Academic literature on the topic 'Nanodomini'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanodomini.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nanodomini"
Okamoto, Yukihiro, Kaito Hamaguchi, Mayo Watanabe, Nozomi Watanabe, and Hiroshi Umakoshi. "Characterization of Phase Separated Planar Lipid Bilayer Membrane by Fluorescence Ratio Imaging and Scanning Probe Microscope." Membranes 12, no. 8 (August 9, 2022): 770. http://dx.doi.org/10.3390/membranes12080770.
Full textDrab, Mitja, David Stopar, Veronika Kralj-Iglič, and Aleš Iglič. "Inception Mechanisms of Tunneling Nanotubes." Cells 8, no. 6 (June 21, 2019): 626. http://dx.doi.org/10.3390/cells8060626.
Full textLiang, Pengbo, Thomas F. Stratil, Claudia Popp, Macarena Marín, Jessica Folgmann, Kirankumar S. Mysore, Jiangqi Wen, and Thomas Ott. "Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains." Proceedings of the National Academy of Sciences 115, no. 20 (April 30, 2018): 5289–94. http://dx.doi.org/10.1073/pnas.1721868115.
Full textKim, Kyou-Hyun, and Jian-Min Zuo. "Convergent-beam electron-diffraction-pattern symmetry of nanodomains in complex lead-based perovskite crystals." Acta Crystallographica Section A Foundations and Advances 70, no. 6 (September 20, 2014): 583–90. http://dx.doi.org/10.1107/s2053273314013643.
Full textLipke, Peter N., Caleen Ramsook, Melissa C. Garcia-Sherman, Desmond N. Jackson, Cho X. J. Chan, Michael Bois, and Stephen A. Klotz. "Between Amyloids and Aggregation Lies a Connection with Strength and Adhesion." New Journal of Science 2014 (February 2, 2014): 1–12. http://dx.doi.org/10.1155/2014/815102.
Full textFukata, Yuko, Ariane Dimitrov, Gaelle Boncompain, Ole Vielemeyer, Franck Perez, and Masaki Fukata. "Local palmitoylation cycles define activity-regulated postsynaptic subdomains." Journal of Cell Biology 202, no. 1 (July 8, 2013): 145–61. http://dx.doi.org/10.1083/jcb.201302071.
Full textDai, Xunhu, Z. Xu, Jie-Fang Li, and Dwight Viehland. "Effects of lanthanum modification on rhombohedral Pb(Zr1−xTix)O3 ceramics: Part II. Relaxor behavior versus enhanced antiferroelectric stability." Journal of Materials Research 11, no. 3 (March 1996): 626–38. http://dx.doi.org/10.1557/jmr.1996.0076.
Full textStelate, Ayoub, Eva Tihlaříková, Kateřina Schwarzerová, Vilém Neděla, and Jan Petrášek. "Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin." Biomolecules 11, no. 10 (September 26, 2021): 1407. http://dx.doi.org/10.3390/biom11101407.
Full textHuang, Dingquan, Yanbiao Sun, Zhiming Ma, Meiyu Ke, Yong Cui, Zichen Chen, Chaofan Chen, et al. "Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization." Proceedings of the National Academy of Sciences 116, no. 42 (October 1, 2019): 21274–84. http://dx.doi.org/10.1073/pnas.1911892116.
Full textTraeger, Jeremiah, Dehong Hu, Mengran Yang, Gary Stacey, and Galya Orr. "Super-Resolution Imaging of Plant Receptor-Like Kinases Uncovers Their Colocalization and Coordination with Nanometer Resolution." Membranes 13, no. 2 (January 21, 2023): 142. http://dx.doi.org/10.3390/membranes13020142.
Full textDissertations / Theses on the topic "Nanodomini"
DITERLIZZI, MARIANNA. "Polymeric Water-Processable Nanoparticles towards sustainable organic photovoltaics." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/376407.
Full textMy PhD project is focused on the development of polymeric nanoparticle-based aqueous inks for optoelectronic and electronic applications. Specifically, the aim of my research is the fabrication of sustainable active layers of organic photovoltaic (OPV) devices processable in water. This goal is reached through water-processable nanoparticle (WPNP) aqueous suspensions, prepared from semiconducting polymers as electron-donor and acceptor materials. The aqueous inks are obtained through a modified miniemulsion method, which unlike the standard process does not imply the addition of any surfactant to ensure the colloidal stability. The adapted approach involves the use of amphiphilic rod-coil block copolymers (BCPs), characterized by a rigid block (a p‐type semiconducting polymer) covalently linked to a hydrophilic flexible segment able to interact with aqueous medium, stabilizing the aqueous/non-aqueous interfaces. The amphiphilic BCPs are able to self-assemble both neat and in blend with acceptor materials, leading to the formation of nanostructures consisting of domains with dimensions suitable for the charge percolation in the resulting active layer of the organic solar cell (OSC). Primarily, low-band-gap (LBG) polymers were considered as electron donor materials to match the solar radiation absorption. Firstly, the synthesis of four different poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)-based amphiphilic BCPs, with a tailored segment of poly-4-vinylpiridine (P4VP) as coil, was presented. The BCPs were used in blend with the [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor material to prepare WPNP aqueous inks, which were deposited to obtain the active layers. The correlation between the internal morphology and composition of the WPNPs, and the dimensions of the donor/acceptor nanodomains with the efficiency of the resulting OSCs was deeply studied. In a second time, we explored other LBG polymers endowed with a partial order to improve the effectiveness of the approach. Therefore, the synthesis and the deep characterization of a new amphiphilic BCP based on the poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) as rigid donor polymer, which is stiffer and more crystalline than PCPDTBT, were described. A segment of 15 repeating units of 4VP was selected as coil. We prepared WPNPs coming from the self-assembly of the PTB7-b-P4VP blended with the [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). Subsequently, the WPNPs were employed to fabricate OSCs in direct configuration, and the best gained OPV device exhibited a PCE of 0.85%, which is still very far from the benchmark, but it is higher than the efficiency of the device obtained depositing the PC71BM:PTB7-b-P4VP from halogenated solvents. Lastly, the use of surfactants in the WPNP preparation was considered, as the resulting aqueous suspensions are more stable and easier to handle and store, enhancing the industrial scale-up process. Other semiconducting polymers were selected as electron-donor materials in the active blends. Particularly, two new LBG semiconducting BDT-based polymers, and a medium band-gap one, were synthetized and characterized. These materials will be blended with fullerene and non-fullerene acceptor (NFA) materials to obtain aqueous inks that will be deposited as active layers of optoelectronic devices, similarly to previous materials.
Imai, Tomoya. "Nanodomain Structure of Native Cellilose Microfibril." Kyoto University, 2000. http://hdl.handle.net/2433/78103.
Full text0048
新制・課程博士
博士(農学)
甲第8426号
農博第1110号
新制||農||800(附属図書館)
学位論文||H12||N3383(農学部図書室)
UT51-2000-F330
京都大学大学院農学研究科森林科学専攻
(主査)教授 伊東 隆夫, 教授 東 順一, 教授 藤田 稔
学位規則第4条第1項該当
Legrand, Anthony. "Anchoring mechanism of the plant protein remorin to membrane nanodomains." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0285.
Full textGroup 1 isoform 3 remorin from Solanum tuberosum (StREM1.3) is a membrane protein belonging to the multigenic family of plant proteins called remorins (REMs), involved in plant immunity, symbiosis, abiotic stress resistance and hormone signalling. REMs’ most well known feature is their ability to segregate into nanodomains at the plasma membrane’s (PM) inner leaflet. For StREM1.3, this is achieved by an interaction between two lysines of the remorin C-terminal anchor (RemCA) and negatively charged phosphatidylinositol 4-phosphate (PI4P). Thus, RemCA undergoes conformational changes and partially buries itself in the PM, resulting in an intrinsic membrane anchoring. Capitalising on pre-existing structural data about this isoform, we investigate StREM1.3’s membrane-interacting properties further, using a wide array of techniques, ranging from fluorescence microscopy and solid-state nuclear magnetic resonance (ssNMR) to atomic force microscopy (AFM), cryo-electron microscopy (cryoEM) and computational modelling. We aim to discover the impact of StREM1.3’s oligomerisation and phosphorylation on its membrane interactions and biological activity, and to assess its influence on lipid dynamics as well as its lipid requirements for membrane binding and nanoclustering. Finally, based on all available structural data, we will undertake the in vitro reconstruction and characterisation of minimal nanodomains of StREM1.3
Yu, Chao. "Quantitative Study of Membrane Nano-organization by Single Nanoparticle Imaging." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX054.
Full textIn this thesis, EGF, CPεT and transferrin receptors were labeled with luminescent nanoparticles, , and were tracked both in their local environment in the cell membrane and under a hydrodynamic flow. Bayesian inference, Bayesian decision tree, and data clustering techniques can then be applied to obtain quantitative information on the receptor motion parameters. Furthermore, we introduced hydrodynamic force application in vitro to study biomolecule dissociation between membrane receptors and their pharmaceutical ligands in high affinity receptor- ligand pairs, such as HB-EGF and DTR. Finally, three different modes of membrane organization and receptor confinement were revealed: the confinement of CPεTR is determined by the interaction between the receptors and the lipid/protein constituents of the raft; the confining potential of EGFR results from the interaction with lipids and proteins of the raft environment and from the interaction with F-actin; transferrin receptors diffuse freely in the membrane, only sterically limited by actin barriers, according to the “picket-and-fence” model. We moreover showed that all raft nanodomains are attached to the actin cytoskeleton
Hebisch, Elke [Verfasser], and Stefan W. [Akademischer Betreuer] Hell. "STED microscopy of cardiac membrane nanodomains / Elke Hebisch ; Betreuer: Stefan W. Hell." Heidelberg : Universitätsbibliothek Heidelberg, 2017. http://d-nb.info/1180740068/34.
Full textHebisch, Elke [Verfasser], and Stefan [Akademischer Betreuer] Hell. "STED microscopy of cardiac membrane nanodomains / Elke Hebisch ; Betreuer: Stefan W. Hell." Heidelberg : Universitätsbibliothek Heidelberg, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-227475.
Full textLiu, Xian-He. "Perfluoroalkylated compounds at the Interfaces : surface nanodomains and spherulites : interactions with phospholipid films." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF029.
Full textThis thesis focuses on the self-assembly of semi-fluorinated alkanes (FnHm) and fluorocarbons (FCs) at interfaces and their interactions with phospholipids (PLs) in 2D and 3D. 2D Spherulites were identified in FnHm films for the first time. Their morphology, ring-banded or radial, was controlled by varying block lengths and cooling rate. Nanodomains of FnHm in monolayers formed incompressible 2D physical gels, even at zero surface pressure. The Hm segments are crystalline and titled by 30°C to the normal to the surface. Neutron reflectivity showed that albumin adsorbed on PLs monolayers is desorbed by exposure to FC gas, which opens the potential use of FCs to treat the inactivation of the lung surfactant by serum proteins. Incorporating FnHm into PL monolayers increases their elasticity. Small, stable microbubbles of PLs/FnHm were obtained. FnHm diblocks function as co-surfactants for stabilizing microbubbles
Parutto, Pierre. "Statistical analysis of single particle trajectories reveals sub-cellular nanodomain organisation and function." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE055.
Full textSingle-Particle Trajectories (SPTs) obtained from super-resolution microscopy allow to track proteins with nanometer precision in living cells and are used in neuroscience and cellular biology. In this thesis, I was interested in the high-density nanodomains found in these trajectories that can be modeled as potential wells. To characterize them, I developed a new hybrid method based on the point density and local drift field and compared it to the other state-of-the-art methods. Then, I used it to identify transient potential wells in SPTs of voltage-gated calcium channels (CaV) contributing to a better understanding of the role of the different CaV splice variants in synaptic transmission. In another study, I looked at SPTs from Endoplasmic Reticulum (ER) luminal resident proteins where I developed a method to reconstruct the network from trajectories and used it to characterize the luminal motion as a jump-diffusion process, which allows for a better redistribution of the luminal content than the previously assumed diffusive model. Finally, I discuss other analyses of motions for lysosome-ER interactions, CaV2.1 channels at drosophila’s neuromuscular junctions and the description of the motion of the constituent proteins of the NuRD chromatin remodeling complex
Sachl, Radek. "Localisation of Fluorescent Probes and the estimation of Lipid Nanodomain sizes by modern fluorescence techniques." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-52619.
Full textDisertace je rozdělena do dvou hlavníchčástí. Prvníčást se zabývá lokalizací značek v lipidových/polymerních dvojvrstvách a v GM1micelách. V práci prezentujeme nový přístup založený na přenosu/migraci elektronické energie (FRET/DDEM), jež umožňuje efektivně určovat vertikální pozici fluorescenčních molekul uvnitř lipidové dvojvrstvy. Tato metoda byla použita k lokalizaci nově syntetizovaných lipidových značek značených na konci sn-2 acylového řetězce s různou délkou v DOPC dvojvrstvách. Analytické modely popisující FRET existují pouze pro limitovaný počet základních geometrií. Kombinace FRETu s Monte Carlo simulacemi nicméně umožňuje lokalizaci značek v bicelách a v dvojvrstvách obsahujících póry, tj. v lipidových systémech s proměnlivým zakřivením a v nehomogenních lipidových útvarech. Tento přístup umožnil např. zjistit, zda kuželovitětvarované značky mají zvýšenou afinitu k vysoce zakřiveným oblastem dvojvrstvy, což by umožnilo preferenční značení pórů. Lokalizovány byly rovněž tři deriváty 2-pyridonů(potencionálních léčiv) v GM1micelách za použití jednoduchého modelu zohledňujícího FRET mezi donory a akceptory nacházejícími se v micelách. Lokalizace léčiv v nanočásticích ovlivňuje kinetiku uvolňování (release kinetics) a množství látky solubilizované v micelách (loading efficiency). Druhá část se především zabývá určováním velikostí lipidových nanodomén pomocí FRETu, který stále zůstává nejvíce výkonnou metodou v této oblasti. Zkoumány byly limitace FRETu v určování lipidových nanodomén. Ukázalo se, že tato omezení jsou především způsobena nízkou afinitou značek buď k Lonebo k Ldfázi. V navazující studii jsme poskytnuli detailní dynamickou a strukturní studii formace nanodomén indukované crosslinkerem. Objevili jsme dva typy domén: a) domény, jejichž velikost se zvětšuje s rostoucím množstvím přidaného cholera toxinu (CTxB) a k nimž se CTxB váže pevně a b) domény vzniklé v membránách se zvýšeným množstvím sfingomyelinu (ve srovnání s a)), jejichž velikost se nemění během titrace dodatečným CTxB a k nimž se CTxB váže méně pevně.
This thesis has been elaborated within the framework of the Agreement on JointSupervision (co-tutelle) of an International Doctoral Degree Programmebetween Charles University in Prague, Czech Republic and the Department of Chemistry at Umeå University, Sweden.
Kirsch, Sonja [Verfasser], Rainer [Akademischer Betreuer] Böckmann, and Rainer [Gutachter] Böckmann. "The Role of Membrane Nanodomains in Permeation / Sonja Kirsch ; Gutachter: Rainer Böckmann ; Betreuer: Rainer Böckmann." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2019. http://d-nb.info/1196875901/34.
Full textBooks on the topic "Nanodomini"
Silvius, John R. Membrane Nanodomains. Morgan & Claypool Life Science Publishers, 2013.
Find full textSilvius, John R. Membrane Nanodomains. Morgan & Claypool Life Science Publishers, 2013.
Find full textCambi, Alessandra, and Diane Lidke. Cell Membrane Nanodomains. Taylor & Francis Group, 2014.
Find full textCambi, Alessandra, and Diane Lidke. Cell Membrane Nanodomains. Taylor & Francis Group, 2021.
Find full textCell Membrane Nanodomains: From Biochemistry to Nanoscopy. Taylor & Francis Group, 2014.
Find full textCambi, Alessandra, and Diane S. Lidke. Cell Membrane Nanodomains: From Biochemistry to Nanoscopy. Taylor & Francis Group, 2014.
Find full textCambi, Alessandra, and Diane S. Lidke. Cell Membrane Nanodomains: From Biochemistry to Nanoscopy. Taylor & Francis Group, 2014.
Find full textBook chapters on the topic "Nanodomini"
Srivastava, Shilpi, and Atul Bhargava. "The Nanodomain." In Green Nanoparticles: The Future of Nanobiotechnology, 15–28. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7106-7_2.
Full textFridkin, Vladimir, and Stephen Ducharme. "Ferroelectric Nanocrystals and Nanodomains." In Ferroelectricity at the Nanoscale, 67–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41007-9_5.
Full textShi, An-Chang. "Nanodomain Structure in Block/Graft Copolymers." In Encyclopedia of Polymeric Nanomaterials, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36199-9_59-1.
Full textShi, An-Chang. "Nanodomain Structure in Block/Graft Copolymers." In Encyclopedia of Polymeric Nanomaterials, 1317–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_59.
Full textRosenman, G., A. Agronin, D. Dahan, M. Shvebelman, E. Weinbrandt, M. Molotskii, and Y. Rosenwaks. "Ferroelectric Domain Breakdown: Application to Nanodomain Technology." In Polar Oxides, 189–220. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527604650.ch10.
Full textGuyonnet, Jill. "Disorder and Environmental Effects on Nanodomain Growth." In Springer Theses, 133–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05750-7_9.
Full textBetker, Jamie L., Long Xu, Ye Zhang, and Thomas J. Anchordoquy. "Utilizing Cholesterol Nanodomains for Nucleic Acid Delivery." In ACS Symposium Series, 71–93. Washington, DC: American Chemical Society, 2017. http://dx.doi.org/10.1021/bk-2017-1271.ch003.
Full textWang, Biao. "Determination of the Smallest Sizes of Ferroelectric Nanodomains." In Advanced Topics in Science and Technology in China, 147–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33596-9_4.
Full textGanesan, Sai J., Hongcheng Xu, and Silvina Matysiak. "Cation-Mediated Nanodomain Formation in Mixed Lipid Bilayers." In Biomembrane Simulations, 199–212. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781351060318-11.
Full textVakulenko, Alexandr, Natalia Andreeva, Sergej Vakhrushev, Alexandr Fotiadi, and Alexey Filimonov. "Writing Ferroelectric Nanodomains in PZT Thin Film at Low Temperatures." In Lecture Notes in Computer Science, 708–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46301-8_62.
Full textConference papers on the topic "Nanodomini"
Chirasatitsin, Somyot, Priyalakshmi Viswanathan, Giuseppe Battaglia, and Adam J. Engler. "Directing Stem Cell Fate in 3D Through Cell Inert and Adhesive Diblock Copolymer Domains." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14442.
Full textVakhrushev, S. B. "Structure of Nanodomains in Relaxors." In Fundamental Physics of Ferroelectrics 2003. AIP, 2003. http://dx.doi.org/10.1063/1.1609940.
Full textForget, G., L. Latxague, V. Heroguez, C. Labrugere, and M. C. Durrieu. "RGD nanodomains grafting onto titanium surface." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353489.
Full textTkachuk, A. "Anti-ferrodistortive Nanodomains in PMN Relaxor." In Fundamental Physics of Ferroelectrics 2003. AIP, 2003. http://dx.doi.org/10.1063/1.1609938.
Full textRong, Xi, Kenneth M. Pryse, Jordan A. Whisler, Yanfei Jiang, William B. McConnaughey, Artem Melnykov, Guy M. Genin, and Elliot L. Elson. "Confidence Intervals for Estimation of the Concentration and Brightness of Multiple Diffusing Species." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80921.
Full textGentilini, Desiree, Daniele Rossi, Matthias Auf der Maur, Aldo Di Carlo, and Alessandro Pecchia. "Effect of ferroelectric nanodomains in perovskite solar cells." In 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2015. http://dx.doi.org/10.1109/nano.2015.7388894.
Full textNoheda, B., A. Vlooswijk, A. Janssens, G. Catalan, G. Rijnders, and D. H. A. Blank. "Periodic nanodomains in PbTiO3 films under tensile strain." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693859.
Full textKurushima, K., K. Kobayashi, and S. Mori. "Nanodomain structures with hierarchical inhomogeneities in PMN-PT." In Nanoscale Phenomena in Polar Materials. IEEE, 2011. http://dx.doi.org/10.1109/isaf.2011.6014143.
Full textIgnatans, Reinis. "Temperature-and voltage-dependent nanodomain dynamics in BaTiO3." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.980.
Full textHussey, Deborah M., Lukas Keller, Nathan A. Diachun, Andy H. Marcus, and Michael D. Fayer. "Nanodomain formation and phase separation in polymer blends." In Photonics West '96, edited by E. R. Menzel and Abraham Katzir. SPIE, 1996. http://dx.doi.org/10.1117/12.236183.
Full text