Journal articles on the topic 'Nanocarbons syntheses'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nanocarbons syntheses.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kecsenovity, Egon, Balazs Endrodi, and Csaba Janáky. "(Invited) Rationally Designed Semiconductor/Nanocarbon Photoelectrodes for Solar Fuel Generation." ECS Meeting Abstracts MA2018-01, no. 31 (2018): 1880. http://dx.doi.org/10.1149/ma2018-01/31/1880.
Full textNakanishi, Yusuke, Shinpei Furusawa, Zheng Liu, et al. "(Invited, Digital Presentation) Atomically Precise Synthesis of One-Dimensional Transition Metal Chalcogenides Using Nano-Test-Tubes." ECS Meeting Abstracts MA2022-01, no. 10 (2022): 769. http://dx.doi.org/10.1149/ma2022-0110769mtgabs.
Full textItami, Kenichiro. "(Invited, Digital Presentation) Molecular Nanocarbon Synthesis and Beyond." ECS Meeting Abstracts MA2022-01, no. 10 (2022): 789. http://dx.doi.org/10.1149/ma2022-0110789mtgabs.
Full textChen, Xing-Yu, Ji-Kun Li, and Xiao-Ye Wang. "Recent Advances in the Syntheses of Helicene-Based Molecular Nanocarbons via the Scholl Reaction." Chinese Journal of Organic Chemistry 41, no. 11 (2021): 4105. http://dx.doi.org/10.6023/cjoc202107063.
Full textIsobe, Hiroyuki. "(Invited) A Versatile Strategy for the Synthesis of Nanocarbon Molecules." ECS Meeting Abstracts MA2022-01, no. 10 (2022): 790. http://dx.doi.org/10.1149/ma2022-0110790mtgabs.
Full textZhou, Yang, and Yuta Nishina. "Bottom-up synthesis of nitrogen-doped nanocarbons by a combination of metal catalysis and a solution plasma process." Nanoscale Advances 2, no. 10 (2020): 4417–20. http://dx.doi.org/10.1039/d0na00327a.
Full textKholmirzaeva, H. N., N. I. Fayzullaev, O. O. Normurodov, and G. Sh Haydarov. "Sustainable Nanocarbon Synthesis from Locally Available Natural Raw Materials: Versatile Properties and Wide-Ranging Applications." E3S Web of Conferences 449 (2023): 06015. http://dx.doi.org/10.1051/e3sconf/202344906015.
Full textCatti, Lorenzo, Shinji Aoyama, and Michito Yoshizawa. "Facile access to pyridinium-based bent aromatic amphiphiles: nonionic surface modification of nanocarbons in water." Beilstein Journal of Organic Chemistry 20 (January 8, 2024): 32–40. http://dx.doi.org/10.3762/bjoc.20.5.
Full textVidick, Deborah, Xiaoxing Ke, Michel Devillers, et al. "Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers." Beilstein Journal of Nanotechnology 6 (June 10, 2015): 1287–97. http://dx.doi.org/10.3762/bjnano.6.133.
Full textTichit, Didier, and Mayra G. Álvarez. "Layered Double Hydroxide/Nanocarbon Composites as Heterogeneous Catalysts: A Review." ChemEngineering 6, no. 4 (2022): 45. http://dx.doi.org/10.3390/chemengineering6040045.
Full textKholmirzaeva, Kh N., N. I. Fayzullayev, and A. Abdazimov. "Study of kinetical laws of process of the catalytic synthesis of nanocarbon from methane." E3S Web of Conferences 383 (2023): 04015. http://dx.doi.org/10.1051/e3sconf/202338304015.
Full textSingh, Buta, Audrey F. Adcock, Simran Dumra, et al. "Microwave-Assisted Carbonization Processing for Carbon Dot-like Nanomaterials with Antimicrobial Properties." Micro 5, no. 1 (2025): 14. https://doi.org/10.3390/micro5010014.
Full textBedewy, Mostafa. "(Invited) Laser-Induced Graphene on Polymers: From Process Science to Applications." ECS Meeting Abstracts MA2023-01, no. 13 (2023): 1296. http://dx.doi.org/10.1149/ma2023-01131296mtgabs.
Full textKoshikawa, Yusuke, Ryo Miyashita, Takuya Yonehara, Kyoka Komaba, Reiji Kumai, and Hiromasa Goto. "Conducting Polymer Metallic Emerald: Magnetic Measurements of Nanocarbons/Polyaniline and Preparation of Plastic Composites." C 8, no. 4 (2022): 60. http://dx.doi.org/10.3390/c8040060.
Full textLIU, LIHONG. "SINGLE-STEP SYNTHESIS OF COBALT-OXIDE SHELLED NANOCARBONS." International Journal of Nanoscience 04, no. 04 (2005): 591–98. http://dx.doi.org/10.1142/s0219581x05003255.
Full textLicht, Stuart. "Molten Carbonate Transformation of the Green House Gas CO2 to Graphitic Nanomaterials." ECS Meeting Abstracts MA2023-02, no. 9 (2023): 1010. http://dx.doi.org/10.1149/ma2023-0291010mtgabs.
Full textKuskova, Nataliya, Antonina Malyushevskaya, Mykola Prystash, Svitlana Prystash, and Yury Adamchuk. "Synthesis of nanocarbon by high-voltage breakdown of hydrocarbons." Eastern-European Journal of Enterprise Technologies 6, no. 6 (126) (2023): 6–16. http://dx.doi.org/10.15587/1729-4061.2023.292774.
Full textHuczko, A., H. Lange, G. Cota-Sanchez, and Gervais Soucy. "PLASMA SYNTHESIS OF NANOCARBONS." High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes) 6, no. 3 (2002): 16. http://dx.doi.org/10.1615/hightempmatproc.v6.i3.100.
Full textKumanek, Bogumiła, Grzegorz Stando, Paweł S. Wróbel, and Dawid Janas. "Impact of Synthesis Parameters of Multi-Walled Carbon Nanotubes on their Thermoelectric Properties." Materials 12, no. 21 (2019): 3567. http://dx.doi.org/10.3390/ma12213567.
Full textBoguslavsky, L.Z., D.V. Vinnichenko, N.S. Nazarova, Y.O. Adamchuk, S.V. Chushchak, and S.S. Kozyzev. "Control of the Process of Electric-Discharge Synthesis of Nanocarbon from Gaseous Hydrocarbons on Metallic Surfaces." Elektronnaya Obrabotka Materialov 54(3) (June 15, 2018): 1–6. https://doi.org/10.5281/zenodo.1297927.
Full textGonzález Miera, Greco, Satoshi Matsubara, Hideya Kono, Kei Murakami, and Kenichiro Itami. "Synthesis of octagon-containing molecular nanocarbons." Chemical Science 13, no. 7 (2022): 1848–68. http://dx.doi.org/10.1039/d1sc05586k.
Full textShang, Sensen, Wen Dai, Lianyue Wang, Ying Lv, and Shuang Gao. "Metal-free catalysis of nitrogen-doped nanocarbons for the ammoxidation of alcohols to nitriles." Chemical Communications 53, no. 6 (2017): 1048–51. http://dx.doi.org/10.1039/c6cc09151b.
Full textNguyen, Duong Nguyen, Uk Sim, and Jung Kyu Kim. "Biopolymer-Inspired N-Doped Nanocarbon Using Carbonized Polydopamine: A High-Performance Electrocatalyst for Hydrogen-Evolution Reaction." Polymers 12, no. 4 (2020): 912. http://dx.doi.org/10.3390/polym12040912.
Full textPérez-Mayoral, E., V. Calvino-Casilda, and E. Soriano. "Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products." Catalysis Science & Technology 6, no. 5 (2016): 1265–91. http://dx.doi.org/10.1039/c5cy01437a.
Full textBettini, Simona, and Gabriele Giancane. "Synthesis, Functionalization and Applications of Nanocarbons." Nanomaterials 12, no. 16 (2022): 2738. http://dx.doi.org/10.3390/nano12162738.
Full textHiguchi, Mai, Mizuri Yaguchi, Miru Yoshida-Hirahara, Hitoshi Ogihara, and Hideki Kurokawa. "Facile synthesis of nanostructured perovskites by precursor accumulation on nanocarbons." RSC Advances 12, no. 10 (2022): 6186–91. http://dx.doi.org/10.1039/d1ra08357k.
Full textWang, Hailiang. "Hybrid material design for energy applications: impact of graphene and carbon nanotubes." Pure and Applied Chemistry 86, no. 1 (2014): 39–52. http://dx.doi.org/10.1515/pac-2014-5013.
Full textLiu, Yujing, Xuan Wang, Xiaohui Jiang, Xia Li, and Liangmin Yu. "Shape-controlled synthesis of porous carbons for flexible asymmetric supercapacitors." Nanoscale 10, no. 48 (2018): 22848–60. http://dx.doi.org/10.1039/c8nr06966b.
Full textGuan, Shuzhe, Xuanchi Liu, and Wumanjiang Eli. "The synthesis of nanocarbon-poly(ricinoleic acid) composite as a lubricant additive with improved dispersity and anti-wear properties." RSC Advances 11, no. 30 (2021): 18171–78. http://dx.doi.org/10.1039/d1ra01720a.
Full textAriga, Katsuhiko, Michio Matsumoto, Taizo Mori, and Lok Kumar Shrestha. "Materials nanoarchitectonics at two-dimensional liquid interfaces." Beilstein Journal of Nanotechnology 10 (July 30, 2019): 1559–87. http://dx.doi.org/10.3762/bjnano.10.153.
Full textZhang, Lu-Hua, Wen-Cui Li, Lei Tang, et al. "Primary amine modulated synthesis of two-dimensional porous nanocarbons with tunable ultramicropores." Journal of Materials Chemistry A 6, no. 47 (2018): 24285–90. http://dx.doi.org/10.1039/c8ta09545k.
Full textDjanikulov, Sherali, and Normurot Fayzullayev. "Study of possibilities of getting nanocarbons from butadien-1.3 and texture characteristics of nanocarbons and catalyses." E3S Web of Conferences 401 (2023): 04053. http://dx.doi.org/10.1051/e3sconf/202340104053.
Full textBethany Halford. "Cutworms crack nanocarbon synthesis challenge." C&EN Global Enterprise 102, no. 14 (2024): 10. http://dx.doi.org/10.1021/cen-10214-scicon5.
Full textMANSUROV, Z. A., M. A. SEITZHANOVA, and S. AZAT. "SYNTHESIS AND APPLICATION OF NANOCARBON MATERIALS FOR ENVIRONMENTAL PURPOSES." Chemistry for Sustainable Development 33, no. 1 (2025): 43–52. https://doi.org/10.15372/csd2025629.
Full textSegawa, Yasutomo, Motonobu Kuwayama, Yuh Hijikata, et al. "Topological molecular nanocarbons: All-benzene catenane and trefoil knot." Science 365, no. 6450 (2019): 272–76. http://dx.doi.org/10.1126/science.aav5021.
Full textGu, Qingqing, Rui Huang, Chi Xu, et al. "Nanodiamond derived N-doped sp3@sp2 hybrid carbocatalysts for the aerobic oxidative synthesis of 2-substituted benzoxazoles." Chemical Synthesis 3, no. 2 (2023): 21. http://dx.doi.org/10.20517/cs.2023.08.
Full textZhang, Xinyu, and Sanjeev K. Manohar. "Microwave synthesis of nanocarbons from conducting polymers." Chemical Communications, no. 23 (2006): 2477. http://dx.doi.org/10.1039/b603925a.
Full textSchaub, Tobias A. "Bottom‐Up Synthesis of Discrete Conical Nanocarbons." Angewandte Chemie International Edition 59, no. 12 (2020): 4620–22. http://dx.doi.org/10.1002/anie.201914830.
