Journal articles on the topic 'Nanoapertures'

To see the other types of publications on this topic, follow the link: Nanoapertures.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nanoapertures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Onur, Aytac, and Mustafa Turkmen. "Effects of Dielectric Spacer on Absorbance Characteristics of a Dual-Band Nanoaperture Based Perfect Absorber." Materials Science Forum 915 (March 2018): 28–33. http://dx.doi.org/10.4028/www.scientific.net/msf.915.28.

Full text
Abstract:
In this study, a novel perfect absorber (PA) array based on H-shaped nanoapertures for bio-sensing applications in infrared regime is presented. Proposed PA array has a dual-band spectral response, and the locations of these resonances can be adjusted by varying the geometrical dimensions and layer thicknesses of the structure. Nearly unity absorbance is obtained from the PA array for both resonances. The structure design is based on the near field plasmon coupling between the gold film layer and the top nanoaperture array. In this context, the dielectric spacer layer is used to support this plasmon coupling and the gold film on the silicon substrate is also utilized to eliminate the transmittance through the structure. Different dielectric spacers (MgF2, SiO2, and Al2O3) are used to investigate the effects of dielectric spacer on the absorbance characteristics of proposed PA array. High field enhancement is achieved by the interaction of the sharp corners of nanoapertures. The near field enhancements are more than 1500 times at the first resonance frequency, more than 1000 times at the second resonance frequency which is highly desirable for the infrared bio-sensing applications. Due to the high near-field enhancement and nearly unity absorbance, the proposed dual-band PA array with adjustable spectral responses can be useful for bio-sensing applications in infrared regime.
APA, Harvard, Vancouver, ISO, and other styles
2

Tuniz, Alessandro, Henrik Schneidewind, Jan Dellith, Stefan Weidlich, and Markus A. Schmidt. "Nanoapertures without Nanolithography." ACS Photonics 6, no. 1 (December 19, 2018): 30–37. http://dx.doi.org/10.1021/acsphotonics.8b01265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Jongkyoon, Hyunsoo Lee, Alexander Gliserin, Kyujung Kim, and Seungchul Kim. "Spectral Shifting in Extraordinary Optical Transmission by Polarization-Dependent Surface Plasmon Coupling." Plasmonics 15, no. 2 (November 16, 2019): 489–94. http://dx.doi.org/10.1007/s11468-019-01058-w.

Full text
Abstract:
AbstractNanoapertures in a metallic film exhibit extraordinary optical transmission (EOT) owing to the surface plasmon resonance. Their transmission properties are known to be dependent on the structural parameters of the nanoapertures. In addition, the polarization of light has also a crucial influence on the transmission spectrum. In this study, we numerically found that the polarization state is a sensitive parameter in plasmonic EOT only when the gap size between triangular nanoapertures is less than ~ 20 nm. For a polarization of the light perpendicular to the axis between the nanoapertures, the optical transmission spectrum is nonlinearly redshifted with decreasing gap size. This spectral shifting of the transmission has potential applications for active optical filters, which can be manipulated by the polarization of light or by adjusting the gap size.
APA, Harvard, Vancouver, ISO, and other styles
4

Gordon, Reuven. "Metal Nanoapertures and Single Emitters." Advanced Optical Materials 8, no. 20 (August 26, 2020): 2001110. http://dx.doi.org/10.1002/adom.202001110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baibakov, Mikhail, Aleksandr Barulin, Prithu Roy, Jean-Benoît Claude, Satyajit Patra, and Jérôme Wenger. "Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet." Nanoscale Advances 2, no. 9 (2020): 4153–60. http://dx.doi.org/10.1039/d0na00366b.

Full text
Abstract:
Nanoapertures milled in metallic films called zero-mode waveguides (ZMWs) overcome the limitations of classical confocal microscopes by enabling single molecule analysis at micromolar concentrations with improved fluorescence brightness.
APA, Harvard, Vancouver, ISO, and other styles
6

Jin, Eric X., and Xianfan Xu. "Optical Resonance in Bowtie-Shaped Nanoapertures." Journal of Computational and Theoretical Nanoscience 5, no. 2 (February 1, 2008): 214–20. http://dx.doi.org/10.1166/jctn.2008.2462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rockstuhl, Carsten, Thomas Zentgraf, Todd P. Meyrath, Harald Giessen, and Falk Lederer. "Resonances in complementary metamaterials and nanoapertures." Optics Express 16, no. 3 (2008): 2080. http://dx.doi.org/10.1364/oe.16.002080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Han, Donghoon, Garrison M. Crouch, Kaiyu Fu, Lawrence P. Zaino III, and Paul W. Bohn. "Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides." Chemical Science 8, no. 8 (2017): 5345–55. http://dx.doi.org/10.1039/c7sc02250f.

Full text
Abstract:
The ability of zero-mode waveguides (ZMW) to guide light into subwavelength-diameter nanoapertures has been exploited for studying electron transfer dynamics in zeptoliter-volume nanopores under single-molecule occupancy conditions.
APA, Harvard, Vancouver, ISO, and other styles
9

Jiao, Xiaojin, Eric M. Peterson, Joel M. Harris, and Steve Blair. "UV Fluorescence Lifetime Modification by Aluminum Nanoapertures." ACS Photonics 1, no. 12 (November 21, 2014): 1270–77. http://dx.doi.org/10.1021/ph500267n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Imura, Kohei, Kosei Ueno, Hiroaki Misawa, and Hiromi Okamoto. "Anomalous Light Transmission from Plasmonic-Capped Nanoapertures." Nano Letters 11, no. 3 (March 9, 2011): 960–65. http://dx.doi.org/10.1021/nl103408h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lee, Jaehak, Suyeon Yang, Jihye Lee, Jun-Hyuk Choi, Yong-Hee Lee, Jung H. Shin, and Min-Kyo Seo. "Extraordinary optical transmission and second harmonic generation in sub–10-nm plasmonic coaxial aperture." Nanophotonics 9, no. 10 (April 18, 2020): 3295–302. http://dx.doi.org/10.1515/nanoph-2020-0066.

Full text
Abstract:
AbstractRecent development in nanofabrication technology has enabled the fabrication of plasmonic nanoapertures that can provide strong field concentrations beyond the diffraction limit. Further utilization of plasmonic nanoaperture requires the broadband tuning of the operating wavelength and precise control of aperture geometry. Here, we present a novel plasmonic coaxial aperture that can support resonant extraordinary optical transmission (EOT) with a peak transmittance of ~10% and a wide tuning range over a few hundred nanometers. Because of the shadow deposition process, we could precisely control the gap size of the coaxial aperture down to the sub–10-nm scale. The plasmonic resonance of the SiNx/Au disk at the center of the coaxial aperture efficiently funnels the incident light into the sub–10-nm gap and allows strong electric field confinement for efficient second harmonic generation (SHG), as well as EOT. In addition to the experiment, we theoretically investigated the modal properties of the plasmonic coaxial aperture depending on the structural parameters and correlation between EOT and SHG through finite-difference time-domain simulations. We believe that our plasmonic coaxial apertures, which are readily fabricated by the nanoimprinting process, can be a versatile, practical platform for enhanced light–matter interaction and its nonlinear optical applications.
APA, Harvard, Vancouver, ISO, and other styles
12

Burouni, Narges, Erwin Berenschot, Miko Elwenspoek, Edin Sarajlic, Pele Leussink, Henri Jansen, and Niels Tas. "Wafer-scale fabrication of nanoapertures using corner lithography." Nanotechnology 24, no. 28 (June 21, 2013): 285303. http://dx.doi.org/10.1088/0957-4484/24/28/285303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Onuta, Tiberiu-Dan, Matthias Waegele, Christopher C. DuFort, William L. Schaich, and Bogdan Dragnea. "Optical Field Enhancement at Cusps between Adjacent Nanoapertures." Nano Letters 7, no. 3 (March 2007): 557–64. http://dx.doi.org/10.1021/nl0621600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gorodetski, Yuri, Nir Shitrit, Itay Bretner, Vladimir Kleiner, and Erez Hasman. "Observation of Optical Spin Symmetry Breaking in Nanoapertures." Nano Letters 9, no. 8 (August 12, 2009): 3016–19. http://dx.doi.org/10.1021/nl901437d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Schön, Peter, Nicolas Bonod, Eloïse Devaux, Jérôme Wenger, Hervé Rigneault, Thomas W. Ebbesen, and Sophie Brasselet. "Enhanced second-harmonic generation from individual metallic nanoapertures." Optics Letters 35, no. 23 (November 30, 2010): 4063. http://dx.doi.org/10.1364/ol.35.004063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Heucke, Stephan F., Elias M. Puchner, Stefan W. Stahl, Alexander W. Holleitner, Hermann E. Gaub, and Philip Tinnefeld. "Nanoapertures for AFM-based single-molecule force spectroscopy." International Journal of Nanotechnology 10, no. 5/6/7 (2013): 607. http://dx.doi.org/10.1504/ijnt.2013.053529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Heucke, Stephan F., Fabian Baumann, Guillermo P. Acuna, Philip M. D. Severin, Stefan W. Stahl, Mathias Strackharn, Ingo H. Stein, Philipp Altpeter, Philip Tinnefeld, and Hermann E. Gaub. "Placing Individual Molecules in the Center of Nanoapertures." Nano Letters 14, no. 2 (June 17, 2013): 391–95. http://dx.doi.org/10.1021/nl401517a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jiao, Xiaojin, Yunshan Wang, and Steve Blair. "UV fluorescence enhancement by Al and Mg nanoapertures." Journal of Physics D: Applied Physics 48, no. 18 (April 10, 2015): 184007. http://dx.doi.org/10.1088/0022-3727/48/18/184007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chen, Yang, Jie Gao, and Xiaodong Yang. "Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking." Nano Letters 18, no. 1 (December 8, 2017): 520–27. http://dx.doi.org/10.1021/acs.nanolett.7b04515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jiang, Quanbo, Benoît Rogez, Jean-Benoît Claude, Guillaume Baffou, and Jérôme Wenger. "Temperature Measurement in Plasmonic Nanoapertures Used for Optical Trapping." ACS Photonics 6, no. 7 (June 4, 2019): 1763–73. http://dx.doi.org/10.1021/acsphotonics.9b00519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Champi, Hipólito A. Arredondo, Rina H. Bustamante, and Walter J. Salcedo. "Optical enantioseparation of chiral molecules using asymmetric plasmonic nanoapertures." Optical Materials Express 9, no. 4 (March 13, 2019): 1763. http://dx.doi.org/10.1364/ome.9.001763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chen, Yang, Jie Gao, and Xiaodong Yang. "Chiral Grayscale Imaging with Plasmonic Metasurfaces of Stepped Nanoapertures." Advanced Optical Materials 7, no. 6 (January 18, 2019): 1801467. http://dx.doi.org/10.1002/adom.201801467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Khademhosseinieh, Bahar, Gabriel Biener, Ikbal Sencan, Ting-Wei Su, Ahmet F. Coskun, and Aydogan Ozcan. "Lensfree sensing on a microfluidic chip using plasmonic nanoapertures." Applied Physics Letters 97, no. 22 (November 29, 2010): 221107. http://dx.doi.org/10.1063/1.3521390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Luo, Xian-Gang, Ming-Bo Pu, Xiong Li, and Xiao-Liang Ma. "Broadband spin Hall effect of light in single nanoapertures." Light: Science & Applications 6, no. 6 (January 6, 2017): e16276-e16276. http://dx.doi.org/10.1038/lsa.2016.276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, Z. J., R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and Mu Wang. "Plasmonic antenna array at optical frequency made by nanoapertures." Applied Physics Letters 93, no. 17 (October 27, 2008): 171110. http://dx.doi.org/10.1063/1.3010741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kelly, Christopher V., David Holowka, Barbara Baird, and Harold G. Craighead. "Arrays of Nanoapertures for Examining Membrane Organization and Dynamics." Biophysical Journal 100, no. 3 (February 2011): 20a. http://dx.doi.org/10.1016/j.bpj.2010.12.318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Serdyuk, V. M., J. A. Titovitsky, S. V. Von Gratovski, and V. V. Koledov. "Calculation of Near Zone Electromagnetic Field Radiated from Sub-Wavelength Nanoaperture to a Plane Dielectric." International Journal of Nanoscience 18, no. 03n04 (March 26, 2019): 1940024. http://dx.doi.org/10.1142/s0219581x19400246.

Full text
Abstract:
The theoretical model of electromagnetic transmission through solitary sub-wavelength nanoapertures is considered. The model is based on a rigorous solution of the plane wave diffraction problem by a slot in the perfectly conducting screen of a finite thickness. The local energy of the electric field inside the plane dielectrics arranged behind the screen is used for calculations. The results demonstrate the principal features of the phenomenon that confirms that the diffraction theory can be applied successfully without the concept of surface plasmons.
APA, Harvard, Vancouver, ISO, and other styles
28

Jaksic, Z., M. Maksimovic, D. Vasiljevic-Radovic, and M. Sarajlic. "Subwavelength hole arrays with nanoapertures fabricated by scanning probe nanolithography." Science of Sintering 38, no. 2 (2006): 117–23. http://dx.doi.org/10.2298/sos0602117j.

Full text
Abstract:
Owing to their surface plasmon-based operation, arrays of subwavelength holes show extraordinary electromagnetic transmission and intense field localizations of several orders of magnitude. Thus they were proposed as the basic building blocks for a number of applications utilizing the enhancement of nonlinear optical effects. We designed and simulated nanometer-sized subwavelength holes using an analytical approach. In our experiments we used the scanning probe method for nanolithographic fabrication of subwavelength hole arrays in silver layers sputtered on a positive photoresist substrate. We fabricated ordered nanohole patterns with different shapes, dispositions and proportions. The smallest width was about 60 nm. We characterized the fabricated samples by atomic force microscopy.
APA, Harvard, Vancouver, ISO, and other styles
29

Cetin, Arif E., Sabri Kaya, Alket Mertiri, Ekin Aslan, Shyamsunder Erramilli, Hatice Altug, and Mustafa Turkmen. "Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures." Photonics and Nanostructures - Fundamentals and Applications 15 (June 2015): 73–80. http://dx.doi.org/10.1016/j.photonics.2015.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Douguo, Dong Qiu, Yikai Chen, Ruxue Wang, Liangfu Zhu, Pei Wang, Hai Ming, et al. "Coupling of Fluorophores in Single Nanoapertures with Tamm Plasmon Structures." Journal of Physical Chemistry C 123, no. 2 (December 29, 2018): 1413–20. http://dx.doi.org/10.1021/acs.jpcc.8b11498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Attavar, Sachin, Mohit Diwekar, and Steve Blair. "Photoactivated capture molecule immobilization in plasmonic nanoapertures in the ultraviolet." Lab on a Chip 11, no. 5 (2011): 841. http://dx.doi.org/10.1039/c0lc00498g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Amarie, Dragos, Nathan D. Rawlinson, William L. Schaich, Bogdan Dragnea, and Stephen C. Jacobson. "Three-Dimensional Mapping of the Light Intensity Transmitted through Nanoapertures." Nano Letters 5, no. 7 (July 2005): 1227–30. http://dx.doi.org/10.1021/nl050891e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bouhelier, A., J. Toquant, H. Tamaru, H. J. Güntherodt, D. W. Pohl, and G. Schider. "Electrolytic formation of nanoapertures for scanning near-field optical microscopy." Applied Physics Letters 79, no. 5 (July 30, 2001): 683–85. http://dx.doi.org/10.1063/1.1389767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kelly, Christopher V., David A. Holowka, Barabara A. Baird, and Harold G. Craighead. "Nanoapertures for 60 nm Resolution of Membrane Organization and Dynamics." Biophysical Journal 102, no. 3 (January 2012): 207a. http://dx.doi.org/10.1016/j.bpj.2011.11.1131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lenne, Pierre-François, Hervé Rigneault, Didier Marguet, and Jérôme Wenger. "Fluorescence fluctuations analysis in nanoapertures: physical concepts and biological applications." Histochemistry and Cell Biology 130, no. 5 (September 18, 2008): 795–805. http://dx.doi.org/10.1007/s00418-008-0507-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chovin, Arnaud, Patrick Garrigue, and Neso Sojic. "Remote NADH imaging through an ordered array of electrochemiluminescent nanoapertures." Bioelectrochemistry 69, no. 1 (September 2006): 25–33. http://dx.doi.org/10.1016/j.bioelechem.2005.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pu, Mingbo, Xiong Li, Yinghui Guo, Xiaoliang Ma, and Xiangang Luo. "Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing." Optics Express 25, no. 25 (December 4, 2017): 31471. http://dx.doi.org/10.1364/oe.25.031471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

McKeown, Steven J., and Lynford L. Goddard. "Reflective Palladium Nanoapertures on Fiber for Wide Dynamic Range Hydrogen Sensing." IEEE Journal of Selected Topics in Quantum Electronics 23, no. 2 (March 2017): 263–68. http://dx.doi.org/10.1109/jstqe.2016.2617086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gunay, Kaan T., Patrick W. Flanigan, Pei Liu, and Domenico Pacifici. "Polarization dependence of light transmission through individual nanoapertures in metal films." Journal of the Optical Society of America B 31, no. 5 (April 23, 2014): 1150. http://dx.doi.org/10.1364/josab.31.001150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Jianxiong, Shuqi Chen, Ping Yu, Hua Cheng, Lunjie Chen, and Jianguo Tian. "Indirectly Manipulating Nanoscale Localized Fields of Bowtie Nanoantennas with Asymmetric Nanoapertures." Plasmonics 8, no. 2 (August 19, 2012): 495–99. http://dx.doi.org/10.1007/s11468-012-9417-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Serdyuk, V. M., S. V. von Gratowski, and V. V. Koledov. "Diffraction Focusing of Electromagnetic Radiation by Transmission through Sub-Wavelength Nanoapertures." Semiconductors 54, no. 14 (December 2020): 1814–15. http://dx.doi.org/10.1134/s1063782620140250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kotnala, Abhay, Hongru Ding, and Yuebing Zheng. "Enhancing Single-Molecule Fluorescence Spectroscopy with Simple and Robust Hybrid Nanoapertures." ACS Photonics 8, no. 6 (May 18, 2021): 1673–82. http://dx.doi.org/10.1021/acsphotonics.1c00045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cadusch, Jasper J., Timothy D. James, and Ann Roberts. "Experimental demonstration of a wave plate utilizing localized plasmonic resonances in nanoapertures." Optics Express 21, no. 23 (November 12, 2013): 28450. http://dx.doi.org/10.1364/oe.21.028450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ghenuche, Petru, Juan de Torres, Satish Babu Moparthi, Victor Grigoriev, and Jérôme Wenger. "Nanophotonic Enhancement of the Förster Resonance Energy-Transfer Rate with Single Nanoapertures." Nano Letters 14, no. 8 (July 16, 2014): 4707–14. http://dx.doi.org/10.1021/nl5018145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cui, Tong, Mingqian Zhang, Lin Sun, Shuyin Zhang, Jia Wang, Benfeng Bai, and Hong-Bo Sun. "Spin‐Symmetry‐Selective Generation of Ultracompact Optical Vortices in Nanoapertures without Chirality." Small Structures 1, no. 2 (September 9, 2020): 2000008. http://dx.doi.org/10.1002/sstr.202000008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pang, Yuanjie, and Reuven Gordon. "Nanophotonics using a subwavelength aperture in a metal film." Nanotechnology Reviews 1, no. 4 (August 1, 2012): 339–62. http://dx.doi.org/10.1515/ntrev-2012-0028.

Full text
Abstract:
AbstractThis review focuses on the optical theory and applications of a single subwavelength aperture in a metal film. We begin with Bethe’s aperture theory for the optical transmission through a subwavelength aperture in a perfect electric conductor film and extend the discussion to apertures in real metals of finite thickness and to apertures with different shapes. Extraordinary optical transmission (EOT) is reviewed, particularly for an aperture in a transverse waveguide screen and for waveguide EOT with applications to aperture near-field probes. We overview applications of single subwavelength nanoapertures to refractive index sensing, single molecule fluorescence detection, Raman spectroscopy and optical trapping of dielectric nanoparticles, including biological matter. Finally, we discuss the potential of combining these many different capabilities to create greater functionality with a single aperture.
APA, Harvard, Vancouver, ISO, and other styles
47

Aslan, Ekin, and Mustafa Turkmen. "Square fractal-like nanoapertures for SEIRA spectroscopy: An analytical, numerical and experimental study." Sensors and Actuators A: Physical 259 (June 2017): 127–36. http://dx.doi.org/10.1016/j.sna.2017.03.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Janipour, Mohsen, and Kursat Sendur. "Interplay Between In-Plane and Out-of-Plane Resonances of Heptamer Oligomer Nanoapertures." Journal of Lightwave Technology 35, no. 2 (January 15, 2017): 186–92. http://dx.doi.org/10.1109/jlt.2016.2638047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ha, Yingli, Yinghui Guo, Mingbo Pu, Fei Zhang, Xiong Li, Xiaoliang Ma, Mingfeng Xu, and Xiangang Luo. "Minimized two- and four-step varifocal lens based on silicon photonic integrated nanoapertures." Optics Express 28, no. 6 (March 3, 2020): 7943. http://dx.doi.org/10.1364/oe.386418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yanik, AhmetA, Ronen Adato, and Hatice Altug. "Design Principles for Optoelectronic Applications of Extraordinary Light Transmission Effect in Plasmonics Nanoapertures." Journal of Nanoscience and Nanotechnology 10, no. 3 (March 1, 2010): 1713–18. http://dx.doi.org/10.1166/jnn.2010.2045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography