Academic literature on the topic 'Nanofabrication'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanofabrication.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanofabrication"

1

Marrian, Christie R. K., and Donald M. Tennant. "Nanofabrication." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21, no. 5 (September 2003): S207—S215. http://dx.doi.org/10.1116/1.1600446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Henry I., and Harold G. Craighead. "Nanofabrication." Physics Today 43, no. 2 (February 1990): 24–30. http://dx.doi.org/10.1063/1.881222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wilkinson, C. D. W. "Nanofabrication." Microelectronic Engineering 6, no. 1-4 (December 1987): 155–62. http://dx.doi.org/10.1016/0167-9317(87)90031-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gates, Byron D., Qiaobing Xu, J. Christopher Love, Daniel B. Wolfe, and George M. Whitesides. "UNCONVENTIONAL NANOFABRICATION." Annual Review of Materials Research 34, no. 1 (August 4, 2004): 339–72. http://dx.doi.org/10.1146/annurev.matsci.34.052803.091100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mailly, D. "Nanofabrication techniques." European Physical Journal Special Topics 172, no. 1 (June 2009): 333–42. http://dx.doi.org/10.1140/epjst/e2009-01058-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thayne, Iain. "Enabling nanofabrication." III-Vs Review 17, no. 9 (December 2004): 26–28. http://dx.doi.org/10.1016/s0961-1290(04)00845-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vieu, C., and C. Martin-Cerclier. "Nanofabrication 2012." Microelectronic Engineering 110 (October 2013): 229. http://dx.doi.org/10.1016/j.mee.2013.06.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Isaacson, M. S. "The National Nanofabrication Users Network (NNUN): Potential Applicability for Bio/Biomedical Science and Technology." Microscopy and Microanalysis 3, S2 (August 1997): 297–98. http://dx.doi.org/10.1017/s1431927600008370.

Full text
Abstract:
For several decades the US scientific community has recognized the value of pooling specialized skills and equipment in centralized user facilities. Significant efficiencies are realized within the user community by avoiding unnecessary duplication and by moving projects more quickly to completion. The user facility concept served the nanofabrication community well for over two decades at the National Nanofabrication Facility (NNF) at Cornell. In 1994, the National Science Foundation expanded the concept by integrating NNF-Cornell (Now CNF) with several other nanofabrication programs throughout the country to form the National Nanofabrication Users Network (NNUN). Within this framework of a “users” network, scientists and engineers have access to state of the art equipment and expertise.NNUN consists of two “full service” hub facilities at Cornell (the Cornell Nanofabrication Facility) and Stanford (the Stanford Nanofabrication Facility), in association with specialized facilities at Howard, Penn State and UC-Santa Barbara. The network is managed by the 5 site directors, who are responsible to NSF program management and to a Network Advisory Board.
APA, Harvard, Vancouver, ISO, and other styles
9

Bechelany, Mikhael. "Nanofabrication and Nanomanufacturing." Nanomaterials 12, no. 3 (January 28, 2022): 458. http://dx.doi.org/10.3390/nano12030458.

Full text
Abstract:
Nanotechnology is a broad area integrating different research disciplines, including but not limited to material science, engineering, physics, chemistry, polymer science, optics, electronics, robotic, metallurgy, pharmacology, pharmacy and medicine [...]
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Ze, Naijia Liu, and Jan Schroers. "Nanofabrication through molding." Progress in Materials Science 125 (April 2022): 100891. http://dx.doi.org/10.1016/j.pmatsci.2021.100891.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanofabrication"

1

Miles, Jessica. "Atomic Nanofabrication with Chromium." Thesis, University of Manchester, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rius, Suñé Gemma. "Electron beam lithography for Nanofabrication." Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/3404.

