Academic literature on the topic 'Nanoblade'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoblade.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanoblade":

1

Wu, Ting-Hsiang, Tara Teslaa, Michael A. Teitell, and Pei-Yu Chiou. "Photothermal nanoblade for patterned cell membrane cutting." Optics Express 18, no. 22 (October 19, 2010): 23153. http://dx.doi.org/10.1364/oe.18.023153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Ting-Hsiang, Yi-Chien Wu, Enrico Sagullo, Michael A. Teitell, and Pei-Yu Chiou. "Direct Nuclear Delivery of DNA by Photothermal Nanoblade." Journal of Laboratory Automation 20, no. 6 (December 2015): 659–62. http://dx.doi.org/10.1177/2211068215583630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Ting-Hsiang, Tara Teslaa, Sheraz Kalim, Christopher T. French, Shahriar Moghadam, Randolph Wall, Jeffery F. Miller, Owen N. Witte, Michael A. Teitell, and Pei-Yu Chiou. "Photothermal Nanoblade for Large Cargo Delivery into Mammalian Cells." Analytical Chemistry 83, no. 4 (February 15, 2011): 1321–27. http://dx.doi.org/10.1021/ac102532w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

He, Yuping, and Yiping Zhao. "Improved hydrogen storage properties of a V decorated Mg nanoblade array." Phys. Chem. Chem. Phys. 11, no. 2 (2009): 255–58. http://dx.doi.org/10.1039/b815924f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

French, C. T., I. J. Toesca, T. H. Wu, T. Teslaa, S. M. Beaty, W. Wong, M. Liu, et al. "Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade." Proceedings of the National Academy of Sciences 108, no. 29 (July 5, 2011): 12095–100. http://dx.doi.org/10.1073/pnas.1107183108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Ting-Hsiang, Enrico Sagullo, Dana Case, Xin Zheng, Yanjing Li, Jason S. Hong, Tara TeSlaa, et al. "Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells." Cell Metabolism 23, no. 5 (May 2016): 921–29. http://dx.doi.org/10.1016/j.cmet.2016.04.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Suh, Hyo-Won, Gil-Young Kim, Yeon-Sik Jung, Won-Kook Choi, and Dongjin Byun. "Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis." Journal of Applied Physics 97, no. 4 (February 15, 2005): 044305. http://dx.doi.org/10.1063/1.1849825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

He, Yuping, Yiping Zhao, Liwei Huang, Howard Wang, and Russell J. Composto. "Hydrogenation of Mg film and Mg nanoblade array on Ti coated Si substrates." Applied Physics Letters 93, no. 16 (October 20, 2008): 163114. http://dx.doi.org/10.1063/1.3003880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Patananan, Alexander N., Ting-Hsiang Wu, Enrico Sagullo, Dana Case, Xin Zheng, Yanjing Li, Jason S. Hong, et al. "Mitochondrial Transfer by Photothermal Nanoblade Restores Respiration in Mammalian Cells with Dysfunctional Mitochondria." Biophysical Journal 110, no. 3 (February 2016): 471a—472a. http://dx.doi.org/10.1016/j.bpj.2015.11.2523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Jianmin, Tara Teslaa, Ting-Hsiang Wu, Pei-Yu Chiou, Michael A. Teitell, and Shimon Weiss. "Nanoblade Delivery and Incorporation of Quantum Dot Conjugates into Tubulin Networks in Live Cells." Nano Letters 12, no. 11 (November 5, 2012): 5669–72. http://dx.doi.org/10.1021/nl302821g.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanoblade":

1

Tiroille, Victor. "Ingénierie génétique d'organoïdes à l'aide de nanoblades et étude du rôle d'UBTD1 comme modulateur de la force d'adhésion cellulaire dans les organoïdes de prostate." Electronic Thesis or Diss., Université Côte d'Azur, 2021. http://theses.univ-cotedazur.fr/2021COAZ6039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Au cours de ma thèse, j'ai travaillé sur le modèle d'organoïde 3D en suivant deux objectifs principaux : i) développer des outils génétiques pour modifier le génome des organoïdes et ii) déchiffrer le rôle de la ubiquitin domain-containing protein 1 (UBTD1) dans le développement des organoïdes de la prostate.L'ingénierie du génome est devenue ces dernières années plus accessible grâce aux endonucléases programmables par ARN telles que le système CRISPR-Cas9. Cependant, l'utilisation de cette technologie d'édition dans des organes synthétiques appelés "organoïdes" reste très inefficace. Ceci est principalement dû aux méthodes de livraison utilisées pour la machinerie CRISPR-Cas9, qui sont principalement réalisées par électroporation de RNP contenant le complexe CAS9-gRNA, une procédure toxique pour les organoïdes. Nous décrivons ici l'utilisation de la technologie "Nanoblade" pour réaliser l'édition du génome dans les organoïdes. Les nanoblades ont dépassé de loin les niveaux de knock-out (KO) obtenus avec d'autres techniques utilisées jusqu'à présent pour la livraison de la machinerie d'édition de gènes. Nous avons atteint jusqu'à 80 % de knockout génétique dans les organoïdes après traitement avec les nanoblades. Nous avons atteint un niveau élevé de KO médié par les nanoblades pour le gène codant le récepteur des androgènes (AR) et le gène du cystic fibrosis transmembrane conductance regulator (CFTR) avec des nanoblades contenant un seul ARNg ou un double ARNg. Plus important encore, contrairement à d'autres méthodes d'édition de gènes, ce résultat a été obtenu sans toxicité pour les organoïdes. En outre, il ne faut que quatre semaines pour obtenir des lignées stables KO pour un gène dans les organoïdes et aucun INDELS indésirable évident dans un site hors cible du génome n'a été détecté. En conclusion, les nanoblades simplifient et permettent une édition rapide du génome dans les organoïdes avec peu ou pas d'effets secondaires.La morphogenèse et le remodelage des tissus sont des processus finement régulés, régis par les adhésions entre cellules. Cependant, le contrôle spatial et temporel des molécules d'adhésion reste partiellement inexploré. Nous avons étudié ici le rôle d'UBTD1 comme modulateur de la force des adhérences dans l'épithélium de la prostate. Nous avons montré que la régulation négative d'UBTD1 perturbe l'auto-organisation des cellules en trois dimensions. Inversement, nous avons démontré que la surexpression d'UBTD1 induit des monocouches épithéliales plus régulières et augmente la tension de la surface cellulaire. Les analyses transcriptomiques ont révélé un profil d'expression génique des protéines impliquées dans les jonctions cellulaires affectées par la modulation d'UBTD1. En utilisant le modèle d'organoïde de prostate, nous avons montré que l'expression d'UBTD1 dans les cellules luminales perturbait la formation de lumen dans les organoïdes de prostate de souris. Enfin, en utilisant une approche de co- immunoprécipitation couplée à la spectrométrie de masse, nous avons montré que UBTD1 interagit avec des partenaires impliqués dans les jonctions cellule-cellule et que ces interactants voient leur expression modulée par la dérégulation de UBTD1. Nos résultats montrent qu'une protéine impliquée dans les processus de dégradation des protéines régule la force des jonctions d'adhérence
During my thesis, I worked on the 3D organoid model following two main objectives: i) developing genetic tools to modify the genome of organoids and ii) deciphering the role of ubiquitin domain-containing protein 1 (UBTD1) in the development of prostate organoids . Genome engineering has become in the last few years more accessible thanks to the RNA programmable endonucleases such as the CRISPR-Cas9 system. However, using this editing technology in synthetic organs called ‘organoids’ is still very inefficient. This is mainly due to the delivery methods used for the CRISPR-Cas9 machinery, which are predominantly performed by electroporation of RNPs containing the CAS9-gRNA complex, a procedure toxic for the organoids. Here we describe the use of the ‘Nanoblade’ technology to accomplish genome editing in organoids. Nanoblades outperformed by far knockout (KO) levels achieved with other techniques used to date for delivery of the gene editing machinery. We reached up to 80% of gene knockout in organoids after treatment with nanoblades. We achieved high-level nanoblade-mediated KO for the androgen receptor (AR) encoding gene and the cystic fibrosis transmembrane conductance regulator (CFTR) gene with single gRNA or dual gRNA containing nanoblades. Most importantly, in contrast to other gene editing methods, this was obtained without toxicity for the organoids. Moreover, it requires only four weeks to obtain stable lines KO for a gene in organoids and no obvious unwanted INDELS in off-target site in the genome were detected. In conclusion, nanoblades simplify and allow rapid genome editing in organoids with little to no side-effects.Morphogenesis and tissue remodeling are finely regulated processes governed by cell-cell adhesions. However, the spatial and temporal control of adhesion molecules remains partially unexplored. Here we studied the role of UBTD1 as a modulator of the strength of adherens in the prostate epithelium. We showed that down-regulation of UBTD1 disrupted the self- organization of cells in three dimensions. Conversely, we demonstrated that overexpression of UBTD1 induced more regular epithelial monolayers and increased cell surface tension. Transcriptomic analyses revealed a gene expression profile of proteins involved in cell junctions affected by UBTD1 modulation. Using the prostate organoid model, we showed that UBTD1 expression in luminal cells disrupted cyst formation in mouse prostate organoids. Finally using a co-immunoprecipitation approach coupled to mass spectrometry, we showed that UBTD1 interacts with partners involved in cell-cell junctions and that these interactants have their expression modulated by UBTD1 deregulation. Our results show that a protein involved in protein degradation processes regulates the strength of adherens junctions
2

Kaminke, Ralf [Verfasser], and Klaus [Akademischer Betreuer] Mecke. "Fluid nanobubbles and adsorption at solid substrates = Fluide Nanoblasen und Adsorption auf festen Substraten / Ralf Kaminke. Betreuer: Klaus Mecke." Erlangen : Universitätsbibliothek der Universität Erlangen-Nürnberg, 2011. http://d-nb.info/1015474993/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

jar-yau-Wu and 吳哲耀. "Low-temperature hydrothermal growth and blue luminescence of SnO2 nanoblade." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/67864299665032322993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
國立中興大學
材料工程學系所
94
The semiconductor metal oxide SnO2 has been widely used for gas sensors andoptoelectronic devices. Since one-dimensional nanostructures exhibit a great potential for nanodevices, the synthesis of highly ordered SnO2 nanowire arrays becomes an importance issue. In this study, the thermohydrolysis technique was used to synthesize highly ordered SnO2 nanowire arrays at low temperatures.The aqueous solution consisting of SnCl4•H2O and (NH2)2CO in presence of NaOH could form nanoblade of SnO2 on the glass or Si substrates with a SnO2 buffer layer at 90℃ for 24 hours. The typical widths of the nanoblade were about 100-300 nm and the lengths were up to 10 µm. The X-ray diffraction (XRD) patterns , Electron Spectroscopy for Chemical Analysis (ESCA) and Transmission Electron Microscope(TEM) analyses confirmed that the nanoblade had the phase structure of the rutile form of SnO2 . An intense blue luminescence centered at wavelength of 450 nm with full width at half-maximum of 75 nm was observed in the SnO2 nanoblades, which is different from the yellow-red light emission observed in SnO2 nanostructures prepared by other methods.
4

Tsai, Chen-Tsan, and 蔡鎮燦. "Mechanisms behind blue photoluminescence in SnO2 nanoblades and synthesis of In-doped SnO2 nanoblades." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/60553232672346939406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
國立中興大學
材料工程學系所
95
Abstract In this study, hydrothermal technique was used to synthesize large-area SnO2 and In-doped SnO2 nanostructures at low temperatures.The aqueous solution consisting of SnCl4•5H2O and (NH2)2CO in presence of NaOH could form nanoblades of SnO2 on the glass substrates with a SnO2 buffer layer at 900C for 24 hours. An intense blue luminescence centered at 443.4 nm with a full width at half-maximum of 74 nm was observed in the as-grown SnO2 nanoblades. We would have seen a decrease of blue luminescence after oxygen annealing since the oxygen vacancies had been removed by chemisorbstion procedure. On the other hand, the oxygen vacancies density will increase due to desorption of surface oxygen, leading to a increase blue luminescence. From the ESR signals of the SnO2 nanoblades before and after annealing, the g value was calculated to be 2.00178, representing the paramagnetic defects in SnO2 nanoblades are single ionized oxygen vacancies, which are believed to be responsible for the intense blue luminescence. In addition to SnO2 nanoblades, In-doped SnO2 nanoblades were also synthesized on a glass substrate covered with a SnO2 buffer layer in an aqueous solution consisting of (SnCl4•5H2O+ InCl3•4H2O) and (NH2)2CO in presence of NaOH at 900C. The typical widths of the In-doped SnO2 nanoblades were about 100 nm and the lengths were about 6-10μm. From the SAED patterns, the crystalline structure of In-doped SnO2 nanoblades was confirmed to be a single crystalline rutile SnO2 structure and grows along the (100) direction. The EDS analysis attached to TEM was performed to examine the components of individual of the In-doped SnO2 nanoblades, showing the concentration of In was estimated to be around 4 at%.
5

Lai, Chien-Lung, and 賴建隆. "Hydrothermal synthesis of Silica nanoblades and their blue luminescence." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/23793855234604696587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
國立中興大學
材料科學與工程學系
96
We reported large-scale synthesis of silica nanoblades by the hydrothermal method. The aqueous solution consisting of TEOS and (NH2)2CO in the presence of NaOH could form nanoblades of SiO2 on the Si wafer with a SiO2 buffer layer at 95℃ for 24 hours. The typical widths of the nanoblade were about 100 to 300 nm and the lengths were up to 10 μm. The transmission electron microscopy(TEM), X-ray diffraction(XRD)and x-ray photoelectron spectroscopy(XPS)were employed to characterize the samples. The results indicated that nanoblades structure in the form of amorphous silica. The photoluminescence(PL)spectrum of silica nanoblades showed strong blue emission peaked at 410 and 440 nm under 325 nm excitation wavelength. A blue light emission was observed which could be attributed to oxygen vacancies formed in the nanoblades. According to reducing process temperature, PL intensity would be increased. Therefore, the silica nanoblades may have potential applications for optoelectronic devices.

Book chapters on the topic "Nanoblade":

1

Perkowitz, Sidney. "Paint It Nanoblack." In Science Sketches, 233–35. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003274964-44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"6. Roman „Die Nanoblume“ (1995)." In Nanotechnologie als Kollektivsymbol, 340–94. transcript-Verlag, 2017. http://dx.doi.org/10.14361/9783839438039-012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"6. Roman „Die Nanoblume“ (1995)." In Nanotechnologie als Kollektivsymbol, 340–94. transcript Verlag, 2017. http://dx.doi.org/10.1515/9783839438039-012.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanoblade":

1

Wu, T. H., T. Teslaa, M. A. Teitell, and P. Y. Chiou. "Photothermal nanoblade for single cell surgery." In 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2011. http://dx.doi.org/10.1109/memsys.2011.5734610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, T. H., T. Teslaa, S. Kalim, C. T. French, S. Moghadam, R. Wall, J. F. Miller, O. N. Witte, M. A. Teitell, and P. Y. Chiou. "Photothermal nanoblade for large cargo delivery into mammalian cells." In TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chiou, Pei-Yu, Ting-Hsiang Wu, and Michael A. Teitell. "Photothermal nanoblade for single cell surgery and cargo delivery." In SPIE NanoScience + Engineering, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2012. http://dx.doi.org/10.1117/12.930754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Ting-Hsiang, Tara Teslaa, Michael A. Teitell, and Pei-Yu Chiou. "Photothermal nanoblade for single cell surgery and large cargo delivery." In Nanophotonics. IEEE, 2011. http://dx.doi.org/10.1109/omems.2011.6031074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Ting-Hsiang, Yi-Chien Wu, Enrico Sagullo, Michael A. Teitell, and Pei-Yu Eric Chiou. "Direct nuclear delivery of DNA macromolecules using the photothermal nanoblade." In 2013 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2013. http://dx.doi.org/10.1109/omn.2013.6659067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kagawa, D., M. Kusumoto, Y. Takemura, H. Takao, F. Shimokawa, and K. Terao. "Nanoblade array for spatial dissection of single cells and tissues." In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2017. http://dx.doi.org/10.1109/memsys.2017.7863472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Bo, Yuping He, and Yiping Zhao. "Hydrogenation of Magnesium Nanoblades: The Effect of Concentration Dependent Hydrogen Diffusion." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
By assuming the H diffusion coefficient and H adsorption rate to be exponentially and linearly dependent on H concentration, a physical model is developed to predict the hydrogenation process of Mg nanoblades. The predicted H uptake curves agree well with the experimental data from V-coated Mg nanoblades. The obtained H diffusion coefficients in MgHx between Mg and MgH2 have nearly three orders of magnitude variation. The characteristic time of H surface adsorption is longer than that of H diffusion in Mg but shorter than that in MgH2 for 100 nm thick nanoblades. Thus, as it proceeds, the hydrogenation process gradually changes from surface reaction-limited to diffusion-limited. In both one- and two-dimensional simulations, it is shown that a hydride shell is not formed during hydrogenation. In contrast, a hydride core is formed during dehydrogenation. The strong (exponential) concentration dependence of H diffusion coefficient throws profound influence on the stability and instability of a diffusion front, i.e., a H diffusion front in hydrogenation, and a H-vacancy diffusion front in dehydrogenation. In the latter case, the front tends to corrugate forming islands when the H2 release rate is high.
8

Wu, Yi-Chien, Tuhin Santra, Ting-Hsiang Wu, Daniel L. Clemens, Bai-Yu Lee, Ximiao Wen, Marcus A. Horwitz, Michael A. Teitell, and Pei Yu Chiou. "Photothermal nanoblades for delivery of large-sized cargo into mammalian cells at high throughput." In 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2016. http://dx.doi.org/10.1109/nano.2016.7751307.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nanoblade":

1

Synthesis of Samarium Cobalt Nanoblades. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/992930.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography