Academic literature on the topic 'Nanoelectronic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoelectronic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanoelectronic"
HULL, ROBERT, RICHARD MARTEL, and J. M. XU. "NANOELECTRONICS: SOME CURRENT ASPECTS AND PROSPECTS." International Journal of High Speed Electronics and Systems 12, no. 02 (June 2002): 353–64. http://dx.doi.org/10.1142/s0129156402001174.
Full textSnider, G., P. Kuekes, T. Hogg, and R. Stanley Williams. "Nanoelectronic architectures." Applied Physics A 80, no. 6 (March 2005): 1183–95. http://dx.doi.org/10.1007/s00339-004-3154-4.
Full textCsurgay, Árpád I., and Wolfgang Porod. "Nanoelectronic Circuits." International Journal of Circuit Theory and Applications 38, no. 9 (September 15, 2010): 881–82. http://dx.doi.org/10.1002/cta.727.
Full textMelnyk, Oleksandr, and Viktoriia Kozarevych. "SIMULATION OF PROGRAMMABLE SINGLE-ELECTRON NANOCIRCUITS." Bulletin of the National Technical University "KhPI". Series: Mathematical modeling in engineering and technologies, no. 1 (March 5, 2021): 64–68. http://dx.doi.org/10.20998/2222-0631.2020.01.05.
Full textSha, Junjiang, Chong Xu, and Ke Xu. "Progress of Research on the Application of Nanoelectronic Smelling in the Field of Food." Micromachines 13, no. 5 (May 18, 2022): 789. http://dx.doi.org/10.3390/mi13050789.
Full textWang, Yanfeng, Haoping Ji, and Junwei Sun. "Design and Control for Four-Variable Chaotic Nanoelectronic Circuits Based on DNA Reaction Networks." Journal of Nanoelectronics and Optoelectronics 16, no. 8 (August 1, 2021): 1248–62. http://dx.doi.org/10.1166/jno.2021.3062.
Full textSangwan, Vinod K., and Mark C. Hersam. "Neuromorphic nanoelectronic materials." Nature Nanotechnology 15, no. 7 (March 2, 2020): 517–28. http://dx.doi.org/10.1038/s41565-020-0647-z.
Full textItoh, Kohei. "Isotopes for nanoelectronic devices." Nature Nanotechnology 4, no. 8 (August 2009): 480–81. http://dx.doi.org/10.1038/nnano.2009.214.
Full textGoldhaber-Gordon, D., M. S. Montemerlo, J. C. Love, G. J. Opiteck, and J. C. Ellenbogen. "Overview of nanoelectronic devices." Proceedings of the IEEE 85, no. 4 (April 1997): 521–40. http://dx.doi.org/10.1109/5.573739.
Full textLuscombe, J. H., and W. R. Frensley. "Models for nanoelectronic devices." Nanotechnology 1, no. 2 (October 1, 1990): 131–40. http://dx.doi.org/10.1088/0957-4484/1/2/002.
Full textDissertations / Theses on the topic "Nanoelectronic"
Rao, Wenjing. "Towards reliable nanoelectronic systems." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3291919.
Full textTitle from first page of PDF file (viewed March 18, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 193-199).
Chiu, Pit Ho Patrio 1977. "Bismuth based nanoelectronic devices." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100337.
Full textBlackburn, A. M. "Multiple-gate vacuum nanoelectronic devices." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596691.
Full textMaassen, Jesse. "First principles simulations of nanoelectronic devices." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106463.
Full textComme la miniaturisation des dispositifs commence à révéler la nature atomique des matériaux, où les liaisons chimiques et les effets quantiques sont importants, nous devons recourir à une théorie sans paramètre pour obtenir des prédictions. Cette thèse étudie les propriétés de transport quantique des dispositifs nanoélectroniques en utilisant des méthodes ab initio atomiques. Notre formalisme théorique combine la théorie de la fonctionnelle de la densité (DFT) avec les fonctions de Green hors-équilibres (NEGF). Résoudre l'Hamiltonien DFT de manière auto-consistante avec la densité de charge NEGF permet de simuler des systèmes hors-équilibres sans utiliser des paramètres. Cette technique sophistiquée a été utilisée pour étudier trois problèmes liés au domaine de la nanoélectronique. Premièrement, nous avons étudié le rôle des contacts métalliques (Cu, Ni et Co) sur les caractéristiques de transport des dispositifs à base de graphène. Dans le cas du Cu, le graphène est simplement dopé en électrons (décalage du niveau de Fermi = −0.7 eV) ce qui crée une signature unique dans le profil de conduction permettant d'extraire le niveau de dopage. Avec Ni et Co, la formation de bandes interdites dépendantes du spin détruit la dispersion linéaire des états du graphène ce qui permet d'atteindre une efficacité d'injection de spin de 60% et 80%, respectivement. Deuxièmement, nous avons étudié comment des distributions de dopage contrôlées dans les nano-transistors en Si pourraient supprimer les courants de fuite à l'état OFF. En supposant que les dopants (B et P) sont confinés dans des régions de 1.1 nm dans le canal, nous avons découvert de grandes variations de conductances (Gmax/Gmin ~ 10^5) en fonction de l'emplacement du dopage. Les plus grandes fluctuations surviennent lorsque les dopants sont à proximité des électrodes. Nos résultats indiquent que si les dopants sont éloignés des électrodes, d'une distance égale à 20% de la longueur du canal, le courant tunnel peut être supprimé par un facteur de 2 par rapport au dopage uniforme. Ainsi, l'ingénierie du dopage pourrait réduire les variations d'un dispositif à un autre et diminuer le courant de fuite. Dernièrement, nous avons intégré un modèle de déphasage dans notre théorie de transport ab initio qui a été utilisé pour étudier l'effet des collisions dans trois systèmes différents. Nos calculs ont révélé le rôle complexe du déphasage; parfois la conduction augmente ou diminue selon le système. Nous avons démontré que la rétrodiffusion, présent dans ce modèle, permet de récupérer la loi d'Ohm.
Huang, Jun, and 黃俊. "Efficiency enhancement for nanoelectronic transport simulations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196031.
Full textpublished_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
Mirza, Muhammad M. "Nanofabrication of silicon nanowires and nanoelectronic transistors." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6495/.
Full textCoker, Ayodeji. "Performance analysis of fault-tolerant nanoelectronic memories." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2666.
Full textSarsby, Matt. "Nanoelectronic and nanomechanical devices for low temperature applications." Thesis, Lancaster University, 2017. http://eprints.lancs.ac.uk/84447/.
Full textJiang, Zhe. "Novel nanowire structures and devices for nanoelectronic bioprobes." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467307.
Full textChemistry and Chemical Biology
Kim, Jungyup. "Effective germanium surface preparation methods for nanoelectronic applications /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textBooks on the topic "Nanoelectronic"
Madkour, Loutfy H. Nanoelectronic Materials. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21621-4.
Full textJha, Niraj K., and Deming Chen, eds. Nanoelectronic Circuit Design. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7609-3.
Full textChen, An, James Hutchby, Victor Zhirnov, and George Bourianoff, eds. Emerging Nanoelectronic Devices. Chichester, United Kingdom: John Wiley & Sons Ltd, 2014. http://dx.doi.org/10.1002/9781118958254.
Full textEvtukh, Anatoliy, Hans Hartnagel, Oktay Yilmazoglu, Hidenori Mimura, and Dimitris Pavlidis. Vacuum Nanoelectronic Devices. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119037989.
Full textJha, Niraj K., and Deming Chen. Nanoelectronic circuit design. New York: Springer, 2011.
Find full textJha, Niraj K., and Deming Chen. Nanoelectronic circuit design. New York: Springer, 2011.
Find full textSarkar, Angsuman, and Arpan Deyasi. Low-Dimensional Nanoelectronic Devices. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003277378.
Full textLabbé, Christophe, Subhananda Chakrabarti, Gargi Raina, and B. Bindu, eds. Nanoelectronic Materials and Devices. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7191-1.
Full textter Maten, E. Jan W., Hans-Georg Brachtendorf, Roland Pulch, Wim Schoenmaker, and Herbert De Gersem, eds. Nanoelectronic Coupled Problems Solutions. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30726-4.
Full textJoodaki, Mojtaba. Selected Advances in Nanoelectronic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31350-9.
Full textBook chapters on the topic "Nanoelectronic"
Raushan, Mohd Adil, Naushad Alam, and Mohd Jawaid Siddiqui. "Emerging Nanoelectronic Devices." In Nanoelectronic Devices for Hardware and Software Security, 1–32. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003126645-1.
Full textFossum, J. G. "Teaching Nanoelectronic Devices." In Microelectronics Education, 117. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2651-5_20.
Full textOates, Anthony S., and K. P. Cheung. "Reliability of Nanoelectronic Devices." In Nanoelectronics, 317–30. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527800728.ch13.
Full textHutchby, James. "The Nanoelectronics Roadmap." In Emerging Nanoelectronic Devices, 1–14. Chichester, United Kingdom: John Wiley & Sons Ltd, 2014. http://dx.doi.org/10.1002/9781118958254.ch01.
Full textChen, An, James Hutchby, Victor V. Zhirnov, and George Bourianoff. "Outlook for Nanoelectronic Devices." In Emerging Nanoelectronic Devices, 511–28. Chichester, United Kingdom: John Wiley & Sons Ltd, 2014. http://dx.doi.org/10.1002/9781118958254.ch26.
Full textStanisavljevic, Milos, Alexandre Schmid, and Yusuf Leblebici. "Reliability of Nanoelectronic VLSI." In Advanced Circuits for Emerging Technologies, 463–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118181508.ch18.
Full textKelly, M. J. "Manufacturability and Nanoelectronic Performance." In Future Trends in Microelectronics, 133–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118678107.ch10.
Full textChen, Deming, and Niraj K. Jha. "Introduction to Nanotechnology." In Nanoelectronic Circuit Design, 1–22. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7609-3_1.
Full textMohanram, Kartik, and Xuebei Yang. "Graphene Transistors and Circuits." In Nanoelectronic Circuit Design, 349–76. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7609-3_10.
Full textKoo, Kyung-Hoae, and Krishna C. Saraswat. "Study of Performances of Low-k Cu, CNTs, and Optical Interconnects." In Nanoelectronic Circuit Design, 377–407. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7609-3_11.
Full textConference papers on the topic "Nanoelectronic"
Skorek, Adam W., Anna Gryko-Nikitin, and Joanicjusz Nazarko. "Genetic Algorithm for Nanoscale Electro-Thermal Optimization." In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33827.
Full text"Nanoelectronic Devices II." In 2006 64th Device Research Conference. IEEE, 2006. http://dx.doi.org/10.1109/drc.2006.305076.
Full text"Session: Nanoelectronic devices." In 2014 IEEE 29th International Conference on Microelectronics (MIEL). IEEE, 2014. http://dx.doi.org/10.1109/miel.2014.6842093.
Full textHagouel, P. I., and I. G. Karafyllidis. "Nanoelectronic graphene devices." In 2017 IEEE 30th International Conference on Microelectronics (MIEL). IEEE, 2017. http://dx.doi.org/10.1109/miel.2017.8190069.
Full textYilmazoglu, O. "THz technology with nanoelectronic and vacuum nanoelectronic devices, a tutorial." In 2017 30th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2017. http://dx.doi.org/10.1109/ivnc.2017.8051529.
Full textTakaura, Norikatsu, and Dirk Wouters. "Solid-State and Nanoelectronic Devices - Phase Change Memory and New Approaches for Nanoelectronics." In 2007 IEEE International Electron Devices Meeting. IEEE, 2007. http://dx.doi.org/10.1109/iedm.2007.4418929.
Full textWang, George T., Keshab R. Sapkota, Barbara A. Kazanowska, A. Alec Talin, Francois Leonard, Brendan P. Gunning, and Kevin S. Jones. "GaN vacuum nanoelectronic devices." In Low-Dimensional Materials and Devices 2020, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam. SPIE, 2020. http://dx.doi.org/10.1117/12.2570577.
Full textNOVIK, E. G., I. V. SHEREMET, S. S. IVASHKEVICH, and I. I. ABRAMOV. "NANOELECTRONIC DEVICE SIMULATOR NANODEV." In Reviews and Short Notes to Nanomeeting '97. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814503938_0069.
Full textWang, George T., Keshab R. Sapkota, A. Alec T. Talin, Francois Leonard, Gyorgy Vizkelethy, and Brendan P. Gunning. "GaN vacuum nanoelectronic devices." In Low-Dimensional Materials and Devices 2022, edited by Nobuhiko P. Kobayashi, A. Alec Talin, Albert V. Davydov, and M. Saif Islam. SPIE, 2022. http://dx.doi.org/10.1117/12.2638041.
Full textAldridge, J. S., Andrew N. Cleland, R. Knobel, D. R. Schmidt, and C. S. Yung. "Nanoelectronic and nanomechanical systems." In International Symposium on Microelectronics and MEMS, edited by Neil W. Bergmann, Derek Abbott, Alex Hariz, and Vijay K. Varadan. SPIE, 2001. http://dx.doi.org/10.1117/12.449143.
Full textReports on the topic "Nanoelectronic"
Liu, Jie, and Mark W. Grinstaff. DNA for the Assembly of Nanoelectronic Devices Biotechnology and Nanoelectronics. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada433496.
Full textPeatman, William C. Nanoelectronic Modeling Software Development. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada340531.
Full textRodriguez, Rene, Joshua Pak, Andrew Holland, Alan Hunt, Thomas Bitterwolf, You Qiang, Leah Bergman, Christine Berven, Alex Punnoose, and Dmitri Tenne. Incorporation of Novel Nanostructured Materials into Solar Cells and Nanoelectronic Devices. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1029119.
Full textBrinker, C. Jeffrey, Darren Robert Dunphy, Carlee E. Ashley, Hongyou Fan, DeAnna Lopez, Regina Lynn Simpson, David Robert Tallant, et al. Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/883480.
Full textHam, Donhee, Xiaofeng Li, and William Andress. Nanoelectronic Initiative - GHz & THz Amplifier and Oscillator Circuits With ID Nanoscale Devices for Multispectral Heterodyning Detector Arrays. Fort Belvoir, VA: Defense Technical Information Center, October 2009. http://dx.doi.org/10.21236/ada510610.
Full textLawrence R. Sita. Ferrocene-Based Nanoelectronics. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/876179.
Full textPan, Wei, Taisuke Ohta, Laura Butler Biedermann, Carlos Gutierrez, C. M. Nolen, Stephen Wayne Howell, Thomas Edwin Beechem Iii, Kevin F. McCarty, and Anthony Joseph, III Ross. Enabling graphene nanoelectronics. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1029775.
Full textKiv, A., V. Soloviev, and Yu Shunin. Economic problems of nanoelectronics. Брама-Україна, May 2014. http://dx.doi.org/10.31812/0564/1281.
Full textKnight, Stephen, Joaquin V. Martinez de Pinillos, and Michele Buckley. Semiconductor microelectronics and nanoelectronics programs. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.ir.7010.
Full textKnight, Stephen, Joaquin V. Martinez de Pinillos, and Michele Buckley. Semiconductor microelectronics and nanoelectronics programs. Gaithersburg, MD: National Institute of Standards and Technology, 2004. http://dx.doi.org/10.6028/nist.ir.7121.
Full text