Journal articles on the topic 'Nanoelectronics'

To see the other types of publications on this topic, follow the link: Nanoelectronics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanoelectronics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

HULL, ROBERT, RICHARD MARTEL, and J. M. XU. "NANOELECTRONICS: SOME CURRENT ASPECTS AND PROSPECTS." International Journal of High Speed Electronics and Systems 12, no. 02 (June 2002): 353–64. http://dx.doi.org/10.1142/s0129156402001174.

Full text
Abstract:
A brief summary is provided of selected current activities in the field of nanoelectronics, which is taken here to mean the fabrication and integration of active microelectronic components with feature dimensions of tens of nanometers or less. Particular emphasis is placed upon the classes of nanoelectronic devices that were discussed at the 2002 WOFE Conference.
APA, Harvard, Vancouver, ISO, and other styles
2

He, Qianxi. "Characteristics and Improvement Methods of Carbon Nanodevices." Highlights in Science, Engineering and Technology 106 (July 16, 2024): 94–100. http://dx.doi.org/10.54097/8s3ra054.

Full text
Abstract:
Whether the trend of increasing integration density of integrated circuits indicated by Moore's Law can continue to develop, especially now that feature sizes have entered the nanometer range, shrinking sizes face greater challenges. Since entering the "post-Moore" era, the development of carbon-based nanoelectronics has attracted attention. This paper explores the application of carbon-based nanomaterials in carbon-based nanoelectronic devices and integrated circuits. It introduces the structure, properties, and preparation methods of single-walled carbon nanotubes and graphene, demonstrating their importance to carbon-based nanoelectronic devices and integrated circuits. The synthesis methods of carbon nanotubes mainly include arc discharge method, laser ablation method, and chemical vapor deposition metho. Subsequently, it summarizes the advantages, applications, and challenges of carbon-based nanoelectronic devices. The applications of carbon-based nanoelectronic devices and integrated circuits include digital integrated circuits, optoelectronic integrated circuits, electrochemical sensors, carbon-based radio frequency devices, and smart integrated systems. Furthermore, starting from the preparation methods, improvement methods are summarized, focusing on chemical vapor deposition, to optimize carbon nanomaterials for application in carbon nanodevices. It elucidates the promising prospects of carbon-based nanoelectronics.
APA, Harvard, Vancouver, ISO, and other styles
3

Bate, R. T. "Nanoelectronics." Nanotechnology 1, no. 1 (July 1, 1990): 1–7. http://dx.doi.org/10.1088/0957-4484/1/1/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hartnagel, H. L., R. Richter, and A. Grüb. "Nanoelectronics." Electronics & Communications Engineering Journal 3, no. 3 (1991): 119. http://dx.doi.org/10.1049/ecej:19910020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cress, Cory. "Carbon Nanoelectronics." Electronics 3, no. 1 (January 27, 2014): 22–25. http://dx.doi.org/10.3390/electronics3010022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bandyopadhyay, S., and V. P. Roychowdhury. "Granular nanoelectronics." IEEE Potentials 15, no. 2 (1996): 8–11. http://dx.doi.org/10.1109/45.489730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wolfgang, Porod, and I. Csurgay Arpad. "Editorial: Nanoelectronics." IEE Proceedings - Circuits, Devices and Systems 151, no. 5 (2004): 413. http://dx.doi.org/10.1049/ip-cds:20041170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vuill, Dominique. "Molecular Nanoelectronics." Proceedings of the IEEE 98, no. 12 (December 2010): 2111–23. http://dx.doi.org/10.1109/jproc.2010.2063410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nyberg, Tobias, Fengling Zhang, and Olle Inganäs. "Macromolecular nanoelectronics." Current Applied Physics 2, no. 1 (February 2002): 27–31. http://dx.doi.org/10.1016/s1567-1739(01)00104-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gorbatsevich, A. A., and V. V. Kapaev. "Waveguide nanoelectronics." Russian Microelectronics 36, no. 1 (February 2007): 1–13. http://dx.doi.org/10.1134/s1063739707010015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sato, Shintaro. "Graphene for nanoelectronics." Japanese Journal of Applied Physics 54, no. 4 (February 25, 2015): 040102. http://dx.doi.org/10.7567/jjap.54.040102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Khaderbad, Mrunal, Soumyo Mukherji, and Ramgopal Rao. "DNA Based Nanoelectronics." Recent Patents on Electrical Engineeringe 1, no. 2 (June 1, 2008): 115–20. http://dx.doi.org/10.2174/1874476110801020115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Vallett, Dave. "Nanoelectronics Failure Analysis." EDFA Technical Articles 5, no. 2 (May 1, 2003): 5–9. http://dx.doi.org/10.31399/asm.edfa.2003-2.p005.

Full text
Abstract:
Abstract This article discusses the emergence of nanoelectronics and the effect it may have on semiconductor testing and failure analysis. It describes the different types of quantum effect and molecular electronic devices that have been produced, explaining how they are made, how they work, and the changes that may be required to manufacture and test these devices at scale.
APA, Harvard, Vancouver, ISO, and other styles
14

N. O. Sadiku, Matthew, Yogita P. Akhare, and Sarhan M. Musa. "Nanoelectronics: A Primer." International Journal of Advances in Scientific Research and Engineering 5, no. 5 (2019): 257–59. http://dx.doi.org/10.31695/ijasre.2019.33215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Catalan, G., J. Seidel, R. Ramesh, and J. F. Scott. "Domain wall nanoelectronics." Reviews of Modern Physics 84, no. 1 (February 3, 2012): 119–56. http://dx.doi.org/10.1103/revmodphys.84.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Compañó, Ramón. "Trends in nanoelectronics*." Nanotechnology 12, no. 2 (May 25, 2001): 85–88. http://dx.doi.org/10.1088/0957-4484/12/2/301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tsu, Raphael. "Challenges in nanoelectronics." Nanotechnology 12, no. 4 (November 28, 2001): 625–28. http://dx.doi.org/10.1088/0957-4484/12/4/351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Telford, Mark. "Nanoelectronics centers founded." Nano Today 1, no. 1 (February 2006): 16. http://dx.doi.org/10.1016/s1748-0132(06)70016-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sealy, Cordelia. "Roadmap for nanoelectronics." Materials Today 7, no. 9 (September 2004): 18. http://dx.doi.org/10.1016/s1369-7021(04)00397-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rohrer, H. "Nanoengineering beyond nanoelectronics." Microelectronic Engineering 41-42 (March 1998): 31–36. http://dx.doi.org/10.1016/s0167-9317(98)00008-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lieber, Charles. "Nanoelectronics Meets Biology." Biophysical Journal 100, no. 3 (February 2011): 189a. http://dx.doi.org/10.1016/j.bpj.2010.12.1247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cerofolini, G. F., G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo, and V. Nosik. "Strategies for nanoelectronics." Microelectronic Engineering 81, no. 2-4 (August 2005): 405–19. http://dx.doi.org/10.1016/j.mee.2005.03.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hoenlein, Wolfgang, Georg S. Duesberg, Andrew P. Graham, Franz Kreupl, Maik Liebau, Werner Pamler, Robert Seidel, and Eugen Unger. "Nanoelectronics beyond silicon." Microelectronic Engineering 83, no. 4-9 (April 2006): 619–23. http://dx.doi.org/10.1016/j.mee.2005.12.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ferry, D. K. "Nanowires in Nanoelectronics." Science 319, no. 5863 (February 1, 2008): 579–80. http://dx.doi.org/10.1126/science.1154446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Beaumont, Steven P. "III–V Nanoelectronics." Microelectronic Engineering 32, no. 1-4 (September 1996): 283–95. http://dx.doi.org/10.1016/0167-9317(95)00367-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kern, Klaus, and Joachim Maier. "Nanoionics and Nanoelectronics." Advanced Materials 21, no. 25-26 (June 24, 2009): 2569. http://dx.doi.org/10.1002/adma.200901896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Homberger, Melanie, and Ulrich Simon. "On the application potential of gold nanoparticles in nanoelectronics and biomedicine." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1915 (March 28, 2010): 1405–53. http://dx.doi.org/10.1098/rsta.2009.0275.

Full text
Abstract:
Ligand-stabilized gold nanoparticles (AuNPs) are of high interest to research dedicated to future technologies such as nanoelectronics or biomedical applications. This research interest arises from the unique size-dependent properties such as surface plasmon resonance or Coulomb charging effects. It is shown here how the unique properties of individual AuNPs and AuNP assemblies can be used to create new functional materials for applications in a technical or biological environment. While the term technical environment focuses on the potential use of AuNPs as subunits in nanoelectronic devices, the term biological environment addresses issues of toxicity and novel concepts of controlling biomolecular reactions on the surface of AuNPs.
APA, Harvard, Vancouver, ISO, and other styles
28

Mishra, Manoj, and Shil Ja. "Germanium Nanowires (GeNW): Synthesis, Structural Properties, and Electrical Characterization for Advanced Nanoelectronic Devices." Migration Letters 20, S13 (December 20, 2023): 236–45. http://dx.doi.org/10.59670/ml.v20is13.6289.

Full text
Abstract:
The exponential progress of nanoelectronic devices necessitates the development of novel materials and production methodologies to fulfill the escalating demands for enhanced performance. This research aims to answer the current need for high-performance materials by proposing a revolutionary approach known as Germanium Nanowires for Advanced Nanoelectronic Devices (GeNW-ANED). GeNW-ANED achieves the integration of GeNW growth with advanced nanoelectronic applications. The system has several distinctive attributes, such as meticulous regulation of nanowire fabrication, adjustable electrical characteristics, and improved thermal qualities. The GeNW-ANED method exhibits exceptional performance across multiple experimental metrics, encompassing Electrical Conductivity (1.70 S/cm), Carrier Mobility (1685.83 cm²/Vs), Dielectric Constant (4.73), Specific Capacity (325.00 mAh/g), Growth Rate (5.93 nm/s), and Thermal Conductivity (3.47 W/mK). The impressive results achieved by GeNW-ANED establish it as a prospective contender for advanced nanoelectronic devices, offering the potential for improved performance and increased adaptability. The presented approach exhibits promise in influencing the trajectory of nanoelectronics, as it provides a sturdy basis for advancing the creation of forthcoming devices that possess enhanced electrical, thermal, and energy storage properties.
APA, Harvard, Vancouver, ISO, and other styles
29

OYUBU, OYUBU AKPOVI, and OKPEKI UFUOMA KAZEEM. "AN OVERVIEW OF NANOELECTRONICS AND NANODEVICES." Journal of Engineering Studies and Research 26, no. 3 (July 27, 2020): 165–72. http://dx.doi.org/10.29081/jesr.v26i3.220.

Full text
Abstract:
Nanoelectronics is a nascent area of making electronic devices at the atomic scale to utilize small-scale 'quantum' characteristics of nature. As the name suggests, Nanoelectronics refers to employing nanotechnology in building electronic devices/components; especially transistors. Thus, transistor devices which are so small such that inter-atomic cooperation and quantum mechanical characteristics cannot be ignored are known as Nanoelectronics. This article presents Nanoelectronics and Nanodevices, which are the critical enablers that will not only enable mankind to exploit the ultimate technological capabilities of electronic, mechanical, magnetic, and biological systems but also have the potential to play a part in transforming of the systems thus giving rise to new trends that will revolutionize our life style.
APA, Harvard, Vancouver, ISO, and other styles
30

Schrecongost, Dustin, Hai-Tian Zhang, Roman Engel-Herbert, and Cheng Cen. "Oxygen vacancy dynamics in monoclinic metallic VO2 domain structures." Applied Physics Letters 120, no. 8 (February 21, 2022): 081602. http://dx.doi.org/10.1063/5.0083771.

Full text
Abstract:
It was demonstrated recently that the nano-optical and nanoelectronic properties of VO2 can be spatially programmed through the local injection of oxygen vacancies by atomic force microscope writing. In this work, we study the dynamic evolution of the patterned domain structures as a function of the oxygen vacancy concentration and the time. A threshold doping level is identified that is critical for both the metal–insulator transition and the defect stabilization. The diffusion of oxygen vacancies in the monoclinic phase is also characterized, which is directly responsible for the short lifetimes of sub-100 nm domain structures. This information is imperative for the development of oxide nanoelectronics through defect manipulations.
APA, Harvard, Vancouver, ISO, and other styles
31

Zhuravleva, L. M., Y. A. Nikulina, and A. C. Lebedeva. "PROSPECTS OF GRAPHENE NANOELECTRONICS." World of Transport and Transportation 14, no. 1 (February 28, 2016): 72–78. http://dx.doi.org/10.30932/1992-3252-2016-14-1-8.

Full text
Abstract:
[For the English abstract and full text of the article please see the attached PDF-File (English version follows Russian version)].ABSTRACT The article with regard to transport developments deals with topical issues of improving electronics engineering and of transition to new technological structures associated with nanotechnology. It is noted that the main direction of evolution of nanoelectronics is linked to new electronics components based on new materials like graphene. Possibility and prospect of replacing traditional and most used silicon materials with graphene are reviewed. Brief information about methods of manufacturing, benefits and advantages of the use of graphene is followed by the arguments in favor of development of technique capable to open the band gap, allowing transition of graphene into semiconductor. Methods of mass commercial manufacturing of graphene semiconductor are discussed. Keywords: transport, science, functional material, graphene, graphite, electronics, nanoelectronics, nanotechnology. REFERENCES 1.Graphene.[Electronic source]: https://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D1%84%D0%B 5%D0%BD.Last accessed 27.11.2015. 2.Poverennaya, M.Graphene boom.Results [Grafenovyj bum: itogi].Nanotehnologicheskoe soobshhestvo, Iss.October 26,2012.[Electronic source]: http://www.nanometer.ru/2012/10/26/13512365078102_298275.html.Last accessed 27.11.2015. 3.Nobel Prize in physics was awarded for creation of graphene [Za sozdanie grafena prisuzhdena Nobelevskaja premija v oblasti fizike].[Electronic source]: http://venture-biz.ru/tekhnologii-innovatsii/93-grafen-nobelevskaya-premiya.Last accessed 27.11.2015. 4.Zhuravleva, L.M., Plekhanov, V. G.Isotopic creation of semiconductor graphene [Izotopicheskoe sozdanie poluprovodnikovogo grafena].Nanotehnika, 2012, Iss.3, pp.34-39. 5.Graphene.Physics [Grafen. Fizika].[Electronic source]: http://4108.ru/u/grafen_-_fizika.Last accessed 27.11.2015. 6.Yudintsev, V.Graphene.Nanoelectronics is rapidly gaining strength [Grafen. Nanoelektronika stremitel’no nabiraet sily].Elektronika, nauka, tehnologija, biznes, 2009, Iss.6.[Electronic source]: http://www.electronics.ru/ journal/article/269.Last accessed 27.11.2015. 7.Samardak, Alexander.Graphene, new methods of synthesis and the latest advances [Grafen: novye metody poluchenija i poslednie dostizhenija].Elementy.Iss.30.09.2008.[Electronic source]: http://elementy.ru/ novosti_nauki/430857/Grafen_novye_metody_ polucheniya_i_poslednie_dostizheniya.Last accessed 27.11.2015. 8.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A. A.Electric Field Effect in Atomically Thin Carbon Films.Science, V. 306, 22 October 2004, pp.666-669. 9.Bekyarova, E., Itkis, M.E., Cabrera, N., Zhao, B., Yu, A., Gao, J., Haddon R. C.Electronic Properties of Single-walled Carbon Nanotube Networks.Journal of American Chemical Society, 2005, Vol.127, No.16, pp.5990-5995. 10.Palnitkar, U.A., Kashid, R.V., More, M.A., Joag, D.S., Panchakarla, L.S., Rao, C.N.R.Remarkably Low Turn-on Field Emission in Undoped, Nitrogen-doped, and Boron-doped Graphene.Applied Physics Letters, 2010, Vol.97, No.6, pp.063102-063102. 11.Chernozatonsky, L.A., Sorokin, P.B., Belova, E.E., Bruening, J., Fedorov, A. S.Superlattices consisting of «lines» of adsorbed hydrogen atom pairs on graphene [Sverhreshetki, sostojashhie iz «linij» adsorbirovannyh par atomov vodoroda na grafene].Pis’ma v ZhETF, 2007, Vol.85, Iss.1, pp.84-89. 12.Novoselov, K. S.Graphene: Materials of Flatland [Grafen: Materialy Flatlandii].UFN, 2011, Vol.181, pp.1299-1311. 13.McCann E., Koshino M.The Electronic Properties of Bilayer Graphene // Reports on Progress in Physics, 2013, Vol.76, No.5, pp.056503(28). 14.Chernozatonsky, L.A., Sorokin, P.B., Belova, E.E., Bruening, J., Fedorov, A. S.Superlattices metal - semiconductor (semimetal) on a graphite sheet with vacancies [Sverhreshetki metall - poluprovodnik (polumetall) na grafitovom liste s vakansijami].Pis’ma v ZhETF, 2006, Vol.84, Iss.3, pp.141-145.
APA, Harvard, Vancouver, ISO, and other styles
32

Alshareef, H. N., M. A. Quevedo-Lopez, and P. Majhi. "Contact materials for nanoelectronics." MRS Bulletin 36, no. 2 (February 2011): 90–94. http://dx.doi.org/10.1557/mrs.2011.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dresselhaus, Mildred. "Carbon connections promise nanoelectronics." Physics World 9, no. 5 (May 1996): 18–19. http://dx.doi.org/10.1088/2058-7058/9/5/18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Parpura, Vladimir. "Nanoelectronics for the heart." Nature Nanotechnology 11, no. 9 (June 27, 2016): 738–39. http://dx.doi.org/10.1038/nnano.2016.123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zheng, Gengfeng. "Nanoelectronics Aiming at Cancer." Clinical Chemistry 61, no. 4 (April 1, 2015): 664–65. http://dx.doi.org/10.1373/clinchem.2014.237453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Russer, Peter, Nikolaus Fichtner, Paolo Lugli, Wolfgang Porod, Johannes A. Russer, and Hristomir Yordanov. "Nanoelectronics-Based Integrate Antennas." IEEE Microwave Magazine 11, no. 7 (December 2010): 58–71. http://dx.doi.org/10.1109/mmm.2010.938570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gimzewski, James. "Molecules, nanophysics and nanoelectronics." Physics World 11, no. 6 (June 1998): 29–34. http://dx.doi.org/10.1088/2058-7058/11/6/25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Alexe, Marin. "Nanoelectronics needs new materials." Physics World 12, no. 1 (January 1999): 21–22. http://dx.doi.org/10.1088/2058-7058/12/1/22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cosby, Ronald M., Dustin R. Humm, and Yong S. Joe. "Nanoelectronics using conductance quantization." Journal of Applied Physics 83, no. 7 (April 1998): 3914–16. http://dx.doi.org/10.1063/1.366626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Dubourdieu, C., I. Gelard, O. Salicio, G. Saint Girons, B. Vilquin, and G. Hollinger. "Oxides heterostructures for nanoelectronics." International Journal of Nanotechnology 7, no. 4/5/6/7/8 (2010): 320. http://dx.doi.org/10.1504/ijnt.2010.031723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gargini, Paolo A. "Silicon Nanoelectronics and Beyond." Journal of Nanoparticle Research 6, no. 1 (February 2004): 11–26. http://dx.doi.org/10.1023/b:nano.0000023248.65742.6c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

WONG, H. S. PHILIP. "NANOELECTRONICS – OPPORTUNITIES AND CHALLENGES." International Journal of High Speed Electronics and Systems 16, no. 01 (March 2006): 83–94. http://dx.doi.org/10.1142/s0129156406003540.

Full text
Abstract:
As device sizes approach the nanoscale, new opportunities arise from harnessing the physical and chemical properties at the nanoscale. It is now feasible to contemplate new nanoelectronic systems based on new devices with completely new system architectures. This paper will give an overview of the materials, technology, and device opportunities in the nanoscale era. So far, much of the nanoscale sciences have been researched in the physics, chemistry, and materials science communities. While there have been plenty of good science in the nano world, nanotechnology is still at its infancy. The engineering community is poised to make a major impact in transforming good nanoscience into useful nanotechnology. The disciplined performance benchmarking against alternatives as practiced by the engineering community will prove to be invaluable to the development of new nanotechnologies. Examples of such performance benchmarking exercises will be shown and directions for future work will be suggested.
APA, Harvard, Vancouver, ISO, and other styles
43

Freitag, Marcus. "Nanoelectronics goes flat out." Nature Nanotechnology 3, no. 8 (August 2008): 455–57. http://dx.doi.org/10.1038/nnano.2008.219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mertens, Paul. "Accoustic cleaning in nanoelectronics." Journal of the Acoustical Society of America 123, no. 5 (May 2008): 3045. http://dx.doi.org/10.1121/1.2932736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Arefeva, P. A., and R. A. Brazhe. "Supracrystalline nanoribbons for nanoelectronics." Journal of Physics: Conference Series 345 (February 9, 2012): 012004. http://dx.doi.org/10.1088/1742-6596/345/1/012004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fang, Yan, Junfeng Hou, and Ying Fang. "Flexible bio-interfaced nanoelectronics." Journal of Materials Chemistry C 2, no. 7 (2014): 1178. http://dx.doi.org/10.1039/c3tc32322f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kosiel, Kamil. "MBE—Technology for nanoelectronics." Vacuum 82, no. 10 (June 2008): 951–55. http://dx.doi.org/10.1016/j.vacuum.2008.01.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Žutić, Igor, Alex Matos-Abiague, Benedikt Scharf, Tong Zhou, Hanan Dery, and Kirill Belashchenko. "Nanoelectronics with proximitized materials." Solid-State Electronics 155 (May 2019): 93–98. http://dx.doi.org/10.1016/j.sse.2019.03.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Palumbo, Gaetano. "Silicon Nanoelectronics - [Book Review]." IEEE Circuits and Devices Magazine 22, no. 5 (September 2006): 59. http://dx.doi.org/10.1109/mcd.2006.273010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Soldatov, E. S., S. P. Gubin, I. A. Maximov, G. B. Khomutov, V. V. Kolesov, A. N. Sergeev-Cherenkov, V. V. Shorokhov, K. S. Sulaimankulov, and D. B. Suyatin. "Molecular cluster based nanoelectronics." Microelectronic Engineering 69, no. 2-4 (September 2003): 536–48. http://dx.doi.org/10.1016/s0167-9317(03)00344-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography