Academic literature on the topic 'Nanoantenna array'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nanoantenna array.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nanoantenna array"

1

Sethi, Waleed Tariq, Olivier De Sagazan, Mohamed Himdi, Hamsakutty Vettikalladi, and Saleh A. Alshebeili. "Thermoelectric Sensor Coupled Yagi–Uda Nanoantenna for Infrared Detection." Electronics 10, no. 5 (February 24, 2021): 527. http://dx.doi.org/10.3390/electronics10050527.

Full text
Abstract:
We present an experimental demonstration of a thermoelectric sensor coupled with a nanoantenna as an alternative option for detecting infrared energy. Two nanoantenna design (single element and an array) variations based on Yagi-Uda technology and one separate nano-thermoelectric junction array were fabricated and tested. The nanoantennas were tuned to operate and respond at a center wavelength of 1550 nm (193.5 THz) optical C-band window, but they also exhibited a resonance response when excited by lasers of various wavelengths (650 nm and 940 nm). The radiation-induced electric currents in the nanoantennas, coupled with a nano-thermoelectric sensor, produced a potential difference as per the Seebeck effect. With respect to the uniform thermal measurements of the reference nanoantenna, the experiments confirmed the detection properties of the proposed nanoantennas; the single element detected a peak percentage voltage hike of 28%, whereas the array detected a peak percentage voltage hike of 80% at the center wavelength. Compared to state-of-the-art thermoelectric designs, this was the first time that such peak percentage voltages were experimentally reported following a planar design based on the Seebeck principle.
APA, Harvard, Vancouver, ISO, and other styles
2

Barho, Franziska B., Fernando Gonzalez-Posada, Maria-Jose Milla, Mario Bomers, Laurent Cerutti, Eric Tournié, and Thierry Taliercio. "Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin." Nanophotonics 7, no. 2 (November 11, 2017): 507–16. http://dx.doi.org/10.1515/nanoph-2017-0052.

Full text
Abstract:
AbstractTailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.
APA, Harvard, Vancouver, ISO, and other styles
3

Chernykh, E. A., A. N. Filippov, A. M. Alekseev, M. A. Makhiboroda, and S. S. Kharintsev. "Optical Heating Controlled With a Thermoplasmonic Metasurface." Journal of Physics: Conference Series 2015, no. 1 (November 1, 2021): 012029. http://dx.doi.org/10.1088/1742-6596/2015/1/012029.

Full text
Abstract:
Abstract We develop a photothermal technology to control optical heating of polymer and liquid crystal films through a refractory titanium nitride (TiN) metasurface. The metasurface represents an array of identical square-shaped TiN nanoantennas on a Si substrate. Upon CW laser illumination, a TiN nanoantenna experiences anomalous Joule heating at a plasmon resonance. A temperature rise provides a unique opportunity for locally probing phase transitions. In the case of heterogeneous PMMA thin films or polymeric blends, a controlled optical heating is needed to probe the glass transition temperature (Tg) of their constituents. Here, we model a controlled thermal response originating from the TiN nanoantenna under CW laser illumination by using FDTD/FEM methods.
APA, Harvard, Vancouver, ISO, and other styles
4

Pinheiro Caetano, Inês Margarida, João Paulo N. Torres, and Ricardo A. Marques Lameirinhas. "Simulation of Solar Cells with Integration of Optical Nanoantennas." Nanomaterials 11, no. 11 (October 30, 2021): 2911. http://dx.doi.org/10.3390/nano11112911.

Full text
Abstract:
The evolution of nanotechnology has provided a better understanding of light-matter interaction at a subwavelength scale and has led to the development of new devices that can possibly play an important role in future applications. Nanoantennas are an example of such devices, having gained interest in recent years for their application in the field of photovoltaic technology at visible and infrared wavelengths, due to their ability to capture and confine energy of free-propagating waves. This property results from a unique phenomenon called extraordinary optical transmission (EOT) where, due to resonant behavior, light passing through subwavelength apertures in a metal film can be transmitted in greater orders of magnitude than that predicted by classical theories. During this study, 2D and 3D models featuring a metallic nanoantenna array with subwavelength holes coupled to a photovoltaic cell are simulated using a Finite Element Tool. These models present with slight variations between them, such as the position of the nanoantenna within the structure, the holes’ geometry and the type of cell, in order to verify how its optical response is affected. The results demonstrate that the coupling of nanoantennas to solar cells can be advantageous and improve the capture and absorption of radiation. It is concluded that aperture nanoantennas may concentrate radiation, meaning that is possible to tune the electric field peak and adjust absorption on the main layers. This may be important because it might be possible to adjust solar cell performance to the global regions’ solar spectrum by only adjusting the nanoantenna parameters.
APA, Harvard, Vancouver, ISO, and other styles
5

Gritsienko, A. V., N. S. Kurochkin, P. V. Lega, A. P. Orlov, A. S. Ilin, S. P. Eliseev, and A. G. Vitukhnovsky. "Optical properties of new hybrid nanoantenna in submicron cavity." Journal of Physics: Conference Series 2015, no. 1 (November 1, 2021): 012052. http://dx.doi.org/10.1088/1742-6596/2015/1/012052.

Full text
Abstract:
Abstract An essential area of nanophotonics is the creation of efficient quantum emitters operating at high frequencies. In this regard, plasmon nanoantennas based on nanoparticles on metal (nanopatch antennas) are incredibly relevant. We have created and investigated a new hybrid nanoantenna with a cube on metal and quantum emitters. We demonstrate an increase up to 60 times for the rate of spontaneous emission and the gap-plasmon mode changing for nanopatch antenna in the metallic well. The results show the possibility of creating plasmon antennas in a controlled way by creating an array of regularly arranged nanoscale cavities-resonators.
APA, Harvard, Vancouver, ISO, and other styles
6

Al-Mudhafar, Reiam, and Hussein Ali Jawad. "Plasmonic hybrid terahertz photomixer of graphene nanoantenna and nanowires." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 3 (June 1, 2022): 2711. http://dx.doi.org/10.11591/ijece.v12i3.pp2711-2720.

Full text
Abstract:
Due to their attractive properties, silver nanowires (Ag-NWs) are newly used as nanoelectrodes in continuous wave (CW) THz photomixer. However, since these nanowires have small contact area, the nanowires fill factor in the photomixer active region is low, which leads to reduce the nanowires conductivity. In this work, we proposed to add graphene nanoantenna array as nanoelectrodes to the silver nanowires-based photomixer to improve the conductivity. In addition, the graphene nanoantenna array and the silver nanowires form new hybrid nanoelectrodes for the CW-THz photomixer leading to improve the device conversion efficiency by the plasmonic effect. Two types of graphene nanoantenna array are proposed in two separate photomixer configurations. These are the graphene nanodisk (GND) array and the graphene bow-tie nanoantenna (GNA) array. The photomixer active region is simulated using the computer simulation technology (CST) Studio Suite<sup>®</sup> for three optical wavelengths: 780 nm, 810 nm, and 850 nm. From the results, we found that the electric field in the active region is enhanced by 4.2 and 4.8 times for the aforementioned configurations, respectively. We also showed that the THz output power can be enhanced by 310 and 530 times, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Ahmed, Hasan, and Viktoriia E. Babicheva. "Nanostructured Tungsten Disulfide WS2 as Mie Scatterers and Nanoantennas." MRS Advances 5, no. 35-36 (2020): 1819–26. http://dx.doi.org/10.1557/adv.2020.173.

Full text
Abstract:
ABSTRACTNanoparticles of high-refractive-index materials like semiconductors can achieve confinement of light at the subwavelength scale because of the excitation of Mie resonances. The nanostructures out of high-refractive-index materials have extensively been studied theoretically and realized in experiments exploring a wide range of photonic applications. Recently, transition metal dichalcogenides (TMDCs) from the family of van der Waals layered materials have been shown to exhibit tailorable optical properties along with high refractive index and strong anisotropy. We envision that TMDCs are a promising material platform for designing metasurfaces and ultra-thin optical elements: these van der Waals materials show a strong spectral response on light excitations in visible and near-infrared ranges, and metasurface properties can be controlled by nanoantenna dimensions and their arrangement. In this work, we investigate a periodic array of disk-shaped nanoantennas made of a TMDC material, tungsten disulfide WS2, placed on top of a silicon layer and oxide substrate. We show that the nanostructure resonance in TMDC disk-shaped nanoantenna array can be controlled by the variation in silicon layer thickness and have a dependence on the presence of index-match superstrate cover. We also report on the spectral features in absorption and reflection profiles of the same structure with different surrounding index.
APA, Harvard, Vancouver, ISO, and other styles
8

Lin, Dianmin, Aaron L. Holsteen, Elhanan Maguid, Gordon Wetzstein, Pieter G. Kik, Erez Hasman, and Mark L. Brongersma. "Photonic Multitasking Interleaved Si Nanoantenna Phased Array." Nano Letters 16, no. 12 (November 28, 2016): 7671–76. http://dx.doi.org/10.1021/acs.nanolett.6b03505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Damasceno, Gabriel H. B., William O. F. Carvalho, and Jorge Ricardo Mejía-Salazar. "Design of Plasmonic Yagi–Uda Nanoantennas for Chip-Scale Optical Wireless Communications." Sensors 22, no. 19 (September 27, 2022): 7336. http://dx.doi.org/10.3390/s22197336.

Full text
Abstract:
Optical wireless transmission has recently become a major cutting-edge alternative for on-chip/inter-chip communications with higher transmission speeds and improved power efficiency. Plasmonic nanoantennas, the building blocks of this new nanoscale communication paradigm, require precise design to have directional radiation and improved communication ranges. Particular interest has been paid to plasmonic Yagi–Uda, i.e., the optical analog of the conventional Radio Frequency (RF) Yagi–Uda design, which may allow directional radiation of plasmonic fields. However, in contrast to the RF model, an overall design strategy for the directional and optimized front-to-back ratio of the radiated far-field patterns is lacking. In this work, a guide for the optimized design of Yagi–Uda plasmonic nanoantennas is shown. In particular, five different design conditions are used to study the effects of sizes and spacing between the constituent parts (made of Au). Importantly, it is numerically demonstrated (using the scattered fields) that closely spaced nanoantenna elements are not appropriated for directional light-to-plasmon conversion/radiation. In contrast, if the elements of the nanoantenna are widely spaced, the structure behaves like a one-dimensional array of nanodipoles, producing a funnel-like radiation pattern (not suitable for on-chip wireless optical transmission). Therefore, based on the results here, it can be concluded that the constituent metallic rib lengths must be optimized to exhibit the resonance at the working wavelength, whilst their separations should follow the relation λeff/π, where λeff indicates the effective wavelength scaling for plasmonic nanostructures.
APA, Harvard, Vancouver, ISO, and other styles
10

Hsiao, Yu-Cheng, Chen-Wei Su, Zong-Han Yang, Yevheniia I. Cheypesh, Jhen-Hong Yang, Victor Yu Reshetnyak, Kuo-Ping Chen, and Wei Lee. "Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal." RSC Advances 6, no. 87 (2016): 84500–84504. http://dx.doi.org/10.1039/c6ra11428h.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nanoantenna array"

1

Drachev, Vladimir P., Alexander V. Kildishev, Joshua D. Borneman, Kuo-Ping Chen, Vladimir M. Shalaev, Konstantin Yamnitskiy, Robert A. Norwood, et al. "Engineered nonlinear materials using gold nanoantenna array." NATURE PUBLISHING GROUP, 2018. http://hdl.handle.net/10150/626577.

Full text
Abstract:
Gold dipole nanoantennas embedded in an organic molecular film provide strong local electromagnetic fields to enhance both the nonlinear refractive index (n2) and two-photon absorption (2PA) of the molecules. An enhancement of 53× for 2PA and 140× for nonlinear refraction is observed for BDPAS (4,4'-bis(diphenylamino)stilbene) at 600 nm with only 3.7% of gold volume fraction. The complex value of the third-order susceptibility enhancement results in a sign change of n2 for the effective composite material relative to the pure BDPAS film. This complex nature of the enhancement and the tunability of the nanoantenna resonance allow for engineering the effective nonlinear response of the composite film.
APA, Harvard, Vancouver, ISO, and other styles
2

Dohr, Neciah. "Aluminium nanoantenna arrays for enhancing near UV fluorescence." Thesis, University of Bristol, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.768199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Choudhary, Saumya. "On Plasmonic Superradiance, the Scaling Laws of Spontaneous Parametric Downconversion, and the Principles and Recent Advances in Nonlinear Optics." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35132.

Full text
Abstract:
This thesis covers three different topics. The first part is a pedagogical review of the basic principles and recent advances in nonlinear optics. It was originally written as a chapter for the proceedings of the “International School of Physics (Enrico Fermi)” summer school on Photonics held in June, 2014. It is included to provide some background information about nonlinear optical processes in general, and is particularly relevant for the third part of this thesis which is based on the second-order nonlinear optical process of spontaneous parametric downconversion. The second part is based on original research, and deals with superradiance in plasmonic nanostructures. The process of superradiance, as introduced by Dicke in 1954, entails the shortening of the spontaneous emission lifetime of a collection of N quantum emitters as a consequence of the development of a macroscopic dipole moment. Specifically, the lifetime is shortened by a factor of 1/N, and the linewidth is broadened by a factor of N. Such a linewidth dependence has been previously observed in systems of several plasmonic ‘emitters’. However, a clear physical insight into this phenomenon and how it relates to Dicke superradiance has not been shown yet. In this part, we demonstrate by experiment, simulation, and a simple analytical model that Dicke’s superradiance can indeed be observed in a planar array of plasmonic nanoantennas, with a linewidth that scales linearly with the number of nanoantennas within a square wavelength. The third part is also based on original research, and is based on the scal- ing laws of spontaneous parametric downconversion (SPDC) for a type-I phase- matching configuration. The variation of bi-photon generation rate, heralding efficiency and radiance with parameters such as crystal length, pump focussing and collection waist sizes are examined for collinear and non-collinear emission. The results can be used to maximize the brightness of the SPDC source or increase the heralding efficiency depending on the application.
APA, Harvard, Vancouver, ISO, and other styles
4

Zan, De-Li, and 昝德立. "Investigation of the optical properties of a plasmonic nanoantenna array." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/19461751830268451655.

Full text
Abstract:
碩士
健行科技大學
電子工程系碩士班
103
Using finite element numerical simulation method for simulation of metal nanorod structure. The first theme uses a silver nanorod array of different shape and with the same gap. To discuss spectrum changes in the geometric structure of the pure metal rod. Theme II is using a shape of metal nanorod of best effect of the first theme to do simulation with three pairs of annular type. Six-particle common-gap plasmonic nanoantennas are utilized to obtain a broadband spectral response when illuminated with circular and elliptical polarization. Due to the insensitivity of dipole antennas to circular polarization, the resonant structures are brought together around the common-gap to expand the spectrum of the whole system. Take antenna length for adjustment to make a greater bandwidth of the antenna. Then take advantage of the loop antenna of equal length can be made narrower bandwidth of a single wavelength characteristics and to analyze the spectral changes.
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Chi-Yin, and 楊棋茵. "Silicon Nanoantenna Arrays as Selective Narrowband Absorbers." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/ww2q83.

Full text
Abstract:
碩士
國立交通大學
影像與生醫光電研究所
105
High-refractive-index nanostructures support optically induced electric (ED) and magnetic (MD) dipole modes which offer opportunities to control the scattering and achieve the narrowband absorption. In this work, the high absorptance device is proposed and realized by using amorphous silicon nanoantenna arrays (a-Si NA arrays) which suppress backward and forward scattering with engineered structures and particular periods. The overlaps of ED and MD resonances by designing an array with a specific period and exciting lattice resonances is experimentally demonstrated. The absorptance of a-Si NAs which is 3-fold increase in comparison to unpatterned silicon films. The nonradiating a-Si NA arrays can achieve ~ 90% in absorptance, and the high absorptance resonance is observed not only due to the intrinsic loss of material but by overlapping the ED and MD resonances.
APA, Harvard, Vancouver, ISO, and other styles
6

(5930795), Jithin Prabha. "3D Printing of Nanoantenna Arrays for Optical Metasurfaces." Thesis, 2019.

Find full text
Abstract:
Additive manufacturing using 2 photon polymerization is of great interest as it can create nanostructures with feature sizes much below the diffraction limit. It can be called as true 3D printing as it can fabricate in 3 dimensions by moving the laser spot in any 3D pattern inside the resist. This unique property is attributed to the non-linearity of two photon absorption which makes the polymerization happen only at the focal spot of the laser beam. This method has a wide range of applications such as optics/photonics, metamaterials, metasurfaces, micromachines, microfluidics, tissue engineering and drug delivery.
This work focuses on utilizing 2 photon fabrication for creating a metasurface by printing diabolo antenna arrays on a glass substrate and subsequently metallizing it by coating with gold. A femtosecond laser is used along with a galvo-mirror to scan the geometry inside the photoresist to create the antenna. The structure is simulated using ANSYS HFSS to study its properties and optimize the parameters. The calculations show a reflectance dip and zero reflectance for the resonance condition of 4.04 μm. An array of antennas is fabricated using the optimized properties and coated with gold using e-beam evaporation. This array is studied using a fourier transform infrared spectrometer and polarization dependent reflectance dip to 40% is observed at 6.6 μm. The difference might be due to the small errors in fabrication. This method of 3D printing of antenna arrays and metallization by a single step of e-beam evaporation is hence proved as a viable method for creating optical metasurfaces. Areas of future research for perfecting this method include incorporating an autofocusing system, printing more complicated geometries for antennas, and achieving higher resolution using techniques like stimulated emission depletion.
APA, Harvard, Vancouver, ISO, and other styles
7

Su, Chen-Wei, and 蘇晨瑋. "Broadband Plasmonic Nanoantennas Arrays with Transverse Dimension Effects." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/61207076361298894531.

Full text
Abstract:
碩士
國立交通大學
光電系統研究所
103
Plasmonic broadband resonance in gold paired-rods nanoantennas and paired-strips gratings is investigated when the nanostructure’s transverse (non-polarization) dimension is changed from paired-rods to paired-strips. Transmittance spectra and localized electromagnetic fields are analyzed when localized surface plasmon resonance occurs. Increasing the transverse dimension blue shifts the resonance wavelength and widens its bandwidth due to cancellation of the magnetic field between nanoantennas. A derived resistor-inductor-capacitor (RLC) equivalent circuit model verifies the nanostructures’ resonance when elongating the transverse dimensions. Paired-strips gratings have a bandwidth 2.04 times and mode area 2.18 times that of paired-rods nanoantennas.
APA, Harvard, Vancouver, ISO, and other styles
8

Chang, Yu-Ping, and 張毓屏. "Analysis of Three-Dimensional Nanoantenna Arrays Using theParallelized Finite-Difference Time-Domain Method." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/53787169782808640721.

Full text
Abstract:
碩士
國立臺灣大學
光電工程學研究所
102
The finite-difference time-domain method (FDTD) has been widely used in computational electromagnetics. We construct a parallelized three-dimensional (3-D) FDTD simulator in C++ language. The message passing interface (MPI) protocol is applied in our simulator for using several computers in the computation in order to speed up the process and shorten the simulation time. In this research, the main topic is to analyze nanoantenna arrays having bowtie and dipole structures. We investigate two kinds of bowtie structures: the equilateral-triangle bowtie and the modified bowtie. The modified bowtie is a correction of the equilateral-triangle bowtie with the head-to-head apexes being flattened. It is more effective to confine the field within the antenna gap and increase the field enhancement. We first simulate the traditional solid bowtie arrays with a broadband source. The local field enhancement in the antenna gap is calculated, including the broadband responses and the resonant wavelengths. Then the contour bowtie nanoantenna arrays aiming at miniaturization are simulated. Contour bowtie structures has longer resonant wavelengths than the solid structures under the same circumstance. The most important discovery is that the period lengths of the array are very crucial parameters. The array period length is perpendicular to the broadside of the bowtie and dipole shapes influences the resonant wavelength in the enhancement spectrum primarily. The resonant wavelength seems to be a function of the period length. This phenomenon can be seen in both solid and contour structures.
APA, Harvard, Vancouver, ISO, and other styles
9

Lin, Yu-Kai, and 林裕凱. "Fabrication of Au-Nanocrystal-Array/Si Plasmonic Nanoantennas and Their Wavelength-Selective Photoswitching Property." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/64505398131280012079.

Full text
Abstract:
博士
國立清華大學
材料科學工程學系
101
Au-nanocrystal-array/silicon nanoantennas exhibiting wavelength-selective photocurrent enhancement were successfully fabricated by a facile and inexpensive method combining colloidal lithography (CL) and a metal-assisted chemical etching (MaCE) process for the first time. These nanoantennas comprise Au nanocrystal arrays inlaid in silicon substrates with controllable degree of immersion. The localized surface plasmon resonance (LSPR) response and wavelength- selective photocurrent enhancement characteristics were achieved by tuning the depth of immersion of Au nanocrystal arrays in silicon through a MaCE process. Compared to conventional Au particles on Si, the high near-field enhancement increases with the fraction of their volume in intimate contact with the substrate in the Au nanocrystal array inlaid Si structure. On the other hand, LSPR responses, which are extremely sensitive to dielectric properties of metal and the surrounding environment, can be tuned by the depth of immersion of Au nanocrystal array on/in silicon. The wavelength selectivity of photocurrent enhancement contributed by LSPR induced local field amplification was confirmed by simulated near-field distribution. The wavelength maximum of LSPR scattering (max) exhibits sensitivity to the surrounding environment and shows consistence with the simulated results obtained by the finite-difference time-domain (FDTD) method. The wavelength-selective photocurrent enhancement characteristics were measured under illumination of lasers of different wavelengths and under dark conditions. In addition, the repeatability of wavelength-selective photocurrent enhancement was also tested by multiple ON/OFF cycles and can be exploited as photoswitches. The wavelength-selective photocurrent enhancement (>70 %) operated under low voltage (<200 mV) was achieved under laser illumination coincident to its LSPR max. In addition, the wavelength-selective photocurrent enhancement can be elucidated by the FDTD simulations of the near-field enhancements (|E|^2), which can intensify local electromagnetic field and optical absorption. The good tunability over LSPR responses and wavelength-selective photocurrent enhancement characteristics can be exploited as low power-consumption photoswitches and nano-optoelectronic and photonic communication devices. Furthermore, it can be integrated into the well-developed Si-based manufacturing process.
APA, Harvard, Vancouver, ISO, and other styles
10

"Low-Temperature Energy Transport in Oligomers and Infrared Studies of Thin Films on Plasmonic Nanoantenna Arrays." Tulane University, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nanoantenna array"

1

Dong, Tao, Yue Xu, and Jingwen He. "Plasmonic Nanoantenna Array Design." In Nanoplasmonics. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.90782.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nanoantenna array"

1

Yusuf, Yazid, and Nader Behdad. "A biologically-inspired nanoantenna array." In 2012 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2012. http://dx.doi.org/10.1109/aps.2012.6349221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dregely, D., K. Lindfors, M. Lippitz, and H. Giessen. "Optical phased array nanoantenna link." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dregely, Daniel, Richard Taubert, and Harald Giessen. "3D optical Yagi-Uda nanoantenna array." In Photonic Metamaterials and Plasmonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/pmeta_plas.2010.mwd3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Malheiros-Silveira, Gilliard N., and Hugo E. Hernandez-Figueroa. "Dielectric resonator nanoantenna array for optical frequencies." In 2013 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2013. http://dx.doi.org/10.1109/aps.2013.6710725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Phung, Khue, Anna Lee, and Aftab Ahmed. "Directivity at Optical Frequencies Using Nanoantenna Array." In 2022 IEEE Green Energy and Smart Systems Conference (IGESSC). IEEE, 2022. http://dx.doi.org/10.1109/igessc55810.2022.9955344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dregely, Daniel, Richard Taubert, and Harald Giessen. "3-D Optical Yagi-Uda Nanoantenna Array." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qmh5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dayal, Govind, Ikki Morichika, and Satoshi Ashihara. "Vibrational strong coupling between molecular vibration and subwavelength plasmonic cavity supporting gap plasmon mode." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18a_e208_2.

Full text
Abstract:
We report on strong coupling between molecular vibrational resonances of polymethyl methacrylate (PMMA) molecules and gap plasmon resonance of an ultrathin plasmonic cavity in the midinfrared range. The strong coupling is achieved when the molecular vibrational mode and plasmonic cavity exchange energy faster than their relaxation rates and it is maximum when two relaxation rates are equal [1]. In this work, we designed, fabricated and characterized a composite medium consisting of a thin PMMA layer sandwiched between the nanoantenna array and a continuous metallic thin film to achieve vibration strong coupling. The spectral position and the relaxation rate of gap plasmonic resonance are tuned through the molecular resonance of the PMMA molecules (at 1730 cm−1) to go from weak to strong coupling regime. Strong coupling between vibrational modes and gap plasmon mode leads to the formation of new hybrid light-matter states called polaritonic states (@ 1690 cm−1 & 1810 cm−1), separated by the vacuum Rabi splitting (120 cm−1). Thin film coupled nanoantennas with sub-wavelength gaps have shown great potential in nanophotonic applications because they offer the ultimate electric field confinement in the gap. Our work is complementary to earlier work using microcavities and provides a new approach to achieve strong coupling with a nanoscale plasmonic cavity (λ/25) and the possibility to modulate the strong coupling regime by changing the gap thickness of the cavity and the lattice period of the nanoantenna array.
APA, Harvard, Vancouver, ISO, and other styles
8

Susilo, Tri B., Syed S. Jehangir, M. I. Hussein, and Addy Wahyudie. "A plasmonic nanoantenna array for solar energy applications." In 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA). IEEE, 2018. http://dx.doi.org/10.1109/icrega.2018.8337635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Borneman, Joshua D., Vladimir P. Drachev, Kuo-Ping Chen, Alexander V. Kildishev, Vladimir M. Shalaev, Konstantin Yamnitskiy, Robert Norwood, et al. "Two-photon Absorption Enhancement with Gold Nanoantenna Array." In Photonic Metamaterials and Plasmonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/pmeta_plas.2010.mma3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maguid, Elhanan, Igor Yulevich, Michael Yannai, Vladimir Kleiner, Mark L. Brongersma, and Erez Hasman. "Shared-aperture multitasking Pancharatnam-Berry phase dielectric nanoantenna array." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_qels.2017.ftu4g.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography