Journal articles on the topic 'Nanocarbons syntheses'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanocarbons syntheses.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kecsenovity, Egon, Balazs Endrodi, and Csaba Janáky. "(Invited) Rationally Designed Semiconductor/Nanocarbon Photoelectrodes for Solar Fuel Generation." ECS Meeting Abstracts MA2018-01, no. 31 (April 13, 2018): 1880. http://dx.doi.org/10.1149/ma2018-01/31/1880.
Full textNakanishi, Yusuke, Shinpei Furusawa, Zheng Liu, Yuta Sato, Yohei Yomogida, Kazuhiro Yanagi, Kazu Suenaga, and Yasumitsu Miyata. "(Invited, Digital Presentation) Atomically Precise Synthesis of One-Dimensional Transition Metal Chalcogenides Using Nano-Test-Tubes." ECS Meeting Abstracts MA2022-01, no. 10 (July 7, 2022): 769. http://dx.doi.org/10.1149/ma2022-0110769mtgabs.
Full textItami, Kenichiro. "(Invited, Digital Presentation) Molecular Nanocarbon Synthesis and Beyond." ECS Meeting Abstracts MA2022-01, no. 10 (July 7, 2022): 789. http://dx.doi.org/10.1149/ma2022-0110789mtgabs.
Full textIsobe, Hiroyuki. "(Invited) A Versatile Strategy for the Synthesis of Nanocarbon Molecules." ECS Meeting Abstracts MA2022-01, no. 10 (July 7, 2022): 790. http://dx.doi.org/10.1149/ma2022-0110790mtgabs.
Full textChen, Xing-Yu, Ji-Kun Li, and Xiao-Ye Wang. "Recent Advances in the Syntheses of Helicene-Based Molecular Nanocarbons via the Scholl Reaction." Chinese Journal of Organic Chemistry 41, no. 11 (2021): 4105. http://dx.doi.org/10.6023/cjoc202107063.
Full textZhou, Yang, and Yuta Nishina. "Bottom-up synthesis of nitrogen-doped nanocarbons by a combination of metal catalysis and a solution plasma process." Nanoscale Advances 2, no. 10 (2020): 4417–20. http://dx.doi.org/10.1039/d0na00327a.
Full textVidick, Deborah, Xiaoxing Ke, Michel Devillers, Claude Poleunis, Arnaud Delcorte, Pietro Moggi, Gustaaf Van Tendeloo, and Sophie Hermans. "Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers." Beilstein Journal of Nanotechnology 6 (June 10, 2015): 1287–97. http://dx.doi.org/10.3762/bjnano.6.133.
Full textTichit, Didier, and Mayra G. Álvarez. "Layered Double Hydroxide/Nanocarbon Composites as Heterogeneous Catalysts: A Review." ChemEngineering 6, no. 4 (June 22, 2022): 45. http://dx.doi.org/10.3390/chemengineering6040045.
Full textKoshikawa, Yusuke, Ryo Miyashita, Takuya Yonehara, Kyoka Komaba, Reiji Kumai, and Hiromasa Goto. "Conducting Polymer Metallic Emerald: Magnetic Measurements of Nanocarbons/Polyaniline and Preparation of Plastic Composites." C 8, no. 4 (November 4, 2022): 60. http://dx.doi.org/10.3390/c8040060.
Full textLIU, LIHONG. "SINGLE-STEP SYNTHESIS OF COBALT-OXIDE SHELLED NANOCARBONS." International Journal of Nanoscience 04, no. 04 (August 2005): 591–98. http://dx.doi.org/10.1142/s0219581x05003255.
Full textKumanek, Bogumiła, Grzegorz Stando, Paweł S. Wróbel, and Dawid Janas. "Impact of Synthesis Parameters of Multi-Walled Carbon Nanotubes on their Thermoelectric Properties." Materials 12, no. 21 (October 30, 2019): 3567. http://dx.doi.org/10.3390/ma12213567.
Full textHuczko, A., H. Lange, G. Cota-Sanchez, and Gervais Soucy. "PLASMA SYNTHESIS OF NANOCARBONS." High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes) 6, no. 3 (2002): 16. http://dx.doi.org/10.1615/hightempmatproc.v6.i3.100.
Full textShang, Sensen, Wen Dai, Lianyue Wang, Ying Lv, and Shuang Gao. "Metal-free catalysis of nitrogen-doped nanocarbons for the ammoxidation of alcohols to nitriles." Chemical Communications 53, no. 6 (2017): 1048–51. http://dx.doi.org/10.1039/c6cc09151b.
Full textGonzález Miera, Greco, Satoshi Matsubara, Hideya Kono, Kei Murakami, and Kenichiro Itami. "Synthesis of octagon-containing molecular nanocarbons." Chemical Science 13, no. 7 (2022): 1848–68. http://dx.doi.org/10.1039/d1sc05586k.
Full textNguyen, Duong Nguyen, Uk Sim, and Jung Kyu Kim. "Biopolymer-Inspired N-Doped Nanocarbon Using Carbonized Polydopamine: A High-Performance Electrocatalyst for Hydrogen-Evolution Reaction." Polymers 12, no. 4 (April 15, 2020): 912. http://dx.doi.org/10.3390/polym12040912.
Full textPérez-Mayoral, E., V. Calvino-Casilda, and E. Soriano. "Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products." Catalysis Science & Technology 6, no. 5 (2016): 1265–91. http://dx.doi.org/10.1039/c5cy01437a.
Full textBettini, Simona, and Gabriele Giancane. "Synthesis, Functionalization and Applications of Nanocarbons." Nanomaterials 12, no. 16 (August 10, 2022): 2738. http://dx.doi.org/10.3390/nano12162738.
Full textHiguchi, Mai, Mizuri Yaguchi, Miru Yoshida-Hirahara, Hitoshi Ogihara, and Hideki Kurokawa. "Facile synthesis of nanostructured perovskites by precursor accumulation on nanocarbons." RSC Advances 12, no. 10 (2022): 6186–91. http://dx.doi.org/10.1039/d1ra08357k.
Full textWang, Hailiang. "Hybrid material design for energy applications: impact of graphene and carbon nanotubes." Pure and Applied Chemistry 86, no. 1 (January 22, 2014): 39–52. http://dx.doi.org/10.1515/pac-2014-5013.
Full textLiu, Yujing, Xuan Wang, Xiaohui Jiang, Xia Li, and Liangmin Yu. "Shape-controlled synthesis of porous carbons for flexible asymmetric supercapacitors." Nanoscale 10, no. 48 (2018): 22848–60. http://dx.doi.org/10.1039/c8nr06966b.
Full textAriga, Katsuhiko, Michio Matsumoto, Taizo Mori, and Lok Kumar Shrestha. "Materials nanoarchitectonics at two-dimensional liquid interfaces." Beilstein Journal of Nanotechnology 10 (July 30, 2019): 1559–87. http://dx.doi.org/10.3762/bjnano.10.153.
Full textGuan, Shuzhe, Xuanchi Liu, and Wumanjiang Eli. "The synthesis of nanocarbon-poly(ricinoleic acid) composite as a lubricant additive with improved dispersity and anti-wear properties." RSC Advances 11, no. 30 (2021): 18171–78. http://dx.doi.org/10.1039/d1ra01720a.
Full textZhang, Lu-Hua, Wen-Cui Li, Lei Tang, Quan-Gao Wang, Qing-Tao Hu, Yu Zhang, and An-Hui Lu. "Primary amine modulated synthesis of two-dimensional porous nanocarbons with tunable ultramicropores." Journal of Materials Chemistry A 6, no. 47 (2018): 24285–90. http://dx.doi.org/10.1039/c8ta09545k.
Full textSegawa, Yasutomo, Motonobu Kuwayama, Yuh Hijikata, Masako Fushimi, Taishi Nishihara, Jenny Pirillo, Junya Shirasaki, Natsumi Kubota, and Kenichiro Itami. "Topological molecular nanocarbons: All-benzene catenane and trefoil knot." Science 365, no. 6450 (July 18, 2019): 272–76. http://dx.doi.org/10.1126/science.aav5021.
Full textLehmann, K., O. Yurchenko, and G. Urban. "Effect of the aromatic precursor flow rate on the morphology and properties of carbon nanostructures in plasma enhanced chemical vapor deposition." RSC Advances 6, no. 39 (2016): 32779–88. http://dx.doi.org/10.1039/c6ra02999j.
Full textKausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa, and Patrizia Bocchetta. "Cutting-Edge Green Polymer/Nanocarbon Nanocomposite for Supercapacitor—State-of-the-Art." Journal of Composites Science 6, no. 12 (December 6, 2022): 376. http://dx.doi.org/10.3390/jcs6120376.
Full textZhang, Xinyu, and Sanjeev K. Manohar. "Microwave synthesis of nanocarbons from conducting polymers." Chemical Communications, no. 23 (2006): 2477. http://dx.doi.org/10.1039/b603925a.
Full textSchaub, Tobias A. "Bottom‐Up Synthesis of Discrete Conical Nanocarbons." Angewandte Chemie International Edition 59, no. 12 (January 29, 2020): 4620–22. http://dx.doi.org/10.1002/anie.201914830.
Full textHatakeyama, Rikizo, Toshiaki Kato, Yongfeng Li, and Toshiro Kaneko. "Plasma Processing Based Synthesis of Functional Nanocarbons." Plasma Chemistry and Plasma Processing 34, no. 3 (March 29, 2014): 377–402. http://dx.doi.org/10.1007/s11090-014-9547-z.
Full textKharlamova, Marianna V., Maria G. Burdanova, Maksim I. Paukov, and Christian Kramberger. "Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes." Materials 15, no. 17 (August 26, 2022): 5898. http://dx.doi.org/10.3390/ma15175898.
Full textVoznyakovskii, Aleksandr Petrovich, Anatoliy Petrovich Karmanov, Anna Yur'yevna Neverovskaya, Aleksey Aleksandrovich Voznyakovskii, Lyudmila Sergeyevna Kocheva, and Sergey Viktorovich Kidalov. "BIOMASS OF SOSNOWSKYI'S HOGWEED AS RAW MATERIAL FOR 2D THE CARBONIC NANOSTRUCTURES OBTAINING." chemistry of plant raw material, no. 4 (December 21, 2020): 83–92. http://dx.doi.org/10.14258/jcprm.2020047739.
Full textMansurov, Z. A. "Recent Achievements and Future Challenges in Nanoscience and Nanotechnology." Eurasian Chemico-Technological Journal 22, no. 4 (December 30, 2020): 241. http://dx.doi.org/10.18321/ectj994.
Full textIslam, Md Zahidul, Anyarat Watthanaphanit, Sangwoo Chae, and Nagahiro Saito. "Li–air battery and ORR activity of nanocarbons produced with good synthesis rate by solution plasma process." Materials Advances 2, no. 8 (2021): 2636–41. http://dx.doi.org/10.1039/d0ma00926a.
Full textLee, SeungHyo, YongKang Heo, Maria Antoaneta Bratescu, Tomonaga Ueno, and Nagahiro Saito. "Solution plasma synthesis of a boron–carbon–nitrogen catalyst with a controllable bond structure." Physical Chemistry Chemical Physics 19, no. 23 (2017): 15264–72. http://dx.doi.org/10.1039/c6cp06063c.
Full textHuczko, Andrzej, Agnieszka Dąbrowska, Michał Bystrzejewski, P. Baranowski, Santosh K. Tiwari, Łukasz Dobrzycki, Maciej Fronczak, et al. "Novel nanocarbons via facile one-pot combustion synthesis." Diamond and Related Materials 121 (January 2022): 108746. http://dx.doi.org/10.1016/j.diamond.2021.108746.
Full textKudiyarov, Viktor N., Roman R. Elman, and Nikita E. Kurdyumov. "The Effect of High-Energy Ball Milling Conditions on Microstructure and Hydrogen Desorption Properties of Magnesium Hydride and Single-Walled Carbon Nanotubes." Metals 11, no. 9 (September 6, 2021): 1409. http://dx.doi.org/10.3390/met11091409.
Full textJames, Anthonette Anak, Md Rezaur Rahman, Durul Huda, Faisal M. Aqlan, Mohammed Mahbubul Matin, Muhammad Khusairy Bin Bakri, Kuok King Kuok, and Mohammed Muzibur Rahman. "Synthesis and characterization of novel nano-carbon mixture from Dabai (Canarium odontophyllum) nutshell." BioResources 17, no. 3 (June 3, 2022): 4452–69. http://dx.doi.org/10.15376/biores.17.3.4452-4469.
Full textMansurov, Zulkhair A. "Obtaining of Nanomaterials in Combustion Processes." Advanced Materials Research 486 (March 2012): 134–39. http://dx.doi.org/10.4028/www.scientific.net/amr.486.134.
Full textZollo, G., and F. Gala. "Atomistic Modeling of Gas Adsorption in Nanocarbons." Journal of Nanomaterials 2012 (2012): 1–32. http://dx.doi.org/10.1155/2012/152489.
Full textTeng, Tun-Ping, Li Lin, and Chao-Chieh Yu. "Preparation and Characterization of Carbon Nanofluids by Using a Revised Water-Assisted Synthesis Method." Journal of Nanomaterials 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/582304.
Full textVesel, Alenka, Rok Zaplotnik, Gregor Primc, Luka Pirker, and Miran Mozetič. "One-Step Plasma Synthesis of Nitrogen-Doped Carbon Nanomesh." Nanomaterials 11, no. 4 (March 25, 2021): 837. http://dx.doi.org/10.3390/nano11040837.
Full textLiang, Xiayi, Wenhao Zhang, Mengqi Zhang, Guanhua Qiu, Yuhong Zhang, Tao Luo, and Cunqing Kong. "Facile synthesis of nitrogen-doped graphene quantum dots as nanocarbon emitters for sensitive detection of catechol." RSC Advances 12, no. 39 (2022): 25778–85. http://dx.doi.org/10.1039/d2ra04209f.
Full textItami, Kenichiro. "Toward controlled synthesis of carbon nanotubes and graphenes." Pure and Applied Chemistry 84, no. 4 (March 13, 2012): 907–16. http://dx.doi.org/10.1351/pac-con-11-11-15.
Full textSarno, Maria, Adolfo Senatore, Davide Scarpa, and Claudia Cirillo. "“Green” Synthesis of Nanocarbons for Reduced Friction and Wear." Lubricants 8, no. 2 (February 2, 2020): 13. http://dx.doi.org/10.3390/lubricants8020013.
Full textSu, D. S., A. Rinaldi, W. Frandsen, and G. Weinberg. "Nanocarbons: efficient synthesis using natural lava as supported catalyst." physica status solidi (b) 244, no. 11 (November 2007): 3916–19. http://dx.doi.org/10.1002/pssb.200776140.
Full textOlchowski, Rafał, and Ryszard Dobrowolski. "Synthesis, properties and applications of CMK-3-type ordered mesoporous carbons." Annales Universitatis Mariae Curie-Sklodowska, sectio AA – Chemia 73, no. 1 (November 6, 2019): 11. http://dx.doi.org/10.17951/aa.2018.73.1.11-30.
Full textOtt, Alexander, Simone Rogg, Stefan Lauterbach, Hans-Joachim Kleebe, Christian Hess, and Gabriela Mera. "Novel 0D-nanocarbon-silica ceramic composites: sol–gel synthesis and high-temperature evolution." Dalton Transactions 49, no. 21 (2020): 7144–54. http://dx.doi.org/10.1039/d0dt01016b.
Full textMansurov, Zulkhair. "Combustion Synthesis of Nanomaterials." Advanced Materials Research 699 (May 2013): 138–43. http://dx.doi.org/10.4028/www.scientific.net/amr.699.138.
Full textPérez-Villar, Sofía, and Javier Carretero-González. "Electrochemical synthesis of Fe oxide-based catalysts for the growth of nanocarbons." RSC Adv. 4, no. 104 (2014): 59862–68. http://dx.doi.org/10.1039/c4ra09803j.
Full textLiu, Sijie, Liting Cui, Zhiyao Peng, Jingjing Wang, Yajing Hu, Ao Yu, Haining Wang, Ping Peng, and Fang-Fang Li. "Eco-friendly synthesis of N,S co-doped hierarchical nanocarbon as a highly efficient metal-free catalyst for the reduction of nitroarenes." Nanoscale 10, no. 46 (2018): 21764–71. http://dx.doi.org/10.1039/c8nr07083k.
Full text