Full text
Abstract:
La litografía por haz de electrones (Electron Beam Lithography, EBL) se ha consolidado como una de las técnicas más eficaces que permiten definir motivos en el rango nanométrico. Su implantación ha permitido la nanofabricación de estructuras y dispositivos para su uso en el campo de la nanotecnología y la nanociencia.
La EBL se basa en la definición de motivos submicrónicos mediante el rastreo de un haz energético de electrones sobre una resina. La naturaleza de los electrones y el desarrollo the haces extremadamente finos y su control preciso establecen la plataforma ideal para los requerimientos de la Nanofabricación. El uso de la EBL para el desarrollo de un gran número de nanoestructuras, nanodispositivos y nanosistemas ha sido, y continúa siendo, crucial para las aplicaciones de producción de máscaras, prototipaje o dispositivos discretos para la investigación fundamental. Su éxito radica en la alta resolución, flexibilidad y compatibilidad de la EBL con otros procesos de fabricación convencionales.
El objetivo de esta tesis es el avance en el conocimiento, desarrollo y aplicación de la EBL en las areas de los micro/nanosistemas y la nanoelectrónica. El presente documento refleja parte del trabajo realizado en el Laboratorio de Nanofabricación del Instituto de Microelectrónica de Barcelona IMB-CNM-CSIC durante los últimos cinco años. Debido a la falta de experiencia previa en el IMB en la utilización de la EBL, ha sido necesario el desarrollo y consolidación de una serie de procesos, lo que ha condicionado parcialmente la investigación, tal y como recoge la memoria.
Entre los aspectos relevantes compilados en esta tesis, en cuanto a innovación tecnológica, cabe destacar diversos avances en procesos tecnológicos basados en la EBL. Una nueva resina de tono negativo ha sido caracterizada y disponible para su uso en nanofabricación. La optimización de la EBL se ha llevado a cabo mediante métodos de corrección del efecto de proximidad. Se ha establecido el proceso de integración de estructuras nanomecánicas en circuitos CMOS, así como la fabricación de dispositivos basados en nanotubos de carbono. En concreto, el primer FET basado en un sólo nanotubo de carbono fabricado en España. Finalmente, la compatibilidad y viabilidad de los métodos de fabricación basados en haces de partículas se ha estudiado mediante el análisis del efecto de los haces de partículas cargadas sobre dispositivos. Por otro lado, esta memoria no sólo contiene la descripción de los principales resultados obtenidos, sinó que pretende aportar información general sobre procesos de nanofabricación basados en haces de electrones para ser utilizados en futuras investigaciones de este area.
Electron beam lithography (EBL) has consolidated as one of the most common techniques for patterning at the nanoscale meter range. It has enabled the nanofabrication of structures and devices within the research field of nanotechnology and nanoscience.
EBL is based on the definition of submicronic features by the scanning of a focused energetic beam of electrons on a resist. The nature of electrons and the development of extremely fine beams and its flexible control provide the platform to satisfy the requirements of Nanofabrication. Use of EBL for the development of a wide range of nanostructures, nanodevices and nanosystems has been, and continues to be, crucial for the applications of mask production, prototyping and discrete devices for fundamental research and it relies on its high resolution, flexibility and compatibility with other conventional fabrication processes.
The purpose of this thesis is to advance in the knowledge, development and application of electron beam lithography in the areas of micro/nano systems and nanoelectronics. In this direction, this memory reflects part of the work performed at the Nanofabrication Laboratory of the IMB-CNM. Since there was no previous experience on EBL at CNM, the need for developing a set of processes has determined partially the work.
The variety of topics that concern to nanoscience and nanotechnology is enormous. Chapter 1 briefly sintetizes nanoscale related aspects. This section aims to frame the contents of this thesis, coherently. Also for completeness, it is intended to address the specific subjects under discussion or contained in the following chapters and it is based or oriented to the experimental results that will be presented.
Chapter 2 is a general overview of the EBL technique from the point of view of the system and the physical interaction of the process. In particular, the characteristics of the SEM and specifications of the lithographic capabilities of the system that is used are presented.
In chapter 3, irradiation effect on resists is studied. The chemical behaviour of different polymeric materials is correlated with theoretical simulations for two types of resists: methacrylic based positive resists and epoxy based negative resists. The first is used for validation of the modelization and to describe the general performance of EBL on different conditions. The second covers the experiments oriented to establish the performance parameters of a new resist and comparison with another existing negative electron beam resist. Proximity effect correction concludes with the correlation of theory and experimental results for both types of resists, positive and negative.
Chapter 4 is an example of the fabrication and optimization of a micro/nanosystem for sensing at the nanoscale. In particular, nanoresonators are developed with two approaches (EBL and FIB) and enhanced response is achieved by their integration on CMOS circuitry.
Chapter 5 presents carbon nanotube (CNT) based devices that are realized and implemented for applications in nanoelectronics and sensing. First, different fabrication approaches for contacting CNTs are discussed. Then, the results of electrical characterization of the devices are presented. Finally, technology development for the use of these devices for sensing is established.
The last chapter embraces all the previous sections and pays attention to the effect of electron beam on the devices. In particular, electron induced effect is studied on nanomechanical structures integrated in circuits and CNT based devices, in order to evaluate EBL based fabrication, SEM characterization or more fundamental aspects. Advanced characterization techniques are used together with simulations, both assessing a deeper understanding of the results. Electrical measurements and AFM based techniques are used to characterise the effect of the electron irradiation by changes in their performance characteristics, charging, surface potential imaging, etc.
Main results and solved challenges are summarized in the conclusive chapter 7 that finishes with this document.
APA, Harvard, Vancouver, ISO, and other styles
3

Latif, Adnan. "Nanofabrication using focused ion beam." Thesis, University of Cambridge, 2000. https://www.repository.cam.ac.uk/handle/1810/34605.

Full text
Abstract:
Focused ion beam (FIB) technique uses a focused beam of ions to scan the surface of aspecimen, analogous to the way scanning electron microscope (SEM) utilizes electrons. Recent developments in the FIB technology have led to beam spot size below 10 nm,which makes FIB suitable for nanofabrication. This project investigated thenanofabrication aspect of the FIB technique, with device applications perspective inseveral directions. Project work included construction of an in-situ FIB electricalmeasurement system and development of its applications, direct measurements ofnanometer scale FIB cuts and fabrication and testing of lateral field emission devices. Research work was performed using a number of materials including Al, Cr, SiO2, Si3N4and their heterostructures. Measurements performed included in-situ resistometricmeasurements, which provided milled depth information by monitoring the resistancechange of a metal track while ion milling it. The reproducibly of this method wasconfirmed by repeating experiments and accuracy was proven by atomic force microscopy(AFM). The system accurately monitored the thickness of 50 nm wide and 400 nm thick(high aspect ratio) Nb tracks while ion milling them. Direct measurements of low aspectratio nanometer scale FIB cuts were performed using AFM on single crystal Si,polycrystalline Nb and an amorphous material. These experiments demonstrated theimportance of materials aspects for example the presence of grains for cuts at this scale. Anew lateral field emission device (in the plane of the chip) was fabricated, as FIB offersseveral advantages for these devices such as control over sharpness and decrease in anodeto-cathode spacing. FIB fabrication achieved field emission tip sharpness below 50 nm andanode-to-cathode spacing below 100 nm. For determining the field emission characteristicsof the devices, a low current (picoampere) measurement system was constructed anddevices operated in ultra high vacuum (10-9 mbar) in picoampere range. One devicefabricated using a FIB sharpening process had a turn on voltage of 57 V.
APA, Harvard, Vancouver, ISO, and other styles
4

Dibos, Alan. "Nanofabrication of Hybrid Optoelectronic Devices." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17463975.

Full text
Abstract:
The material requirements for optoelectronic devices can vary dramatically depending on the application. Often disparate material systems need to be combined to allow for full device functionality. At the nanometer scale, this can often be challenging because of the inherent chemical and structural incompatibilities of nanofabrication. This dissertation concerns the integration of seemingly dissimilar materials into hybrid optoelectronic devices for photovoltaic, plasmonic, and photonic applications. First, we show that combining a single strip of conjugated polymer and inorganic nanowire can yield a nanoscale solar cell, and modeling of optical absorption and exciton diffusion in this device can provide insight into the efficiency of charge separation. Second, we use an on-chip nanowire light emitting diode to pump a colloidal quantum dot coupled to a silver waveguide. The resulting device is an electro-optic single plasmon source. Finally, we transfer diamond waveguides onto near-field avalanche photodiodes fabricated from GaAs. Embedded in the diamond waveguides are nitrogen vacancy color centers, and the mapping of emission from these single-photon sources is demonstrated using our on-chip detectors, eliminating the need for external photodetectors on an optical table. These studies show the promise of hybrid optoelectronic devices at the nanoscale with applications in alternative energy, optical communication, and quantum optics.
Engineering and Applied Sciences - Applied Physics
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Yong. "Carbon dioxide assisted polymer micro/nanofabrication." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1117591862.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2005.
Title from first page of PDF file. Document formatted into pages; contains xviii, 226 p.; also includes graphics (some col.). Includes bibliographical references (p. 206-226). Available online via OhioLINK's ETD Center
APA, Harvard, Vancouver, ISO, and other styles
6

Hurley, Fergus (Fergus Gerard). "Advanced nanofabrication of thermal emission devices." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44454.

Full text
Abstract:
Includes bibliographical references (p. 89-91).
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, lighting and sensor applications. Two specific thermal emission devices which show great promise include resonant thermal emitters and selective thermal emitters. It has been found from theory that resonant thermal emitters exhibit quasi-monochromatic and partially coherent thermal emission when fabricated with a 2-dimensional photonic crystal structure in a high-dielectric low-absorption material such as silicon. This type of fabricated resonant thermal emitter has great potential for use as near-IR and IR sensors. Theory has also shown that selective thermal emitters fabricated in tungsten with a 2-dimensional photonic crystal structure can exhibit spectrally selective thermal emission. This type of fabricated selective thermal emitter can be used to increase the efficiency of thermophotovoltaic (TPV) systems by preventing the incident thermal radiation below the band-gap of the PV diode from reaching the PV diode. This thesis explores the nanofabrication of a 2-dimensional photonic crystal silicon-on-sapphire (SOS) resonant thermal emitter which is now possible to fabricate due to advances in fabrication technology. Initially, the theory behind the SOS resonant thermal emitter which exhibits multiple resonant emission peaks is discussed. Next, an in-depth examination of the theory behind the technology used in the fabrication the resonant thermal emitter is investigated. Then, the SOS resonant thermal emitter fabrication process and characterization which was performed is discussed. The results showed that it was possible to fabricate the required 2-dimensional pattern but that there were issues with the pattern transfer into silicon, which needs to be further researched.
by Fergus Hurley.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
7

Speaks, Rachel Suzanne. "High-resolution pattern transfer for nanofabrication." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roller, Eric Tobias. "Nanofabrication with the scanning tunnelling microscope." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moraes, Isabelle Gomes de. "Nanofabrication de nanocomposites magnétiques dur-doux." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY042.

Full text
Abstract:
Cette thèse présente le développement et la caractérisation d'échantillons modèles pour l'étude des nanocomposites (NC) magnétiques dur-doux. Ces matériaux sont d'un grand intérêt, compte tenu de leurs applications potentielles en tant qu'aimants haute performance. Cependant, malgré ce grand potentiel, les propriétés des NC dur-doux rapportées dans la littérature sont modestes par rapport à celles prédites par les modèles micromagnétiques. Dans ce travail, nous utilisons des outils avancés de nanofabrication et de caractérisation pour développer des échantillons modèles, susceptibles de faire le lien de entre les simulations et les expériences. Quatre réseaux différents de nano-bâtonnets magnétiques doux allongés (FeCo ou Co) (épaisseur = 10 nm) ont été produits par lithographie électronique et évaporation. Pour étudier l'influence du contenu et des dimensions des nano-bâtonnets, la largeur (w) a été modifiée entre 25 et 120 nm, la longueur (l) entre 200 et 400 nm et la distance inter-bâtonnets (d) entre 50 et 200 nm. Le rapport volumique de la phase douce varie de 2 à 11%. Tous les nano-bâtonnets ont été couverts d'une couche de 3 nm d'Au afin d'éviter l'oxydation lors du transfert de l'échantillon de la lithographie vers les chambres de dépôt. La couche d’or a été gravée dans la chambre de pulvérisation juste avant le dépôt de la couche magnétique dure (FePt-25 ou 50 nm) au-dessus des nano-bâtonnets. Une seconde étape de lithographie a été développée pour limiter la localisation de la phase magnétique dure à l'endroit où se trouvent les réseaux de nano-bâtonnets. Une cellule élémentaire du NC a une surface d'environ 5x5 µm2, et cette cellule est répétée pour avoir une surface d'échantillon globale de quelques mm2, dont le signal magnétique est suffisant pour les mesures de magnétométrie globale. Un processus de recuit post-croissance favorise la formation de la phase magnétique dure L10 FePt . Plus la fraction volumique de nano-bâtonnets est élevée, plus la coercivité est faible et plus la rémanence est élevée. Des courbes de retournement du premier ordre (FORC) ont été obtenues pour les échantillons avec une fraction volumique comparable de phase magnétique douce, mais avec une taille de nano-bâtonnets différente. Bien que les échantillons aient des cycles d'hystérésis similaires, les diagrammes FORC montrent que les distributions de champ de retournement sont assez distinctes. La fabrication et l'analyse d'un échantillon de référence avec des nano-bâtonnets non magnétiques de Pt n'indiquent aucune influence de la topographie globale de l'échantillon sur les propriétés de la matrice dure. L'imagerie TEM et la cartographie chimique des coupes transversales préparées par FIB ont révélé une diffusion de type Kirkendall dans les NC avec les plus petits nano-bâtonnets. Une étude MFM sur la même cellule élémentaire de NC dans différents états rémanents , a été réalisée sur des réseaux de NC (dur / doux et dur / non magnétique) et un film de micro-motifs durs (.i.e. pas de nano-bâtonnets). L'évolution des motifs magnétiques a été corrélée avec les champs de fuite produits par la matrice magnétique dure et les nano-bâtonnets intégrés. Les résultats obtenus avec des méthodes de caractérisation magnétique globale (cycles d'hystérésis et FORC) et locale (MFM), combinés à une caractérisation structurale détaillée obtenue par TEM, ont permis d'analyser l'impact des dimensions, de la périodicité, de la concentration et du matériau constitutif des nano-bâtonnets intégrés dans la matrice magnétique dure. Le compromis entre réduire les dimensions de la phase douce pour favoriser le couplage d'échange et les augmenter pour minimiser la diffusion pendant le recuit pour former la formation de phase dure, est un point critique pour le développement de ces matériaux modèles
This thesis presents the development and characterization of model samples for the study of hard-soft magnetic nanocomposites. These materials are of great interest, considering their potential applications as high performance magnets. However, even with this great potential, the properties of hard-soft nanocomposites reported in the literature are modest compared to those predicted by micromagnetic models. In this work, we use advanced nanofabrication and characterization tools to develop model samples, capable of bridging the understanding between models and experiments. Four different arrays with elongated soft magnetic nano-rods (FeCo or Co) (thickness = 10 nm) were produced by e-beam lithography and evaporation. To study the influence of the content and the dimensions of the nano-rods, the width (w) was varied between 25 and 120 nm, the length (l) between 200 and 400 nm and the inter-rod distance (d) between 50 and 200 nm. The volume content of the soft phase ranged from 2 to 11%. All the nano-rods were capped with a 3 nm layer of Au in order to prevent oxidation during sample transfer from the lithography to the deposition chambers. The Au layer was etched in the sputtering chamber just prior to deposition of the hard magnetic layer (FePt- 25 or 50 nm) on top of the nano-rods. A second lithography step was developed to limit the location of the hard magnetic phase to where the nano-rods arrays are positioned. A unit piece of the nanocomposite has a surface area of roughly 5x5 µm2, and the unit was repeated to have an overall sample surface area of a few mm2 , to have sufficient magnetic signal for global magnetometry measurements. A post-annealing process promotes the formation of the L10 FePt hard magnetic phase. The higher the volume content of nano-rods, the lower the coercivity and the higher the remanence. First Order Reversal Curves (FORC) were obtained for the samples with comparable volume content of soft magnetic phase, but with different nano-rod size. Although the samples have similar hysteresis cycles, the FORC diagrams show that the switching field distributions are quite distinct. The sample with nano-rod width = 120 nm shows switching fields extending up to 250 mT and a single peak around µ0HC = 0 T, while the sample with nano-rod width = 25 nm has two peaks in switching field, centred at µ0HC = 0 T and µ0HC = 500 mT. Fabrication and analysis of a reference sample with Pt non-magnetic nano-rods indicates no influence of the overall sample topography on the hard matrix properties. TEM imaging and chemical mapping of FIB-prepared cross sections revealed Kirkendall-like diffusion in the nanocomposites with the smallest nano-rods. An MFM study which involved probing the same nanocomposite unit in different remnant states, was carried out on nanocomposites arrays (hard/soft and hard/non-magnetic) and a micro-patterned hard film (.i.e. no nano-rods). The experimental setup included a homemade in-situ in-plane pulsed magnetic field source. The evolution in magnetic patterns was correlated with the stray fields produced by the hard magnetic matrix and the embedded nano-rods. The results obtained with global (hysteresis loops and FORC) and local (MFM) magnetic characterization methods, combined with detailed structural characterization obtained by TEM, made it possible to analyze the impact of dimensions, periodicity, concentration, and the constituent material of the nano-rods embedded in the hard magnetic matrix. A trade-off between reducing the dimensions of the soft phase to favour exchange coupling and increasing them to minimize diffusion during annealing to form the hard phase formation, is a bottleneck for the development of these model materials
APA, Harvard, Vancouver, ISO, and other styles
10

Lindblom, Magnus. "Nanofabrication of Diffractive Soft X-ray Optics." Doctoral thesis, KTH, Biomedicinsk fysik och röntgenfysik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9800.

Full text
Abstract:
This thesis summarizes the present status of the nanofabrication of diffractive optics, i.e. zone plates, and test objects for soft x-ray microscopy at KTH. The emphasis is on new and improved fabrication processes for nickel and germanium zone plates. A new concept in which nickel and germanium are combined in a zone plate is also presented. The main techniques used in the fabrication are electron beam lithography for the patterning, followed by plasma etching and electroplating for the structuring of the optical materials. The process for fabricating nickel zone plates has been significantly improved. The reproducibility of the electroplating step has been increased by the implementation of an in-situ rate measurement and an end-point detection method. We have also shown that pulse plating can be used to obtain zone plates with a uniform height profile. New plating mold materials have been introduced and electron-beam curing of the molds has been investigated and implemented to increase their mechanical stability so that pattern collapse in the electroplating step can be avoided. The introduction of cold development has improved the achievable resolution of the process. This has enabled the fabrication of zone plates with outermost zone widths down to 16 nm. The nickel process has also recently been adapted to fabrication of gold structures intended for test objects and hard x-ray zone plates. For the fabrication of germanium zone plates we developed a highly anisotropic plasma-etch process using Cl2 feed and sidewall passivation. Germanium zone plates have been fabricated with zone widths down to 30 nm. The diffraction efficiency is comparable to that of nickel zone plates, but the process does not involve electroplating and thus has for potential for highyield fabrication. The combination of nickel and germanium is a new fabrication concept that provides a means to achieve high diffraction efficiency even for thin nickel. The idea is to fabricate a nickel zone plate on a germanium film. The nickel zone plate itself is then used as etch mask for a highly selective CHF3- plasma etch into the germanium layer. Proof of principle experiments showed an efficiency increase of about a factor of two for nickel zone plates with a 50- nm nickel thickness.
QC 20100728
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nanofabrication"

1

Sarangan, Andrew. Nanofabrication. Edited by Andrew Sarangan. Boca Raton : CRC Press, Taylor & Francis Group, 2017. | Series: Optical sciences and applications of light: CRC Press, 2016. http://dx.doi.org/10.1201/9781315370514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cui, Zheng. Nanofabrication. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-75577-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Papadopoulos, Christo. Nanofabrication. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31742-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cui, Zheng. Nanofabrication. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39361-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stepanova, Maria, and Steven Dew, eds. Nanofabrication. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0424-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Masuda, Yoshitake. Nanofabrication. Rijeka, Croatia: InTech, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Prasad, Kamal, Gajendra Prasad Singh, and Anal Kant Jha. Nanofabrication. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003083351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nanofabrication handbook. Boca Raton: Taylor & Francis, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tseng, Ampere A., ed. Tip-Based Nanofabrication. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9899-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bottom-up nanofabrication. Stevenson Ranch, Calif: American Scientific Publishers ., 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanofabrication"

1

Raza, Hassan. "Nanofabrication." In Undergraduate Lecture Notes in Physics, 79–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11733-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yoda, Minami, Jean-Luc Garden, Olivier Bourgeois, Aeraj Haque, Aloke Kumar, Hans Deyhle, Simone Hieber, et al. "Nanofabrication." In Encyclopedia of Nanotechnology, 1543. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Zhigang. "Nanofabrication." In Nanofluidics, 79–106. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &: CRC Press, 2018. http://dx.doi.org/10.1201/b22007-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raza, Hassan. "Nanofabrication." In Nanoelectronics Fundamentals, 215–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32573-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cui, Zheng. "Introduction." In Nanofabrication, 1–7. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39361-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cui, Zheng. "Nanofabrication by Self-Assembly." In Nanofabrication, 365–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39361-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cui, Zheng. "Applications of Nanofabrication Technologies." In Nanofabrication, 401–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39361-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cui, Zheng. "Nanofabrication by Photons." In Nanofabrication, 9–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39361-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cui, Zheng. "Nanofabrication by Electron Beam." In Nanofabrication, 91–148. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39361-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cui, Zheng. "Nanofabrication by Ion Beam." In Nanofabrication, 149–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39361-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanofabrication"

1

Macwan, Isaac G., Zihe Zhao, Omar T. Sobh, and Prabir K. Patra. "Magnetotaxis for nanofabrication." In 2014 Zone 1 Conference of the American Society for Engineering Education (ASEE Zone 1). IEEE, 2014. http://dx.doi.org/10.1109/aseezone1.2014.6820681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hong, Ming Hui, Su Mei Huang, Boris S. Luk'yanchuk, Zeng Bo Wang, Yong Feng Lu, and Tow Chong Chong. "Laser-assisted nanofabrication." In High-Power Lasers and Applications, edited by Alberto Pique, Koji Sugioka, Peter R. Herman, Jim Fieret, Friedrich G. Bachmann, Jan J. Dubowski, Willem Hoving, et al. SPIE, 2003. http://dx.doi.org/10.1117/12.479236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ortlepp, Ingo, Jaqueline Stauffenberg, Anja Krötschl, Denis Dontsov, Jens-Peter Zöllner, Steffen Hesse, Christoph Reuter, et al. "Nanofabrication and -metrology by using the nanofabrication machine (NFM-100)." In Novel Patterning Technologies 2022, edited by Eric M. Panning and J. Alexander Liddle. SPIE, 2022. http://dx.doi.org/10.1117/12.2615118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anderson, Helen, David Bunzow, Abbie Gregg, John Hughes, Justin Kita, and Richard Morrison. "Nanofabrication Lab Security Project." In 2012 19th Biennial University/Government/Industry Micro/Nano Symposium (UGIM). IEEE, 2012. http://dx.doi.org/10.1109/ugim.2012.6247103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cui, Zheng, and Changzhi Gu. "Nanofabrication Challenges for NEMS." In 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2006. http://dx.doi.org/10.1109/nems.2006.334855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Das, Gobind, Francesco De Angelis, Maria Laura Coluccio, Federico Mecarini, and Enzo di Fabrizio. "Spectroscopy nanofabrication and biophotonics." In SPIE MOEMS-MEMS: Micro- and Nanofabrication, edited by Thomas J. Suleski, Winston V. Schoenfeld, and Jian J. Wang. SPIE, 2009. http://dx.doi.org/10.1117/12.812047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Ming, Qiuxia Xu, Baoqin Chen, Changqing Xie, Tianchun Ye, and Xinchun Liu. "The advanced nanofabrication technology." In Photonics Asia 2004, edited by Yangyuan Wang, Jun-en Yao, and Christopher J. Progler. SPIE, 2005. http://dx.doi.org/10.1117/12.570206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kik, Pieter G., Stefan A. Maier, and Harry A. Atwater. "Surface plasmons for nanofabrication." In Micromachining and Microfabrication, edited by Eric G. Johnson and Gregory P. Nordin. SPIE, 2004. http://dx.doi.org/10.1117/12.532613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tiginyanu, Ion, Eduard Monaico, and Veaceslav Popa. "Electrochemistry-based maskless nanofabrication." In 2012 International Semiconductor Conference (CAS 2012). IEEE, 2012. http://dx.doi.org/10.1109/smicnd.2012.6400703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Armstrong, Declan, Halina Rubinsztein-Dunlop, and Alexander B. Stilgoe. "Nanofabrication using structured light." In Optical Trapping and Optical Micromanipulation XIX, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2022. http://dx.doi.org/10.1117/12.2634116.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nanofabrication"

1

Liu, Haitao. DNA Based Molecular Scale Nanofabrication. Fort Belvoir, VA: Defense Technical Information Center, December 2015. http://dx.doi.org/10.21236/ada627639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mazur, Eric. Nanofabrication of Three-Dimensional Metamaterials. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada581878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, George T., Michael E. Coltrin, Ping Lu, Philip Rocco Miller, Benjamin Leung, Xiaoyin Xiao, Keshab Raj Sapkota, et al. Quantum Nanofabrication: Mechanisms and Fundamental Limits. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1474257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shedd, G. M., and P. E. Russell. Nanofabrication with the Scanning Tunneling Microscope. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/476650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

De Lozanne, Alejandro. Nanofabrication of Electronic Devices With the Scanning Tunneling Microscope. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada292463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Qiming, George T. Wang, Jeremy Benjamin Wright, Huiwen Xu, Ting Shan Luk, Igal Brener, Jeffrey James Figiel, et al. Nanofabrication of tunable nanowire lasers via electron and ion-beam based techniques. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1055605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kirchstetter, Thomas, Parker Gould, and Mitchell Hsing. Inchfab – A ultra-low-cost micro and nanofabrication platform (CRADA Final Report). Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1881338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morse, Daniel E., Galen D. Stucky, and Paul K. Hansma. Biological Rules and Mechanisms Governing the Nanofabrication of Highly Regular Mineralized Microlaminate Composites. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada383744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scherer, Axel. Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE): Nanofabrication Tool for High Resolution Pattern Transfer. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada396342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Verbeck, IV, and Guido F. Development of Novel Preparative Mass Spectrometry Instrumentation for the Advancement of New Materials and Nanofabrication. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada568556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography