Journal articles on the topic 'Nanoglasses'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanoglasses.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chen, Na, Di Wang, Tao Feng, Robert Kruk, Ke-Fu Yao, Dmitri V. Louzguine-Luzgin, Horst Hahn, and Herbert Gleiter. "A nanoglass alloying immiscible Fe and Cu at the nanoscale." Nanoscale 7, no. 15 (2015): 6607–11. http://dx.doi.org/10.1039/c5nr01406a.
Full textGleiter, Herbert. "Nanoglasses: a new kind of noncrystalline materials." Beilstein Journal of Nanotechnology 4 (September 13, 2013): 517–33. http://dx.doi.org/10.3762/bjnano.4.61.
Full textGleiter, Herbert. "Nanoglasses: A Way to Solid Materials with Tunable Atomic Structures and Properties." Materials Science Forum 584-586 (June 2008): 41–48. http://dx.doi.org/10.4028/www.scientific.net/msf.584-586.41.
Full textNandam, Sree Harsha, Ruth Schwaiger, Aaron Kobler, Christian Kübel, Chaomin Wang, Yulia Ivanisenko, and Horst Hahn. "Controlling shear band instability by nanoscale heterogeneities in metallic nanoglasses." Journal of Materials Research 36, no. 14 (July 8, 2021): 2903–14. http://dx.doi.org/10.1557/s43578-021-00285-4.
Full textIvanisenko, Yulia, Christian Kübel, Sree Harsha Nandam, Chaomin Wang, Xiaoke Mu, Omar Adjaoud, Karsten Albe, and Horst Hahn. "Structure and Properties of Nanoglasses." Advanced Engineering Materials 20, no. 12 (October 26, 2018): 1800404. http://dx.doi.org/10.1002/adem.201800404.
Full textFeng, Tao. "Electrodeposited Nanoglasses: Preparation, Structure, and Properties." Video Proceedings of Advanced Materials 2, no. 2 (February 1, 2021): 2021–0182. http://dx.doi.org/10.5185/vpoam.2021.0182.
Full textŞopu, D., K. Albe, Y. Ritter, and H. Gleiter. "From nanoglasses to bulk massive glasses." Applied Physics Letters 94, no. 19 (May 11, 2009): 191911. http://dx.doi.org/10.1063/1.3130209.
Full textKalcher, Constanze, Omar Adjaoud, Jochen Rohrer, Alexander Stukowski, and Karsten Albe. "Reinforcement of nanoglasses by interface strengthening." Scripta Materialia 141 (December 2017): 115–19. http://dx.doi.org/10.1016/j.scriptamat.2017.08.004.
Full textÇetin, Ayşegül Ö., and Murat Durandurdu. "Hard boron rich boron nitride nanoglasses." Journal of the American Ceramic Society 101, no. 5 (December 21, 2017): 1929–39. http://dx.doi.org/10.1111/jace.15383.
Full textFranke, Oliver, Daniel Leisen, Herbert Gleiter, and Horst Hahn. "Thermal and plastic behavior of nanoglasses." Journal of Materials Research 29, no. 10 (May 28, 2014): 1210–16. http://dx.doi.org/10.1557/jmr.2014.101.
Full textŞopu, Daniel, and Karsten Albe. "Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses." Beilstein Journal of Nanotechnology 6 (February 24, 2015): 537–45. http://dx.doi.org/10.3762/bjnano.6.56.
Full textChatterjee, Soumi, Ramaprasad Maiti, Shyamal Kumar Saha, and Dipankar Chakravorty. "Enhancement of electrical conductivity in CoO-SiO2 nanoglasses and large magnetodielectric effect in ZnO-nanoglass composites." Journal of Applied Physics 117, no. 17 (May 7, 2015): 174303. http://dx.doi.org/10.1063/1.4919418.
Full textWang, Chaomin, Tao Feng, Di Wang, Xiaoke Mu, Mohammad Ghafari, Ralf Witte, Aaron Kobler, et al. "Low temperature structural stability of Fe90Sc10 nanoglasses." Materials Research Letters 6, no. 3 (February 6, 2018): 178–83. http://dx.doi.org/10.1080/21663831.2018.1430622.
Full textPechenik, A., G. J. Piermarini, and S. C. Danforth. "Low temperature densification of silicon nitride nanoglasses." Nanostructured Materials 3, no. 1-6 (January 1993): 518. http://dx.doi.org/10.1016/0965-9773(93)90147-4.
Full textPechenik, A., G. J. Piermarini, and S. C. Danforth. "Low temperature densification of silicon nitride nanoglasses." Nanostructured Materials 2, no. 5 (September 1993): 479–86. http://dx.doi.org/10.1016/0965-9773(93)90165-8.
Full textAndrievskii, R. A. "Nanoglasses and amorphous nanocrystalline materials: Some new approaches." Bulletin of the Russian Academy of Sciences: Physics 76, no. 1 (January 2012): 37–43. http://dx.doi.org/10.3103/s1062873812010030.
Full textCheng, Bin, and Jason R. Trelewicz. "Interfacial plasticity governs strain delocalization in metallic nanoglasses." Journal of Materials Research 34, no. 13 (April 11, 2019): 2325–36. http://dx.doi.org/10.1557/jmr.2019.101.
Full textFang, J. X., U. Vainio, W. Puff, R. Würschum, X. L. Wang, D. Wang, M. Ghafari, et al. "Atomic Structure and Structural Stability of Sc75Fe25 Nanoglasses." Nano Letters 12, no. 1 (December 5, 2011): 458–63. http://dx.doi.org/10.1021/nl2038216.
Full textDong, Yue, Jian-Zhong Jiang, and Hans-Jörg Fecht. "Synthesis and mechanical properties of bulk metallic nanoglasses: A brief review." SDRP Journal of Nanotechnology & Material Science 2, no. 1 (2019): 106–20. http://dx.doi.org/10.25177/jnms.2.1.ra.560.
Full textYang, Qun, Chao-Qun Pei, Hai-Bin Yu, and Tao Feng. "Metallic Nanoglasses with Promoted β-Relaxation and Tensile Plasticity." Nano Letters 21, no. 14 (July 9, 2021): 6051–56. http://dx.doi.org/10.1021/acs.nanolett.1c01283.
Full textGuan, Yunlong, Weidong Song, Yunjiang Wang, Shanshan Liu, and Yongji Yu. "Dynamic responses in shocked Cu-Zr nanoglasses with gradient microstructure." International Journal of Plasticity 149 (February 2022): 103154. http://dx.doi.org/10.1016/j.ijplas.2021.103154.
Full textSha, Zhen-Dong, Paulo Sergio Branicio, Heow Pueh Lee, and Tong Earn Tay. "Strong and ductile nanolaminate composites combining metallic glasses and nanoglasses." International Journal of Plasticity 90 (March 2017): 231–41. http://dx.doi.org/10.1016/j.ijplas.2017.01.010.
Full textFang, J. X., U. Vainio, W. Puff, R. Würschum, X. L. Wang, D. Wang, M. Ghafari, et al. "Correction to Atomic Structure and Structural Stability of Sc75Fe25 Nanoglasses." Nano Letters 12, no. 9 (August 14, 2012): 5058. http://dx.doi.org/10.1021/nl302934z.
Full textNandam, Sree Harsha, Yulia Ivanisenko, Ruth Schwaiger, Zbigniew Śniadecki, Xiaoke Mu, Di Wang, Reda Chellali, et al. "Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties." Acta Materialia 136 (September 2017): 181–89. http://dx.doi.org/10.1016/j.actamat.2017.07.001.
Full textAdjaoud, Omar, and Karsten Albe. "Microstructure formation of metallic nanoglasses: Insights from molecular dynamics simulations." Acta Materialia 145 (February 2018): 322–30. http://dx.doi.org/10.1016/j.actamat.2017.12.014.
Full textFeng, S. D., L. Li, Y. D. Liu, L. M. Wang, and R. P. Liu. "Heterogeneous microstructure of Zr46Cu46Al8 nanoglasses studied by quantifying glass-glass interfaces." Journal of Non-Crystalline Solids 546 (October 2020): 120265. http://dx.doi.org/10.1016/j.jnoncrysol.2020.120265.
