Journal articles on the topic 'Nanoflowers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanoflowers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gqoba, Siziwe S., Rafael Rodrigues, Sharon Lerato Mphahlele, Zakhele Ndala, Mildred Airo, Paul Olawale Fadojutimi, Ivo A. Hümmelgen, Ella C. Linganiso, Makwena J. Moloto, and Nosipho Moloto. "Hierarchical Nanoflowers of Colloidal WS2 and Their Potential Gas Sensing Properties for Room Temperature Detection of Ammonia." Processes 9, no. 9 (August 25, 2021): 1491. http://dx.doi.org/10.3390/pr9091491.
Full textXue, Zeyang, Feiyang Li, Chunhu Yu, Jianfeng Huang, Feihu Tao, Zhengyu Cai, Hui Zhang, and Lizhai Pei. "Low temperature synthesis of SnSr(OH)6 nanoflowers and photocatalytic performance for organic pollutants." International Journal of Materials Research 113, no. 1 (January 1, 2022): 80–90. http://dx.doi.org/10.1515/ijmr-2021-8333.
Full textKhan, Muhammad Arif, Nafarizal Nayan, Shadiullah, Mohd Khairul Ahmad, Soon Chin Fhong, Muhammad Tahir, Riyaz Ahmad Mohamed Ali, and Mohamed Sultan Mohamed Ali. "Advanced Nanoscale Surface Characterization of CuO Nanoflowers for Significant Enhancement of Catalytic Properties." Molecules 26, no. 9 (May 4, 2021): 2700. http://dx.doi.org/10.3390/molecules26092700.
Full textUpadhyay, Archana, Huan Yang, Bilal Zaman, Lei Zhang, Yundi Wu, Jinhua Wang, Jianguo Zhao, Chenghong Liao, and Qian Han. "ZnO Nanoflower-Based NanoPCR as an Efficient Diagnostic Tool for Quick Diagnosis of Canine Vector-Borne Pathogens." Pathogens 9, no. 2 (February 14, 2020): 122. http://dx.doi.org/10.3390/pathogens9020122.
Full textLee, Su Jung, Hongje Jang, and Do Nam Lee. "Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review." Pharmaceutics 14, no. 9 (September 6, 2022): 1887. http://dx.doi.org/10.3390/pharmaceutics14091887.
Full textJaramillo, Oscar A., Reshmi Raman, and Marina E. Rincón. "Effect of the Nucleation Layer on TiO2 Nanoflowers Growth via Solvothermal Synthesis." MRS Proceedings 1479 (2012): 95–100. http://dx.doi.org/10.1557/opl.2012.1604.
Full textZheng, Lu, Yining Sun, Jing Wang, He Huang, Xin Geng, Yi Tong, and Zhi Wang. "Preparation of a Flower-Like Immobilized D-Psicose 3-Epimerase with Enhanced Catalytic Performance." Catalysts 8, no. 10 (October 18, 2018): 468. http://dx.doi.org/10.3390/catal8100468.
Full textXiang, Chao, Tingting Chen, Yan Zhao, Jianhai Sun, Kaisheng Jiang, Yongzhen Li, Xiaofeng Zhu, Xinxiao Zhang, Ning Zhang, and Ruihua Guo. "Facile Hydrothermal Synthesis of SnO2 Nanoflowers for Low-Concentration Formaldehyde Detection." Nanomaterials 12, no. 13 (June 21, 2022): 2133. http://dx.doi.org/10.3390/nano12132133.
Full textAmna, Touseef. "Shape-controlled synthesis of three-dimensional zinc oxide nanoflowers for disinfection of food pathogens." Zeitschrift für Naturforschung C 73, no. 7-8 (July 26, 2018): 297–301. http://dx.doi.org/10.1515/znc-2017-0195.
Full textJing Han, Siow, Mariam Ameen, Mohamad Fahrul Radzi Hanifah, Aqsha Aqsha, Muhammad Roil Bilad, Juhana Jaafar, and Soorathep Kheawhom. "Catalytic Evaluation of Nanoflower Structured Manganese Oxide Electrocatalyst for Oxygen Reduction in Alkaline Media." Catalysts 10, no. 8 (July 23, 2020): 822. http://dx.doi.org/10.3390/catal10080822.
Full textLuo, Jianyi, Yudong Li, Xiwei Mo, Youxin Xu, and Qingguang Zeng. "Metal-seed planting fabrication of W–W18O49 core shell nanoflowers for gas sensors." RSC Advances 7, no. 47 (2017): 29844–53. http://dx.doi.org/10.1039/c7ra03006a.
Full textUras, Ibrahim Seyda, Baris Karsli, Belma Konuklugil, Ismail Ocsoy, and Ayse Demirbas. "Organic–Inorganic Nanocomposites of Aspergillus terreus Extract and Its Compounds with Antimicrobial Properties." Sustainability 15, no. 5 (March 5, 2023): 4638. http://dx.doi.org/10.3390/su15054638.
Full textLian, Qi, Han Liu, Xuefang Zheng, Dandan Jia, Chun Liu, and Dongjun Wang. "Synthesis of polyacrylonitrile nanoflowers and their controlled pH-sensitive drug release behavior." RSC Advances 10, no. 27 (2020): 15715–25. http://dx.doi.org/10.1039/d0ra01427c.
Full textJamnongkan, Tongsai, Ornthiwa Jaroensuk, Anchan Khankhuean, Apirat Laobuthee, Natee Srisawat, Autchara Pangon, Rattanaphol Mongkholrattanasit, Pongthipun Phuengphai, Amnuay Wattanakornsiri, and Chih-Feng Huang. "A Comprehensive Evaluation of Mechanical, Thermal, and Antibacterial Properties of PLA/ZnO Nanoflower Biocomposite Filaments for 3D Printing Application." Polymers 14, no. 3 (February 2, 2022): 600. http://dx.doi.org/10.3390/polym14030600.
Full textWang, Jing, and Mingzhe Gan. "DNA Nanoflowers’ Amelioration of Lupus Symptoms in Mice via Blockade of TLR7/9’s Signal." International Journal of Molecular Sciences 23, no. 24 (December 16, 2022): 16030. http://dx.doi.org/10.3390/ijms232416030.
Full textLe, Xuan Ai, Thao Nguyen Le, and Moon Il Kim. "Dual-Functional Peroxidase-Copper Phosphate Hybrid Nanoflowers for Sensitive Detection of Biological Thiols." International Journal of Molecular Sciences 23, no. 1 (December 29, 2021): 366. http://dx.doi.org/10.3390/ijms23010366.
Full textSelvaraj, Rengaraj, Kezhen Qi, Uiseok Jeong, Kholood Al Nofli, Salma Al-Kindy, Mika Sillanpää, and Younghun Kim. "A Simple Surfactant-Free Solution Phase Synthesis of Flower-like In2S3 Hierarchitectures and their Photocatalytic Activities." Sultan Qaboos University Journal for Science [SQUJS] 19, no. 2 (February 1, 2015): 29. http://dx.doi.org/10.24200/squjs.vol19iss2pp29-36.
Full textWang, Lei, Xiaoting Huo, Ruya Guo, Qiang Zhang, and Jianhan Lin. "Exploring Protein-Inorganic Hybrid Nanoflowers and Immune Magnetic Nanobeads to Detect Salmonella Typhimurium." Nanomaterials 8, no. 12 (December 4, 2018): 1006. http://dx.doi.org/10.3390/nano8121006.
Full textKomen, Irina, Sabrya E. van Heijst, Martin Caldarola, Sonia Conesa-Boj, and L. Kuipers. "Revealing the nanogeometry of WS2 nanoflowers by polarization-resolved Raman spectroscopy." Journal of Applied Physics 132, no. 17 (November 7, 2022): 173103. http://dx.doi.org/10.1063/5.0102381.
Full textVirk, Hardev Singh. "Fabrication of Nanoflowers and other Exotic Patterns." Solid State Phenomena 201 (May 2013): 159–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.201.159.
Full textZhang, Tie Min, Guo Qing Miao, Jun Fu, Dong Mei Ban, Zhen Jiang Shen, Hong Lin, Xu Zou, and Hong Yan Peng. "InGaAs Nanoflowers Grown by MOCVD." Advanced Materials Research 560-561 (August 2012): 747–50. http://dx.doi.org/10.4028/www.scientific.net/amr.560-561.747.
Full textZhao, Yi-Xin, Hao-Sen Kang, Wen-Qin Zhao, You-Long Chen, Liang Ma, Si-Jing Ding, Xiang-Bai Chen, and Qu-Quan Wang. "Dual Plasmon Resonances and Tunable Electric Field in Structure-Adjustable Au Nanoflowers for Improved SERS and Photocatalysis." Nanomaterials 11, no. 9 (August 25, 2021): 2176. http://dx.doi.org/10.3390/nano11092176.
Full textUmar, Ahmad, Ahmed A. Ibrahim, Mohsen A. Alhamami, S. Hussain, Hassan Algadi, Faheem Ahmed, Hassan Fouad, and Sheikh Akbar. "Synthesis and gas-sensing properties of ZnO nanoflowers for hydrogen sulphide (H2S) detection." Materials Express 13, no. 1 (January 1, 2023): 117–23. http://dx.doi.org/10.1166/mex.2023.2317.
Full textUmar, Ahmad, Mohammad Akhtar, Tubia Almas, Ahmed Ibrahim, Mohammed Al-Assiri, Yoshitake Masuda, Qazi Rahman, and Sotirios Baskoutas. "Direct Growth of Flower-Shaped ZnO Nanostructures on FTO Substrate for Dye-Sensitized Solar Cells." Crystals 9, no. 8 (August 4, 2019): 405. http://dx.doi.org/10.3390/cryst9080405.
Full textGwon, Kihak, Jong-Deok Park, Seonhwa Lee, Jong-Sung Yu, and Do Nam Lee. "Biocompatible Core–Shell-Structured Si-Based NiO Nanoflowers and Their Anticancer Activity." Pharmaceutics 14, no. 2 (January 23, 2022): 268. http://dx.doi.org/10.3390/pharmaceutics14020268.
Full textLi, Xiang, Yan Xiong, Ming Duan, Haiqin Wan, Jun Li, Can Zhang, Sha Qin, Shenwen Fang, and Run Zhang. "Investigation on the Adsorption-Interaction Mechanism of Pb(II) at Surface of Silk Fibroin Protein-Derived Hybrid Nanoflower Adsorbent." Materials 13, no. 5 (March 9, 2020): 1241. http://dx.doi.org/10.3390/ma13051241.
Full textZhang, Xian, and Fengqiong Shi. "Hydrothermal Synthesis of Three-Dimensional Hierarchical ZnO Nanoflowers and Photocatalytic Activities for Organic Dyes." International Journal of Nanoscience 13, no. 03 (June 2014): 1450023. http://dx.doi.org/10.1142/s0219581x14500239.
Full textSong, Fengyan, Hao Sun, Hailong Ma, and Hui Gao. "Porous TiO2/Carbon Dot Nanoflowers with Enhanced Surface Areas for Improving Photocatalytic Activity." Nanomaterials 12, no. 15 (July 23, 2022): 2536. http://dx.doi.org/10.3390/nano12152536.
Full textWang, Zichao, Pei Liu, Ziyi Fang, and He Jiang. "Trypsin/Zn3(PO4)2 Hybrid Nanoflowers: Controlled Synthesis and Excellent Performance as an Immobilized Enzyme." International Journal of Molecular Sciences 23, no. 19 (October 6, 2022): 11853. http://dx.doi.org/10.3390/ijms231911853.
Full textShaheen, A., Shahid Hussain, G. J. Qiao, Mohamed H. Mahmoud, Hassan Fouad, and M. S. Akhtar. "Nanosheets Assembled Co3O4 Nanoflowers for Supercapacitor Applications." Journal of Nanoelectronics and Optoelectronics 16, no. 9 (September 1, 2021): 1357–62. http://dx.doi.org/10.1166/jno.2021.3113.
Full textZhang, Mei, Raoul Peltier, Manman Zhang, Haojian Lu, Haidong Bian, Yangyang Li, Zhengtao Xu, Yajing Shen, Hongyan Sun, and Zuankai Wang. "In situ reduction of silver nanoparticles on hybrid polydopamine–copper phosphate nanoflowers with enhanced antimicrobial activity." Journal of Materials Chemistry B 5, no. 27 (2017): 5311–17. http://dx.doi.org/10.1039/c7tb00610a.
Full textBourfaa, Fouzia, Abderhamane Boutelala, Mohamed Salah Aida, Nadir Attaf, and Yusuf Selim Ocak. "Influence of Seed Layer Surface Position on Morphology and Photocatalysis Efficiency of ZnO Nanorods and Nanoflowers." Journal of Nanomaterials 2020 (January 4, 2020): 1–9. http://dx.doi.org/10.1155/2020/4072351.
Full textLi, Feitao, Siyao Wan, Dong Wang, and Peter Schaaf. "Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches." Beilstein Journal of Nanotechnology 14 (January 20, 2023): 133–40. http://dx.doi.org/10.3762/bjnano.14.14.
Full textLin, Zian, Yun Xiao, Ling Wang, Yuqing Yin, Jiangnan Zheng, Huanghao Yang, and Guonan Chen. "Facile synthesis of enzyme–inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion." RSC Adv. 4, no. 27 (2014): 13888–91. http://dx.doi.org/10.1039/c4ra00268g.
Full textZhao, Bin, Feng Chen, Qiwei Huang, and Jinlong Zhang. "Brookite TiO2 nanoflowers." Chemical Communications, no. 34 (2009): 5115. http://dx.doi.org/10.1039/b909883f.
Full textTong, Junhua, Songtao Li, Chao Chen, Yulan Fu, Fengzhao Cao, Lianze Niu, Tianrui Zhai, and Xinping Zhang. "Flexible Random Laser Using Silver Nanoflowers." Polymers 11, no. 4 (April 3, 2019): 619. http://dx.doi.org/10.3390/polym11040619.
Full textLan, Guo, Zhiqiang Xie, Zhenwei Huang, Shengchen Yang, Xuhai Zhang, Yuqiao Zeng, and Jianqing Jiang. "Amorphous Alloy: Promising Precursor to Form Nanoflowerpot." Advances in Materials Science and Engineering 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/263681.
Full textJiang, Ning, Chuang Zhang, Meng Li, Shuai Li, Zhili Hao, Zhengqiang Li, Zhuofu Wu, and Chen Li. "The Fabrication of Amino Acid Incorporated Nanoflowers with Intrinsic Peroxidase-like Activity and Its Application for Efficiently Determining Glutathione with TMB Radical Cation as Indicator." Micromachines 12, no. 9 (September 12, 2021): 1099. http://dx.doi.org/10.3390/mi12091099.
Full textNguyen, Thang Phan, and Il Tae Kim. "In Situ Growth of W2C/WS2 with Carbon-Nanotube Networks for Lithium-Ion Storage." Nanomaterials 12, no. 6 (March 18, 2022): 1003. http://dx.doi.org/10.3390/nano12061003.
Full textSharma, Vinay, Akbar Mohammad, Veenu Mishra, Archana Chaudhary, Kshipra Kapoor, and Shaikh M. Mobin. "Fabrication of innovative ZnO nanoflowers showing drastic biological activity." New Journal of Chemistry 40, no. 3 (2016): 2145–55. http://dx.doi.org/10.1039/c5nj02391b.
Full textAcharyya, D., K. Y. Huang, P. P. Chattopadhyay, M. S. Ho, H. J. Fecht, and P. Bhattacharyya. "Hybrid 3D structures of ZnO nanoflowers and PdO nanoparticles as a highly selective methanol sensor." Analyst 141, no. 10 (2016): 2977–89. http://dx.doi.org/10.1039/c6an00326e.
Full textTemel, Sinan, Fatma Ozge Gokmen, and Elif Yaman. "Effects of Deposition Time on Structural and Morphological Properties of Synthesized ZnO Nanoflowers Without Using Complexing Agent." European Scientific Journal, ESJ 13, no. 27 (September 30, 2017): 28. http://dx.doi.org/10.19044/esj.2017.v13n27p28.
Full textP, Shyni, and Pradyumnan P P. "Evolution Of Bi2Te3 Nanoflowers Through Imperfect Orient Attachment Growth." ECS Transactions 107, no. 1 (April 24, 2022): 19827–33. http://dx.doi.org/10.1149/10701.19827ecst.
Full textYin, Yuqing, Yun Xiao, Guo Lin, Qi Xiao, Zian Lin, and Zongwei Cai. "An enzyme–inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity." Journal of Materials Chemistry B 3, no. 11 (2015): 2295–300. http://dx.doi.org/10.1039/c4tb01697a.
Full textCabana, Sonia, Alberto Curcio, Aude Michel, Claire Wilhelm, and Ali Abou-Hassan. "Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers." Nanomaterials 10, no. 8 (August 7, 2020): 1548. http://dx.doi.org/10.3390/nano10081548.
Full textNdala, Zakhele, Ndivhuwo Shumbula, Siyabonga Nkabinde, Tshwarela Kolokoto, Obakeng Nchoe, Poslet Shumbula, Zikhona N. Tetana, Ella C. Linganiso, Siziwe S. Gqoba, and Nosipho Moloto. "Evaluating the Effect of Varying the Metal Precursor in the Colloidal Synthesis of MoSe2 Nanomaterials and Their Application as Electrodes in the Hydrogen Evolution Reaction." Nanomaterials 10, no. 9 (September 9, 2020): 1786. http://dx.doi.org/10.3390/nano10091786.
Full textJaved, Sofia, Muhammad Aftab Akram, and Mohammad Mujahid. "Instant Microwave Synthesis of Titania Nanoflowers for Application in DSSCs." Advanced Materials Research 1119 (July 2015): 14–18. http://dx.doi.org/10.4028/www.scientific.net/amr.1119.14.
Full textLuo, Minghan, Jiaxing Xu, Wenjie Xu, Yu Zheng, Gongde Wu, and Taeseop Jeong. "Photocatalytic Activity of MoS2 Nanoflower-Modified CaTiO3 Composites for Degradation of RhB under Visible Light." Nanomaterials 13, no. 4 (February 6, 2023): 636. http://dx.doi.org/10.3390/nano13040636.
Full textLiu, Delei, Jianghao Liu, Peikan Ye, Haijun Zhang, and Shaowei Zhang. "Low-Temperature, Efficient Synthesis of Highly Crystalline Urchin-like Tantalum Diboride Nanoflowers." Materials 15, no. 8 (April 11, 2022): 2799. http://dx.doi.org/10.3390/ma15082799.
Full textFeng, Zhenyu, Shuo Wang, Guangchao Yin, Ramachandran Rajan, and Fuchao Jia. "Hierarchical SnO2 nanoflower sensitized by BNQDs enhances the gas sensing performances to BTEX." Nanotechnology 33, no. 25 (April 1, 2022): 255602. http://dx.doi.org/10.1088/1361-6528/ac5a85.
Full text