Journal articles on the topic 'Nanoelectronic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanoelectronic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
HULL, ROBERT, RICHARD MARTEL, and J. M. XU. "NANOELECTRONICS: SOME CURRENT ASPECTS AND PROSPECTS." International Journal of High Speed Electronics and Systems 12, no. 02 (June 2002): 353–64. http://dx.doi.org/10.1142/s0129156402001174.
Full textSnider, G., P. Kuekes, T. Hogg, and R. Stanley Williams. "Nanoelectronic architectures." Applied Physics A 80, no. 6 (March 2005): 1183–95. http://dx.doi.org/10.1007/s00339-004-3154-4.
Full textCsurgay, Árpád I., and Wolfgang Porod. "Nanoelectronic Circuits." International Journal of Circuit Theory and Applications 38, no. 9 (September 15, 2010): 881–82. http://dx.doi.org/10.1002/cta.727.
Full textMelnyk, Oleksandr, and Viktoriia Kozarevych. "SIMULATION OF PROGRAMMABLE SINGLE-ELECTRON NANOCIRCUITS." Bulletin of the National Technical University "KhPI". Series: Mathematical modeling in engineering and technologies, no. 1 (March 5, 2021): 64–68. http://dx.doi.org/10.20998/2222-0631.2020.01.05.
Full textSha, Junjiang, Chong Xu, and Ke Xu. "Progress of Research on the Application of Nanoelectronic Smelling in the Field of Food." Micromachines 13, no. 5 (May 18, 2022): 789. http://dx.doi.org/10.3390/mi13050789.
Full textWang, Yanfeng, Haoping Ji, and Junwei Sun. "Design and Control for Four-Variable Chaotic Nanoelectronic Circuits Based on DNA Reaction Networks." Journal of Nanoelectronics and Optoelectronics 16, no. 8 (August 1, 2021): 1248–62. http://dx.doi.org/10.1166/jno.2021.3062.
Full textSangwan, Vinod K., and Mark C. Hersam. "Neuromorphic nanoelectronic materials." Nature Nanotechnology 15, no. 7 (March 2, 2020): 517–28. http://dx.doi.org/10.1038/s41565-020-0647-z.
Full textItoh, Kohei. "Isotopes for nanoelectronic devices." Nature Nanotechnology 4, no. 8 (August 2009): 480–81. http://dx.doi.org/10.1038/nnano.2009.214.
Full textGoldhaber-Gordon, D., M. S. Montemerlo, J. C. Love, G. J. Opiteck, and J. C. Ellenbogen. "Overview of nanoelectronic devices." Proceedings of the IEEE 85, no. 4 (April 1997): 521–40. http://dx.doi.org/10.1109/5.573739.
Full textLuscombe, J. H., and W. R. Frensley. "Models for nanoelectronic devices." Nanotechnology 1, no. 2 (October 1, 1990): 131–40. http://dx.doi.org/10.1088/0957-4484/1/2/002.
Full textBeausoleil, R. G., P. J. Kuekes, G. S. Snider, Shih-Yuan Wang, and R. S. Williams. "Nanoelectronic and Nanophotonic Interconnect." Proceedings of the IEEE 96, no. 2 (February 2008): 230–47. http://dx.doi.org/10.1109/jproc.2007.911057.
Full textde Alencar Braga, Bianca Maria Matos, and Janaina Gonçalves Guimarães. "Nanoelectronic content-addressable memory." Microelectronics Journal 45, no. 8 (August 2014): 1118–24. http://dx.doi.org/10.1016/j.mejo.2014.05.022.
Full textRusser, Peter, and Johannes A. Russer. "Nanoelectronic RF Josephson Devices." IEEE Transactions on Microwave Theory and Techniques 59, no. 10 (October 2011): 2685–701. http://dx.doi.org/10.1109/tmtt.2011.2164549.
Full textPark, Chul Soon, Hyeonseok Yoon, and Oh Seok Kwon. "Graphene-based nanoelectronic biosensors." Journal of Industrial and Engineering Chemistry 38 (June 2016): 13–22. http://dx.doi.org/10.1016/j.jiec.2016.04.021.
Full textStar, A., T. R. Han, V. Joshi, J. C. P. Gabriel, and G. Grüner. "Nanoelectronic Carbon Dioxide Sensors." Advanced Materials 16, no. 22 (October 29, 2004): 2049–52. http://dx.doi.org/10.1002/adma.200400322.
Full textSchrecongost, Dustin, Hai-Tian Zhang, Roman Engel-Herbert, and Cheng Cen. "Oxygen vacancy dynamics in monoclinic metallic VO2 domain structures." Applied Physics Letters 120, no. 8 (February 21, 2022): 081602. http://dx.doi.org/10.1063/5.0083771.
Full textHomberger, Melanie, and Ulrich Simon. "On the application potential of gold nanoparticles in nanoelectronics and biomedicine." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1915 (March 28, 2010): 1405–53. http://dx.doi.org/10.1098/rsta.2009.0275.
Full textGarg, M., and K. Kern. "Attosecond coherent manipulation of electrons in tunneling microscopy." Science 367, no. 6476 (November 14, 2019): 411–15. http://dx.doi.org/10.1126/science.aaz1098.
Full textStrukov, Dmitri B., and Konstantin K. Likharev. "Defect-Tolerant Architectures for Nanoelectronic Crossbar Memories." Journal of Nanoscience and Nanotechnology 7, no. 1 (January 1, 2007): 151–67. http://dx.doi.org/10.1166/jnn.2007.18012.
Full textMillar, Campbell, Scott Roy, Andrew R. Brown, and Asen Asenov. "Simulating the bio–nanoelectronic interface." Journal of Physics: Condensed Matter 19, no. 21 (May 1, 2007): 215205. http://dx.doi.org/10.1088/0953-8984/19/21/215205.
Full textGromov, D. V., V. V. Elesin, G. V. Petrov, I. I. Bobrinetskii, and V. K. Nevolin. "Radiation effects in nanoelectronic elements." Semiconductors 44, no. 13 (December 2010): 1699–702. http://dx.doi.org/10.1134/s1063782610130166.
Full textChen, An. "(Invited) Dielectrics in Nanoelectronic Computing." ECS Meeting Abstracts MA2020-01, no. 15 (May 1, 2020): 1040. http://dx.doi.org/10.1149/ma2020-01151040mtgabs.
Full textRoychowdhury, V. P., D. B. Janes, and S. Bandyopadhyay. "Nanoelectronic architecture for Boolean logic." Proceedings of the IEEE 85, no. 4 (April 1997): 574–88. http://dx.doi.org/10.1109/5.573742.
Full textOgnev, A. V., E. V. Sukovatitsina, K. S. Diga, L. A. Chebotkevich, A. S. Samardak, S. M. Janjan, and F. Nasirpouri. "Granulated media for nanoelectronic applications." Journal of Physics: Conference Series 345 (February 9, 2012): 012010. http://dx.doi.org/10.1088/1742-6596/345/1/012010.
Full textSacchetti, Andrea. "Electrical current in nanoelectronic devices." Physics Letters A 374, no. 39 (August 2010): 4057–60. http://dx.doi.org/10.1016/j.physleta.2010.08.001.
Full textTkachenko, O. A., V. A. Tkachenko, Z. D. Kvon, A. V. Latyshev, and A. L. Aseev. "Introscopy of quantum nanoelectronic devices." Nanotechnologies in Russia 5, no. 9-10 (October 2010): 676–95. http://dx.doi.org/10.1134/s1995078010090132.
Full textMartorell, Ferran, and Antonio Rubio. "Cell architecture for nanoelectronic design." Microelectronics Journal 39, no. 8 (August 2008): 1041–50. http://dx.doi.org/10.1016/j.mejo.2007.10.008.
Full textLin, Yung-Chen, Yu Chen, and Yu Huang. "Nanoelectronic Devices from Nanowire Heterostructures." ECS Transactions 33, no. 9 (December 17, 2019): 3–11. http://dx.doi.org/10.1149/1.3493678.
Full textTürel, Özgür, Jung Hoon Lee, Xiaolong Ma, and Konstantin K. Likharev. "Neuromorphic architectures for nanoelectronic circuits." International Journal of Circuit Theory and Applications 32, no. 5 (September 2004): 277–302. http://dx.doi.org/10.1002/cta.282.
Full textLee, Jung Hoon, and Konstantin K. Likharev. "Defect-tolerant nanoelectronic pattern classifiers." International Journal of Circuit Theory and Applications 35, no. 3 (May 2007): 239–64. http://dx.doi.org/10.1002/cta.410.
Full textRandall, John, Gary Frazier, Alan Seabaugh, and Tom Broekaert. "Potential nanoelectronic integrated circuit technologies." Microelectronic Engineering 32, no. 1-4 (September 1996): 15–30. http://dx.doi.org/10.1016/0167-9317(96)00002-0.
Full textGerousis, C., S. M. Goodnick, and W. Porod. "Toward nanoelectronic cellular neural networks." International Journal of Circuit Theory and Applications 28, no. 6 (2000): 523–35. http://dx.doi.org/10.1002/1097-007x(200011/12)28:6<523::aid-cta125>3.0.co;2-r.
Full textSharma, Pankaj, Peggy Schoenherr, and Jan Seidel. "Functional Ferroic Domain Walls for Nanoelectronics." Materials 12, no. 18 (September 10, 2019): 2927. http://dx.doi.org/10.3390/ma12182927.
Full textEom, Kitae, Muqing Yu, Jinsol Seo, Dengyu Yang, Hyungwoo Lee, Jung-Woo Lee, Patrick Irvin, Sang Ho Oh, Jeremy Levy, and Chang-Beom Eom. "Electronically reconfigurable complex oxide heterostructure freestanding membranes." Science Advances 7, no. 33 (August 2021): eabh1284. http://dx.doi.org/10.1126/sciadv.abh1284.
Full textZhang, Fang, Xianqi Dai, Liangliang Shang, and Wei Li. "Tunable Band Alignment in the Arsenene/WS2 Heterostructure by Applying Electric Field and Strain." Crystals 12, no. 10 (September 30, 2022): 1390. http://dx.doi.org/10.3390/cryst12101390.
Full textDmitriev, Victor, Fernando Gomes, and Clerisson Nascimento. "Nanoelectronic Devices Based on Carbon Nanotubes." Journal of Aerospace Technology and Management 7, no. 1 (February 22, 2015): 53–62. http://dx.doi.org/10.5028/jatm.v7i1.358.
Full textZhbanov, A. I., N. I. Sinitsyn, and G. V. Torgashov. "Nanoelectronic Devices Based on Carbon Nanotubes." Radiophysics and Quantum Electronics 47, no. 5/6 (May 2004): 435–52. http://dx.doi.org/10.1023/b:raqe.0000046318.53459.6e.
Full textLee, Sang-Kwon, and Ahmad Umar. "A Special Section on Nanoelectronic Devices." Journal of Nanoelectronics and Optoelectronics 12, no. 10 (October 1, 2017): 1105–7. http://dx.doi.org/10.1166/jno.2017.2249.
Full textWorschech, L., D. Hartmann, S. Reitzenstein, and A. Forchel. "Nonlinear properties of ballistic nanoelectronic devices." Journal of Physics: Condensed Matter 17, no. 29 (July 8, 2005): R775—R802. http://dx.doi.org/10.1088/0953-8984/17/29/r01.
Full textForshaw, M., R. Stadler, D. Crawley, and K. Nikoli. "A short review of nanoelectronic architectures." Nanotechnology 15, no. 4 (February 12, 2004): S220—S223. http://dx.doi.org/10.1088/0957-4484/15/4/019.
Full textStrukov, Dmitri B., and Konstantin K. Likharev. "Prospects for terabit-scale nanoelectronic memories." Nanotechnology 16, no. 1 (December 11, 2004): 137–48. http://dx.doi.org/10.1088/0957-4484/16/1/028.
Full textLikharev, Konstantin K. "CrossNets: Neuromorphic Hybrid CMOS/Nanoelectronic Networks." Science of Advanced Materials 3, no. 3 (June 1, 2011): 322–31. http://dx.doi.org/10.1166/sam.2011.1177.
Full textKim, Jooho, Hiro Akinaga, Nobufumi Atoda, and Junji Tominaga. "Nanoelectronic devices with reactively fabricated semiconductor." Applied Physics Letters 80, no. 15 (April 15, 2002): 2764–66. http://dx.doi.org/10.1063/1.1470711.
Full textSköldberg, Jonas, and Göran Wendin. "Reconfigurable logic in nanoelectronic switching networks." Nanotechnology 18, no. 48 (October 30, 2007): 485201. http://dx.doi.org/10.1088/0957-4484/18/48/485201.
Full textHe, Kai, and John Cumings. "Diagnosing Nanoelectronic Components Using Coherent Electrons." Nano Letters 13, no. 10 (October 2013): 4815–19. http://dx.doi.org/10.1021/nl402509c.
Full textVittala, Sandeepa Kulala, and Da Han. "DNA-Guided Assemblies toward Nanoelectronic Applications." ACS Applied Bio Materials 3, no. 5 (January 31, 2020): 2702–22. http://dx.doi.org/10.1021/acsabm.9b01178.
Full textHobden, Jon. "Tunable graphene bandgap opens nanoelectronic opportunities." Materials Today 12, no. 7-8 (July 2009): 8. http://dx.doi.org/10.1016/s1369-7021(09)70188-9.
Full textBai, Ping, Hong Son Chu, Mingxia Gu, Oka Kurniawan, and Erping Li. "Integration of plasmonics into nanoelectronic circuits." Physica B: Condensed Matter 405, no. 14 (July 2010): 2978–81. http://dx.doi.org/10.1016/j.physb.2010.01.017.
Full textCumings, J., T. Brintlinger, K. Baloch, and Y. Qi. "In-Situ Operation of Nanoelectronic Devices." Microscopy and Microanalysis 12, S02 (July 31, 2006): 486–87. http://dx.doi.org/10.1017/s1431927606069169.
Full textGamiz, F., A. Godoy, L. Donetti, C. Sampedro, J. B. Roldan, F. Ruiz, I. Tienda, N. Rodriguez, and F. Jimenez-Molinos. "Monte Carlo simulation of nanoelectronic devices." Journal of Computational Electronics 8, no. 3-4 (October 2009): 174–91. http://dx.doi.org/10.1007/s10825-009-0295-x.
Full text