanoionics." Ionics 21, no. 2 (June 27, 2014): 459–69. http://dx.doi.org/10.1007/s11581-014-1183-3.
Full textMaier, Joachim. "Pushing Nanoionics to the Limits: Charge Carrier Chemistry in Extremely Small Systems." Chemistry of Materials 26, no. 1 (September 30, 2013): 348–60. http://dx.doi.org/10.1021/cm4021657.
Full textMaier, J. "Defect chemistry and ion transport in nanostructured materials Part II. Aspects of nanoionics." Solid State Ionics 157, no. 1-4 (February 2003): 327–34. http://dx.doi.org/10.1016/s0167-2738(02)00229-1.
Full textSepúlveda, Paulina, Ignacio Muga, Norberto Sainz, René G. Rojas, and Sebastián Ossandón. "Nanoionics from a quantum mechanics point of view: Mathematical modeling and numerical simulation." Computer Methods in Applied Mechanics and Engineering 407 (March 2023): 115926. http://dx.doi.org/10.1016/j.cma.2023.115926.
Full textWan, Tao, Lepeng Zhang, Haiwei Du, Xi Lin, Bo Qu, Haolan Xu, Sean Li, and Dewei Chu. "Recent Developments in Oxide-Based Ionic Conductors: Bulk Materials, Nanoionics, and Their Memory Applications." Critical Reviews in Solid State and Materials Sciences 43, no. 1 (December 20, 2016): 47–82. http://dx.doi.org/10.1080/10408436.2016.1244657.
Full textNagata, Takahiro, Masamitsu Haemori, and Toyohiro Chikyow. "Combinatorial Synthesis of Cu/(TaxNb1–x)2O5 Stack Structure for Nanoionics-Type ReRAM Device." ACS Combinatorial Science 15, no. 8 (August 2, 2013): 435–38. http://dx.doi.org/10.1021/co4000425.
Full textMaier, Joachim. "ChemInform Abstract: Pushing Nanoionics to the Limits: Charge Carrier Chemistry in Extremely Small Systems." ChemInform 45, no. 11 (February 27, 2014): no. http://dx.doi.org/10.1002/chin.201411231.
Full textBanerjee, Writam, Seong Hun Kim, Seungwoo Lee, Donghwa Lee, and Hyunsang Hwang. "An Efficient Approach Based on Tuned Nanoionics to Maximize Memory Characteristics in Ag‐Based Devices." Advanced Electronic Materials 7, no. 4 (March 16, 2021): 2100022. http://dx.doi.org/10.1002/aelm.202100022.
Full textManikandan, J., T. Tsuchiya, M. Takayanagi, K. Kawamura, T. Higuchi, K. Terabe, and R. Jayavel. "Substrate effect on the neuromorphic function of nanoionics-based transistors fabricated using WO3 thin film." Solid State Ionics 364 (June 2021): 115638. http://dx.doi.org/10.1016/j.ssi.2021.115638.
Full textChen, Yun, Kirk Gerdes, Sergio A. Paredes Navia, Liang Liang, Alec Hinerman, and Xueyan Song. "Conformal Electrocatalytic Surface Nanoionics for Accelerating High-Temperature Electrochemical Reactions in Solid Oxide Fuel Cells." Nano Letters 19, no. 12 (October 31, 2019): 8767–73. http://dx.doi.org/10.1021/acs.nanolett.9b03515.
Full textNagata, T., Y. Yamashita, H. Yoshikawa, K. Kobayashi, and T. Chikyow. "(Invited) Photoelectron Spectroscopic Study on High-k Dielectrics Based Nanoionics-Type ReRAM Structure under Bias Operation." ECS Transactions 61, no. 2 (March 24, 2014): 301–10. http://dx.doi.org/10.1149/06102.0301ecst.
Full textLovett, Adam J., Ahmed Kursumovic, Siân Dutton, Zhimin Qi, Zihao He, Haiyan Wang, and Judith L. MacManus-Driscoll. "Lithium-based vertically aligned nancomposite films incorporating LixLa0.32(Nb0.7Ti0.32)O3 electrolyte with high Li+ ion conductivity." APL Materials 10, no. 5 (May 1, 2022): 051102. http://dx.doi.org/10.1063/5.0086844.
Full textMatsumoto, Hiroshige, Yoshihisa Furuya, Sachio Okada, Takayoshi Tanji, and Tatsumi Ishihara. "Nanoionics phenomenon in proton-conducting oxide: Effect of dispersion of nanosize platinum particles on electrical conduction properties." Science and Technology of Advanced Materials 8, no. 6 (January 2007): 531–35. http://dx.doi.org/10.1016/j.stam.2007.09.008.