Full textHatakeyama, Rikizo, Toshiaki Kato, Yongfeng Li, and Toshiro Kaneko. "Plasma Processing Based Synthesis of Functional Nanocarbons." Plasma Chemistry and Plasma Processing 34, no. 3 (2014): 377–402. http://dx.doi.org/10.1007/s11090-014-9547-z.
Full textKhosravifar, Mahnoosh, Kinshuk Dasgupta, and Vesselin Shanov. "Effect of Synthesis Conditions on the Structure and Electrochemical Properties of Vertically Aligned Graphene/Carbon Nanofiber Hybrids." C 10, no. 4 (2024): 97. http://dx.doi.org/10.3390/c10040097.
Full textLehmann, K., O. Yurchenko, and G. Urban. "Effect of the aromatic precursor flow rate on the morphology and properties of carbon nanostructures in plasma enhanced chemical vapor deposition." RSC Advances 6, no. 39 (2016): 32779–88. http://dx.doi.org/10.1039/c6ra02999j.
Full textKausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa, and Patrizia Bocchetta. "Cutting-Edge Green Polymer/Nanocarbon Nanocomposite for Supercapacitor—State-of-the-Art." Journal of Composites Science 6, no. 12 (2022): 376. http://dx.doi.org/10.3390/jcs6120376.
Full textKharlamova, Marianna V., Maria G. Burdanova, Maksim I. Paukov, and Christian Kramberger. "Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes." Materials 15, no. 17 (2022): 5898. http://dx.doi.org/10.3390/ma15175898.
Full textVoznyakovskii, Aleksandr Petrovich, Anatoliy Petrovich Karmanov, Anna Yur'yevna Neverovskaya, Aleksey Aleksandrovich Voznyakovskii, Lyudmila Sergeyevna Kocheva, and Sergey Viktorovich Kidalov. "BIOMASS OF SOSNOWSKYI'S HOGWEED AS RAW MATERIAL FOR 2D THE CARBONIC NANOSTRUCTURES OBTAINING." chemistry of plant raw material, no. 4 (December 21, 2020): 83–92. http://dx.doi.org/10.14258/jcprm.2020047739.
Full textIslam, Md Zahidul, Anyarat Watthanaphanit, Sangwoo Chae, and Nagahiro Saito. "Li–air battery and ORR activity of nanocarbons produced with good synthesis rate by solution plasma process." Materials Advances 2, no. 8 (2021): 2636–41. http://dx.doi.org/10.1039/d0ma00926a.
Full textMansurov, Z. A. "Recent Achievements and Future Challenges in Nanoscience and Nanotechnology." Eurasian Chemico-Technological Journal 22, no. 4 (2020): 241. http://dx.doi.org/10.18321/ectj994.
Full textLee, SeungHyo, YongKang Heo, Maria Antoaneta Bratescu, Tomonaga Ueno, and Nagahiro Saito. "Solution plasma synthesis of a boron–carbon–nitrogen catalyst with a controllable bond structure." Physical Chemistry Chemical Physics 19, no. 23 (2017): 15264–72. http://dx.doi.org/10.1039/c6cp06063c.
Full textHuczko, Andrzej, Agnieszka Dąbrowska, Michał Bystrzejewski, et al. "Novel nanocarbons via facile one-pot combustion synthesis." Diamond and Related Materials 121 (January 2022): 108746. http://dx.doi.org/10.1016/j.diamond.2021.108746.
Full textUsami, Atsushi, Hideya Kono, Vic Austen, et al. "In-insect synthesis of oxygen-doped molecular nanocarbons." Science 388, no. 6751 (2025): 1055–61. https://doi.org/10.1126/science.adp9384.
Full textKudiyarov, Viktor N., Roman R. Elman, and Nikita E. Kurdyumov. "The Effect of High-Energy Ball Milling Conditions on Microstructure and Hydrogen Desorption Properties of Magnesium Hydride and Single-Walled Carbon Nanotubes." Metals 11, no. 9 (2021): 1409. http://dx.doi.org/10.3390/met11091409.
Full text