Full textWang, Chaomin, Xiaoai Guo, Yulia Ivanisenko, Sunkulp Goel, Hermann Nirschl, Herbert Gleiter, and Horst Hahn. "Atomic structure of Fe 90 Sc 10 glassy nanoparticles and nanoglasses." Scripta Materialia 139 (October 2017): 9–12. http://dx.doi.org/10.1016/j.scriptamat.2017.06.007.
Full textJian, W. R., L. Wang, X. H. Yao, and S. N. Luo. "Balancing strength, hardness and ductility of Cu64Zr36 nanoglasses via embedded nanocrystals." Nanotechnology 29, no. 2 (December 6, 2017): 025701. http://dx.doi.org/10.1088/1361-6528/aa994f.
Full textAdjaoud, Omar, and Karsten Albe. "Influence of microstructural features on the plastic deformation behavior of metallic nanoglasses." Acta Materialia 168 (April 2019): 393–400. http://dx.doi.org/10.1016/j.actamat.2019.02.033.
Full textHirmukhe, S. S., K. Eswar Prasad, and I. Singh. "Investigation of pressure sensitive plastic flow in nanoglasses from finite element simulations." Scripta Materialia 180 (April 2020): 45–50. http://dx.doi.org/10.1016/j.scriptamat.2020.01.022.
Full textYuan, Suyue, and Paulo S. Branicio. "Gradient microstructure induced shear band constraint, delocalization, and delayed failure in CuZr nanoglasses." International Journal of Plasticity 134 (November 2020): 102845. http://dx.doi.org/10.1016/j.ijplas.2020.102845.
Full textGhafari, M., S. Kohara, H. Hahn, H. Gleiter, T. Feng, R. Witte, and S. Kamali. "Structural investigations of interfaces in Fe90Sc10 nanoglasses using high-energy x-ray diffraction." Applied Physics Letters 100, no. 13 (March 26, 2012): 133111. http://dx.doi.org/10.1063/1.3699228.
Full textLiu, Wei-Hong, B. A. Sun, Herbert Gleiter, Si Lan, Yang Tong, Xun-Li Wang, Horst Hahn, Yong Yang, Ji-Jung Kai, and C. T. Liu. "Nanoscale Structural Evolution and Anomalous Mechanical Response of Nanoglasses by Cryogenic Thermal Cycling." Nano Letters 18, no. 7 (June 5, 2018): 4188–94. http://dx.doi.org/10.1021/acs.nanolett.8b01007.
Full textChatterjee, Soumi, Saurav Giri, and Dipankar Chakravorty. "Large ionic conductivity and relaxation studies of lithium silicate nanoglasses grown into TiO2 nanoparticles." Journal of Non-Crystalline Solids 544 (September 2020): 120175. http://dx.doi.org/10.1016/j.jnoncrysol.2020.120175.
Full textAdibi, Sara, Paulo S. Branicio, Yong-Wei Zhang, and Shailendra P. Joshi. "Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses." Journal of Applied Physics 116, no. 4 (July 28, 2014): 043522. http://dx.doi.org/10.1063/1.4891450.
Full textAdjaoud, Omar, and Karsten Albe. "Interfaces and interphases in nanoglasses: Surface segregation effects and their implications on structural properties." Acta Materialia 113 (July 2016): 284–92. http://dx.doi.org/10.1016/j.actamat.2016.05.002.
Full textMa, J. L., H. Y. Song, J. Y. Wang, J. L. Dai, and Y. L. Li. "Influence of composition on the mechanical properties of metallic nanoglasses: Insights from molecular dynamics simulation." Journal of Applied Physics 128, no. 16 (October 28, 2020): 165102. http://dx.doi.org/10.1063/5.0020999.
Full textRitter, Yvonne, Daniel Şopu, Herbert Gleiter, and Karsten Albe. "Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations." Acta Materialia 59, no. 17 (October 2011): 6588–93. http://dx.doi.org/10.1016/j.actamat.2011.07.013.
Full textArnold, W., R. Birringer, C. Braun, H. Gleiter, H. Hahn, S. H. Nandam, and S. P. Singh. "Elastic Moduli of Nanoglasses and Melt-Spun Metallic Glasses by Ultrasonic Time-of-Flight Measurements." Transactions of the Indian Institute of Metals 73, no. 5 (May 2020): 1363–71. http://dx.doi.org/10.1007/s12666-020-01969-x.
Full textAronin, Alexandr, and Galina Abrosimova. "Specific Features of Structure Transformation and Properties of Amorphous-Nanocrystalline Alloys." Metals 10, no. 3 (March 9, 2020): 358. http://dx.doi.org/10.3390/met10030358.
Full textShi, Bo, Yuanli Xu, and Peipeng Jin. "A way by inhomogeneous plastic deformation of metallic glasses to synthesize metallic nanoglasses: A brief review." Materialia 7 (September 2019): 100390. http://dx.doi.org/10.1016/j.mtla.2019.100390.
Full textWang, Chaomin, Xiaoai Guo, Yulia Ivanisenko, Sunkulp Goel, Hermann Nirschl, Herbert Gleiter, and Horst Hahn. "Corrigendum to “Atomic structure of Fe90Sc10 glassy nanoparticles and nanoglasses” [Scr. Mater. 139 (2007) 9–12]." Scripta Materialia 146 (March 2018): 349. http://dx.doi.org/10.1016/j.scriptamat.2017.11.024.
Full textGleiter, Herbert. "Nanoglasses: A New Kind of Noncrystalline Material and the Way to an Age of New Technologies?" Small 12, no. 16 (January 12, 2016): 2225–33. http://dx.doi.org/10.1002/smll.201500899.
Full textAlbe, Karsten, Yvonne Ritter, and Daniel Şopu. "Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations." Mechanics of Materials 67 (December 2013): 94–103. http://dx.doi.org/10.1016/j.mechmat.2013.06.004.
Full textNandam, Sree Harsha, Omar Adjaoud, Ruth Schwaiger, Yulia Ivanisenko, Mohammed Reda Chellali, Di Wang, Karsten Albe, and Horst Hahn. "Influence of topological structure and chemical segregation on the thermal and mechanical properties of Pd–Si nanoglasses." Acta Materialia 193 (July 2020): 252–60. http://dx.doi.org/10.1016/j.actamat.2020.03.021.
Full textYuan, Suyue, and Paulo S. Branicio. "Atomistic simulations of nanoindentation on nanoglasses: Effects of grain size and gradient microstructure on the mechanical properties." Intermetallics 153 (February 2023): 107782. http://dx.doi.org/10.1016/j.intermet.2022.107782.
Full textGunderov, Dmitry, and Vasily Astanin. "Influence of HPT Deformation on the Structure and Properties of Amorphous Alloys." Metals 10, no. 3 (March 23, 2020): 415. http://dx.doi.org/10.3390/met10030415.
Full textWang, Chaomin, Xiaoke Mu, Mohammed Reda Chellali, Askar Kilmametov, Yulia Ivanisenko, Herbert Gleiter, and Horst Hahn. "Tuning the Curie temperature of Fe90Sc10 nanoglasses by varying the volume fraction and the composition of the interfaces." Scripta Materialia 159 (January 2019): 109–12. http://dx.doi.org/10.1016/j.scriptamat.2018.09.025.
Full textMarti-Muñoz, Joan, Elena Xuriguera, John W. Layton, Josep A. Planell, Stephen E. Rankin, Elisabeth Engel, and Oscar Castaño. "Feasible and pure P2O5-CaO nanoglasses: An in-depth NMR study of synthesis for the modulation of the bioactive ion release." Acta Biomaterialia 94 (August 2019): 574–84. http://dx.doi.org/10.1016/j.actbio.2019.05.065.
Full textMythili, N., and K. T. Arulmozhi. "Effect of glass composition and finite size on the properties of PbO-SiO 2 glasses: A comparative study of bulk and nanoglasses." Optik 156 (March 2018): 231–38. http://dx.doi.org/10.1016/j.ijleo.2017.10.129.
Full text