Full textYang, Rui, Kazuya Terabe, Tohru Tsuruoka, Tsuyoshi Hasegawa, and Masakazu Aono. "Oxygen migration process in the interfaces during bipolar resistance switching behavior of WO3−x-based nanoionics devices." Applied Physics Letters 100, no. 23 (June 4, 2012): 231603. http://dx.doi.org/10.1063/1.4726084.
Full textKawamura, Kinya, Takashi Tsuchiya, Makoto Takayanagi, Kazuya Terabe, and Tohru Higuchi. "Electrical-pulse-induced resistivity modulation in Pt/TiO2−δ/Pt multilayer device related to nanoionics-based neuromorphic function." Japanese Journal of Applied Physics 56, no. 6S1 (April 20, 2017): 06GH01. http://dx.doi.org/10.7567/jjap.56.06gh01.
Full textTakamura, Yasuhiro, Kwati Leonard, and Hiroshige Matsumoto. "Effect of Dispersion of Platinum Nanoparticles in Strontium Zirconate and Strontium Cerate Proton Conductors." ECS Meeting Abstracts MA2018-01, no. 32 (April 13, 2018): 1943. http://dx.doi.org/10.1149/ma2018-01/32/1943.
Full textChen, Yun, Cesar O. Romo-De-La-Cruz, Sergio A. Paredes-Navia, Liang Liang, Alec Hinerman, Jacky Prucz, Mark Williams, and Xueyan Song. "Electrocatalytic surface nanoionics with strained interfaced and colossal conductivity for enhancing durability and performance of solid oxide fuel cell." Journal of Power Sources 517 (January 2022): 230715. http://dx.doi.org/10.1016/j.jpowsour.2021.230715.
Full textYang, Rui, Kazuya Terabe, Yiping Yao, Tohru Tsuruoka, Tsuyoshi Hasegawa, James K. Gimzewski, and Masakazu Aono. "Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation." Nanotechnology 24, no. 38 (September 2, 2013): 384003. http://dx.doi.org/10.1088/0957-4484/24/38/384003.
Full textMatsumoto, Hiroshige, Takayoshi Tanji, Koji Amezawa, Tatsuya Kawada, Yoshiharu Uchimoto, Yoshihisa Furuya, Takaaki Sakai, Maki Matsuka, and Tatsumi Ishihara. "Nanoprotonics in perovsikte-type oxides: Reversible changes in color and ion conductivity due to nanoionics phenomenon in platinum-containing perovskite oxide." Solid State Ionics 182, no. 1 (February 3, 2011): 13–18. http://dx.doi.org/10.1016/j.ssi.2010.11.016.
Full textIslam, Mohammad, Jared Bouldin, Junghoon Yang, and Sang-Don Han. "(Digital Presentation) Electrochemical Sodiation Mechanism in Magnetite Nanoparticle-Based Anodes: Understanding of Nanoionics-Based Sodium Ion Storage Behavior of Fe3O4." ECS Meeting Abstracts MA2022-02, no. 7 (October 9, 2022): 2430. http://dx.doi.org/10.1149/ma2022-0272430mtgabs.
Full textDESPOTULI, ALEXANDER, and ALEXANDRA ANDREEVA. "A SHORT REVIEW ON DEEP-SUB-VOLTAGE NANOELECTRONICS AND RELATED TECHNOLOGIES." International Journal of Nanoscience 08, no. 04n05 (August 2009): 389–402. http://dx.doi.org/10.1142/s0219581x09006328.
Full textZhu, Xiaojian, Seung Hwan Lee, and Wei D. Lu. "Nanoionic Resistive‐Switching Devices." Advanced Electronic Materials 5, no. 9 (May 20, 2019): 1900184. http://dx.doi.org/10.1002/aelm.201900184.
Full textBagdzevicius, Sarunas, Michel Boudard, José Manuel Caicedo, Laetitia Rapenne, Xavier Mescot, Raquel Rodríguez-Lamas, Florence Robaut, Jose Santiso, and Mónica Burriel. "Superposition of interface and volume type resistive switching in perovskite nanoionic devices." Journal of Materials Chemistry C 7, no. 25 (2019): 7580–92. http://dx.doi.org/10.1039/c9tc00609e.
Full textCHADWICK, A., and S. SAVIN. "Structure and dynamics in nanoionic materials." Solid State Ionics 177, no. 35-36 (November 30, 2006): 3001–8. http://dx.doi.org/10.1016/j.ssi.2006.07.046.
Full text