Journal articles on the topic 'Nanofabrication'

To see the other types of publications on this topic, follow the link: Nanofabrication.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanofabrication.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Marrian, Christie R. K., and Donald M. Tennant. "Nanofabrication." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21, no. 5 (September 2003): S207—S215. http://dx.doi.org/10.1116/1.1600446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Henry I., and Harold G. Craighead. "Nanofabrication." Physics Today 43, no. 2 (February 1990): 24–30. http://dx.doi.org/10.1063/1.881222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wilkinson, C. D. W. "Nanofabrication." Microelectronic Engineering 6, no. 1-4 (December 1987): 155–62. http://dx.doi.org/10.1016/0167-9317(87)90031-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gates, Byron D., Qiaobing Xu, J. Christopher Love, Daniel B. Wolfe, and George M. Whitesides. "UNCONVENTIONAL NANOFABRICATION." Annual Review of Materials Research 34, no. 1 (August 4, 2004): 339–72. http://dx.doi.org/10.1146/annurev.matsci.34.052803.091100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mailly, D. "Nanofabrication techniques." European Physical Journal Special Topics 172, no. 1 (June 2009): 333–42. http://dx.doi.org/10.1140/epjst/e2009-01058-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thayne, Iain. "Enabling nanofabrication." III-Vs Review 17, no. 9 (December 2004): 26–28. http://dx.doi.org/10.1016/s0961-1290(04)00845-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vieu, C., and C. Martin-Cerclier. "Nanofabrication 2012." Microelectronic Engineering 110 (October 2013): 229. http://dx.doi.org/10.1016/j.mee.2013.06.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Isaacson, M. S. "The National Nanofabrication Users Network (NNUN): Potential Applicability for Bio/Biomedical Science and Technology." Microscopy and Microanalysis 3, S2 (August 1997): 297–98. http://dx.doi.org/10.1017/s1431927600008370.

Full text
Abstract:
For several decades the US scientific community has recognized the value of pooling specialized skills and equipment in centralized user facilities. Significant efficiencies are realized within the user community by avoiding unnecessary duplication and by moving projects more quickly to completion. The user facility concept served the nanofabrication community well for over two decades at the National Nanofabrication Facility (NNF) at Cornell. In 1994, the National Science Foundation expanded the concept by integrating NNF-Cornell (Now CNF) with several other nanofabrication programs throughout the country to form the National Nanofabrication Users Network (NNUN). Within this framework of a “users” network, scientists and engineers have access to state of the art equipment and expertise.NNUN consists of two “full service” hub facilities at Cornell (the Cornell Nanofabrication Facility) and Stanford (the Stanford Nanofabrication Facility), in association with specialized facilities at Howard, Penn State and UC-Santa Barbara. The network is managed by the 5 site directors, who are responsible to NSF program management and to a Network Advisory Board.
APA, Harvard, Vancouver, ISO, and other styles
9

Bechelany, Mikhael. "Nanofabrication and Nanomanufacturing." Nanomaterials 12, no. 3 (January 28, 2022): 458. http://dx.doi.org/10.3390/nano12030458.

Full text
Abstract:
Nanotechnology is a broad area integrating different research disciplines, including but not limited to material science, engineering, physics, chemistry, polymer science, optics, electronics, robotic, metallurgy, pharmacology, pharmacy and medicine [...]
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Ze, Naijia Liu, and Jan Schroers. "Nanofabrication through molding." Progress in Materials Science 125 (April 2022): 100891. http://dx.doi.org/10.1016/j.pmatsci.2021.100891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, YuHuang, Chad A. Mirkin, and So-Jung Park. "Nanofabrication beyond Electronics." ACS Nano 3, no. 5 (May 26, 2009): 1049–56. http://dx.doi.org/10.1021/nn900448g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hoch, Harvey C., Lynn W. Jelinski, and Harold G. Craighead. "Nanofabrication and Biosystems." Journal of Clinical Engineering 22, no. 1 (January 1997): 26. http://dx.doi.org/10.1097/00004669-199701000-00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chow, Dominic C., Matthew S. Johannes, Woo-Kyung Lee, Robert L. Clark, Stefan Zauscher, and Ashutosh Chilkoti. "Nanofabrication with biomolecules." Materials Today 8, no. 12 (December 2005): 30–39. http://dx.doi.org/10.1016/s1369-7021(05)71287-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

-Chen, Y. "Méthodes de nanofabrication." Revue de l'Electricité et de l'Electronique -, no. 05 (2004): 96. http://dx.doi.org/10.3845/ree.2004.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Becerril, Héctor A., and Adam T. Woolley. "DNA-templated nanofabrication." Chem. Soc. Rev. 38, no. 2 (2009): 329–37. http://dx.doi.org/10.1039/b718440a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gamo, Kenji. "Nanofabrication by FIB." Microelectronic Engineering 32, no. 1-4 (September 1996): 159–71. http://dx.doi.org/10.1016/0167-9317(96)00003-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Ruru, Guomei Zhang, and Haitao Liu. "DNA-templated nanofabrication." Current Opinion in Colloid & Interface Science 38 (November 2018): 88–99. http://dx.doi.org/10.1016/j.cocis.2018.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ohl, Andreas. "Plasma-Aided Nanofabrication." Plasma Processes and Polymers 5, no. 7 (September 15, 2008): 718. http://dx.doi.org/10.1002/ppap.200800088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Das, Santanu. "Nanofabrication, MEMS and Nanotechnology." Journal of the Association of Engineers, India 85, no. 3-4 (December 1, 2015): 61. http://dx.doi.org/10.22485/jaei/2015/v85/i3-4/119868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bereyhi, Mohammad J., and Tobias J. Kippenberg. "Nanofabrication meets open science." Nature Nanotechnology 16, no. 8 (July 26, 2021): 850–52. http://dx.doi.org/10.1038/s41565-021-00944-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Vasilev, Krasimir, and Melanie Ramiasa. "Plasma Nanoengineering and Nanofabrication." Nanomaterials 6, no. 7 (June 23, 2016): 122. http://dx.doi.org/10.3390/nano6070122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bandyopadhyay, S., and P. F. Williams. "Nanofabrication using Coulomb crystals." IEEE Potentials 19, no. 2 (2000): 10–15. http://dx.doi.org/10.1109/45.839639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Snow, E. S., P. M. Campbell, and F. K. Perkins. "Nanofabrication with proximal probes." Proceedings of the IEEE 85, no. 4 (April 1997): 601–11. http://dx.doi.org/10.1109/5.573744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhang, Guomei, Sumedh P. Surwade, Feng Zhou, and Haitao Liu. "DNA nanostructure meets nanofabrication." Chem. Soc. Rev. 42, no. 7 (2013): 2488–96. http://dx.doi.org/10.1039/c2cs35302d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

CHEN, A., L. K. JIAN, and H. O. MOSER. "NANOFABRICATION FOR PHOTONIC APPLICATIONS." Advances in Synchrotron Radiation 01, no. 01 (June 2008): 25–32. http://dx.doi.org/10.1142/s1793617908000021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhan, Jinhua, Yoshio Bando, Junqing Hu, and Dmitri Golberg. "Nanofabrication on ZnO nanowires." Applied Physics Letters 89, no. 24 (December 11, 2006): 243111. http://dx.doi.org/10.1063/1.2404950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shigeta, Masaya, and Anthony B. Murphy. "Thermal plasmas for nanofabrication." Journal of Physics D: Applied Physics 44, no. 17 (April 14, 2011): 174025. http://dx.doi.org/10.1088/0022-3727/44/17/174025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Akinaga, Hiroyuki. "Nanofabrication Technologies for All." Sensors and Materials 31, no. 8 (August 19, 2019): 2477. http://dx.doi.org/10.18494/sam.2019.2521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Youfu, and Xinyuan Zhu. "Nanofabrication within unimolecular nanoreactors." Nanoscale 12, no. 24 (2020): 12698–711. http://dx.doi.org/10.1039/d0nr02674c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wilkinson, C. D. W. "Nanofabrication in cellular engineering." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, no. 6 (November 1998): 3132. http://dx.doi.org/10.1116/1.590451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, Tianbo, Christian Burger, and Benjamin Chu. "Nanofabrication in polymer matrices." Progress in Polymer Science 28, no. 1 (January 2003): 5–26. http://dx.doi.org/10.1016/s0079-6700(02)00077-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ozin, Geoffrey A., Kun Hou, Bettina V. Lotsch, Ludovico Cademartiri, Daniel P. Puzzo, Francesco Scotognella, Arya Ghadimi, and Jordan Thomson. "Nanofabrication by self-assembly." Materials Today 12, no. 5 (May 2009): 12–23. http://dx.doi.org/10.1016/s1369-7021(09)70156-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bradley, C. C., W. R. Anderson, J. J. McClelland, and R. J. Celotta. "Nanofabrication via atom optics." Applied Surface Science 141, no. 3-4 (March 1999): 210–18. http://dx.doi.org/10.1016/s0169-4332(98)00507-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kern, D. P., K. Y. Lee, S. A. Rishton, and S. J. Wind. "Nanofabrication for Quantum Devices." Japanese Journal of Applied Physics 31, Part 1, No. 12B (December 30, 1992): 4496–500. http://dx.doi.org/10.1143/jjap.31.4496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Henzie, Joel, Jeunghoon Lee, Min Hyung Lee, Warefta Hasan, and Teri W. Odom. "Nanofabrication of Plasmonic Structures." Annual Review of Physical Chemistry 60, no. 1 (May 2009): 147–65. http://dx.doi.org/10.1146/annurev.physchem.040808.090352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zeng, Hongjun, Robert Lajos, Vitali Metlushko, Ed Elzy, Se Young An, and Joshua Sautner. "Nanofabrication in cellulose acetate." Lab Chip 9, no. 5 (2009): 699–703. http://dx.doi.org/10.1039/b812141a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Luo, Xiangang. "Plasmonic metalens for nanofabrication." National Science Review 5, no. 2 (November 9, 2017): 137–38. http://dx.doi.org/10.1093/nsr/nwx135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kabashin, A. V., Ph Delaporte, A. Pereira, D. Grojo, R. Torres, Th Sarnet, and M. Sentis. "Nanofabrication with Pulsed Lasers." Nanoscale Research Letters 5, no. 3 (February 24, 2010): 454–63. http://dx.doi.org/10.1007/s11671-010-9543-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Macaulay, J. M., R. M. Allen, L. M. Brown, and S. D. Berger. "Nanofabrication using inorganic resists." Microelectronic Engineering 9, no. 1-4 (May 1989): 557–60. http://dx.doi.org/10.1016/0167-9317(89)90119-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yu, Hai-Dong, Zhongping Zhang, and Ming-Yong Han. "Metal Corrosion for Nanofabrication." Small 8, no. 17 (June 18, 2012): 2621–35. http://dx.doi.org/10.1002/smll.201200475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Shim, Wooyoung, Keith A. Brown, Xiaozhu Zhou, Boris Rasin, Xing Liao, Abrin L. Schmucker, and Chad A. Mirkin. "Plow and Ridge Nanofabrication." Small 9, no. 18 (February 20, 2013): 3058–62. http://dx.doi.org/10.1002/smll.201203014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Losic, Dusan, Mickael Lillo, and Dusan Losic. "Nanofabrication: Small 12/2009." Small 5, no. 12 (June 19, 2009): NA. http://dx.doi.org/10.1002/smll.200990058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Campbell, P. M., E. S. Snow, and P. J. McMarr. "Nanofabrication with proximal probes." Surface Science 361-362 (July 1996): 870–73. http://dx.doi.org/10.1016/0039-6028(96)00553-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

T, Ianbo LIU, i.-Zhi LIU L, and Enjamin CHU B. "Nanofabrication in Polymer Solutions." Chinese Journal of Applied Chemistry 18, no. 5 (May 1, 2001): 259. http://dx.doi.org/10.3724/j.issn.1000-0518.2001.5.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Galvin, Gregory. "Up Close: National Nanofabrication Facility at Cornell University." MRS Bulletin 13, no. 7 (July 1988): 31–34. http://dx.doi.org/10.1557/s0883769400065246.

Full text
Abstract:
The National Nanofabrication Facility began in 1977 out of the scientific community's recognition of a national need for an openly accessible resource in microfabrication. The NNF was then known as the National Research and Resource Facility for Submicron Structures (NRRFSS). In establishing the NRRFSS, Cornell University and the National Science Foundation launched an ambitious experiment both in an advanced technology and in a new research methodology. The current charter of the facility, which differs little from NRRFSS' original charter, is to:∎ Develop state-of-the-art instrumentation and processes for fabrication and characterization of structures at dimensions below 100 nm.∎ Provide for both nanofabrication and microfabrication a national facility that is available to any qualified researcher from U.S. universities, industry, and federal laboratories.∎ Aggressively pursue applications of nanofabrication techniques in a broad spectrum of engineering and scientific disciplines.∎ Train students, scientists, and engineers in nanofabrication and microfabrication and their applications.∎ Transfer nanofabrication technology and information to the research and development communities.To meet these goals, faculty involved with the NRRFSS committed themselves to establishing a world-class research center. They hired staff, purchased equipment, built a new building, attracted new students and faculty, and began innovative research that either utilized microfabrication techniques or advanced those techniques.
APA, Harvard, Vancouver, ISO, and other styles
46

Lin, Ren, Zi Jing Zhong, Chun Yu Wang, and Xue Hao. "Femtosecond Laser Micro-Nanofabrication Technology and its Experimental System." Advanced Materials Research 760-762 (September 2013): 286–89. http://dx.doi.org/10.4028/www.scientific.net/amr.760-762.286.

Full text
Abstract:
In this paper,a 3D femtosecond laser micro-nanofabrication system has been built. CAD model of 2D picture conversion data based on femtosecond laser micro-nanofabrication system have been also discussed. At last, the 2D hand model has been fabricated using the fabrication system we have built.
APA, Harvard, Vancouver, ISO, and other styles
47

Berenschot, Erwin J. W., Narges Burouni, Bart Schurink, Joost W. van Honschoten, Remco G. P. Sanders, Roman Truckenmuller, Henri V. Jansen, Miko C. Elwenspoek, Aart A. van Apeldoorn, and Niels R. Tas. "3D Nanofabrication: 3D Nanofabrication of Fluidic Components by Corner Lithography (Small 24/2012)." Small 8, no. 24 (December 15, 2012): 3702. http://dx.doi.org/10.1002/smll.201290137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ren, Lin, Yan Li Shi, Xue Hao, and Run Lan Tian. "Experimental System for the Micro-Nanofabrication of Three-Dimensional Structures by Femtosecond Laser Two-Photon Absorption." Advanced Materials Research 760-762 (September 2013): 746–49. http://dx.doi.org/10.4028/www.scientific.net/amr.760-762.746.

Full text
Abstract:
Fundamentals of two-photon photopolymerization have been introduced and a 3D femtosecond laser micro-nanofabrication system has been built. In this paper, 3D CAD data model based on femtosecond laser micro-nanofabrication system have been also discussed. The 3D various sphere-rod photonic crystal structure mimicking real atom structures in electronic crystals have been fabricated.
APA, Harvard, Vancouver, ISO, and other styles
49

Fan, Pengfei, Jian Gao, Hui Mao, Yanquan Geng, Yongda Yan, Yuzhang Wang, Saurav Goel, and Xichun Luo. "Scanning Probe Lithography: State-of-the-Art and Future Perspectives." Micromachines 13, no. 2 (January 29, 2022): 228. http://dx.doi.org/10.3390/mi13020228.

Full text
Abstract:
High-throughput and high-accuracy nanofabrication methods are required for the ever-increasing demand for nanoelectronics, high-density data storage devices, nanophotonics, quantum computing, molecular circuitry, and scaffolds in bioengineering used for cell proliferation applications. The scanning probe lithography (SPL) nanofabrication technique is a critical nanofabrication method with great potential to evolve into a disruptive atomic-scale fabrication technology to meet these demands. Through this timely review, we aspire to provide an overview of the SPL fabrication mechanism and the state-the-art research in this area, and detail the applications and characteristics of this technique, including the effects of thermal aspects and chemical aspects, and the influence of electric and magnetic fields in governing the mechanics of the functionalized tip interacting with the substrate during SPL. Alongside this, the review also sheds light on comparing various fabrication capabilities, throughput, and attainable resolution. Finally, the paper alludes to the fact that a majority of the reported literature suggests that SPL has yet to achieve its full commercial potential and is currently largely a laboratory-based nanofabrication technique used for prototyping of nanostructures and nanodevices.
APA, Harvard, Vancouver, ISO, and other styles
50

SUGIMURA, Hiroyuki. "Nanofabrication Using Scanning Probe Microscopy." Journal of the Surface Finishing Society of Japan 49, no. 10 (1998): 1061–66. http://dx.doi.org/10.4139/sfj.49.1061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography