Academic literature on the topic 'Nano-Theranostics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nano-Theranostics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nano-Theranostics"
Liu, Zhuang, and Xing-Jie Liang. "Nano-Carbons as Theranostics." Theranostics 2, no. 3 (2012): 235–37. http://dx.doi.org/10.7150/thno.4156.
Full textYoon, Juyoung. "Theranostics based nano probes and nano carriers." Coordination Chemistry Reviews 415 (July 2020): 213297. http://dx.doi.org/10.1016/j.ccr.2020.213297.
Full textSharmiladevi, Palani, Koyeli Girigoswami, Viswanathan Haribabu, and Agnishwar Girigoswami. "Nano-enabled theranostics for cancer." Materials Advances 2, no. 9 (2021): 2876–91. http://dx.doi.org/10.1039/d1ma00069a.
Full textKalita, Himani, and Manoj Patowary. "Biocompatible Polymer Nano-Constructs: A Potent Platform for Cancer Theranostics." Technology in Cancer Research & Treatment 22 (January 2023): 153303382311603. http://dx.doi.org/10.1177/15330338231160391.
Full textLee, Songyi, Thanh Chung Pham, Chaeeon Bae, Yeonghwan Choi, Yong Kyun Kim, and Juyoung Yoon. "Nano theranostics platforms that utilize proteins." Coordination Chemistry Reviews 412 (June 2020): 213258. http://dx.doi.org/10.1016/j.ccr.2020.213258.
Full textWang, Yong-Mei, Ying Xu, Xinxin Zhang, Yifan Cui, Qingquan Liang, Cunshun Liu, Xinan Wang, Shuqi Wu, and Rusen Yang. "Single Nano-Sized Metal–Organic Framework for Bio-Nanoarchitectonics with In Vivo Fluorescence Imaging and Chemo-Photodynamic Therapy." Nanomaterials 12, no. 2 (January 17, 2022): 287. http://dx.doi.org/10.3390/nano12020287.
Full textSneider, Alexandra, Derek VanDyke, Shailee Paliwal, and Prakash Rai. "Remotely Triggered Nano-Theranostics For Cancer Applications." Nanotheranostics 1, no. 1 (2017): 1–22. http://dx.doi.org/10.7150/ntno.17109.
Full textYao, Jingwen, Chao-Hsiung Hsu, Zhao Li, Tanya Kim, Lian-Pin Hwang, Ying-Chih Lin, and Yung-Ya Lin. "Magnetic Resonance Nano-Theranostics for Glioblastoma Multiforme." Current Pharmaceutical Design 21, no. 36 (November 2, 2015): 5256–66. http://dx.doi.org/10.2174/1381612821666150923103307.
Full textMousavi, Hajar, Behrooz Movahedi, Ali Zarrabi, and Marzieh Jahandar. "A multifunctional hierarchically assembled magnetic nanostructure towards cancer nano-theranostics." RSC Advances 5, no. 94 (2015): 77255–63. http://dx.doi.org/10.1039/c5ra16776k.
Full textDai, Yan-Dong, Xue-Yi Sun, Wan Sun, Jing-Bo Yang, Rui Liu, Yi Luo, Tao Zhang, Yu Tian, Zhong-Lin Lu, and Lan He. "H2O2-responsive polymeric micelles with a benzil moiety for efficient DOX delivery and AIE imaging." Organic & Biomolecular Chemistry 17, no. 22 (2019): 5570–77. http://dx.doi.org/10.1039/c9ob00859d.
Full textDissertations / Theses on the topic "Nano-Theranostics"
Maturi, Mirko <1993>. "Advanced Functional Organic-Inorganic Hybrid (Nano)Materials: from Theranostics to Organic Electronics and Additive Manufacturing." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9739/1/Maturi_Mirko_tesi.pdf.
Full textPerecin, Caio José. "Nanopartículas superparamagnéticas encapsuladas com polímeros para tratamento de câncer por hipertermia." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/82/82131/tde-22062016-103823/.
Full textCancer is one of the greatest causes of mortality in Brazil and in the world, with growing potential for the next decades. A promising treatment alternative is magnetic hyperthermia, in which tumor cells die by the heat generated by magnetic nanoparticles after application of an alternate magnetic field in adequate frequencies. Such particles are also capable of acting as contrast agents for magnetic resonance imaging, a powerful method of diagnosis for the identification of neoplasic cells, which characterizes the combination of properties known as theranostics (therapy and diagnosis). In this work, iron oxide nanoparticles were synthesized by coprecipitation method with subsequent encapsulation by nano spray drying technique, aiming their application on cancer treatment by hyperthermia and on magnetic resonance imaging as a contrast agent. Polymeric matrices of Maltodextrin with Polysorbate 80, Pluronic F68, Eudragit® S100 and PCL with Pluronic F68 were employed for encapsulation, chosen carefully to create particles that disperse well in aqueous media and that are able to address the tumoral target after administration into the patient\'s body. Drying parameters of the Nano Spray Dryer equipment, such as temperature, dispersing medium and reagent concentrations, were evaluated. The generated particles were characterized by Scanning Electron Microscopy, X-Ray Diffraction, Thermogravimetric Analysis, Dynamic Light Scattering, Infrared Spectroscopy, by magnetism in matters of applied magnetic field and temperature, cytotoxic potential and heating potential. Such methods indicated that the coprecipitation method was able to produce magnetite nanoparticles with size of approximately 20 nm, superparamagnetic at room temperature and with no cytotoxic potential. The nano spray drying technique was efficient to produce particles with size of around 1 μm, biocompatible, superparamagnetic and with adequate magnetic properties for the intended applications. The sample OF-10/15-1P stands out with a saturation magnetization of 68.7 emu/g and presenting specific interactions with the tumour cells.
Alaouta, Cherine. "Imagerie moléculaire pour la nano-théranostique : approche par spectroscopie Raman." Electronic Thesis or Diss., Reims, 2024. http://www.theses.fr/2024REIMP201.
Full textAlthough cancer treatment has seen considerable progress, resistance to anticancer therapies remains a major cause of treatment failure. One approach to address this challenge is drug squalenization, a method that involves covalently attaching squalene to active pharmaceutical compounds, thereby generating powerful anticancer agents with self-assembly capabilities. In this study, Raman microspectroscopy was utilized to investigate the effects of the anticancer drugs Gem and DXF, along with squalenized nanoparticles (non-deuterated and deuterated GemSQ, and SQDXF), on breast carcinoma cell lines (MCF7 and MDA-MB-231) and colon carcinoma cell lines (HT-29 and HCT-116).Both Gem and DXF exhibit weak Raman cross sections, making them difficult to detect using Raman spectroscopy at physiological concentrations due to their nucleoside-analogue structures and low fluorescence quantum yield. To enhance the detectability of Gem, it was conjugated with deuterated squalenic acid, producing an analogue with a distinct spectral signature in the 2000-2300 cm⁻¹ range, free from interference by endogenous cell molecules. However, this strategy was not feasible for DXF, and the detection of SQDXF nanoparticles was instead achieved by monitoring their subcellular effects.The results provided valuable insights into the interactions between the drugs and key cellular components such as DNA, RNA, proteins, and lipids, with the findings being linked to the cytotoxic effects of the compounds. This research opens up promising new avenues in nanomedicine
Wu, Linxi. "The impact of nanoconjugation to EGF-induced apoptosis." Thesis, 2016. https://hdl.handle.net/2144/14555.
Full text2017-01-01T00:00:00Z
Books on the topic "Nano-Theranostics"
Zarepour, Atefeh, Ali Zarrabi, and Arezoo Khosravi. SPIONs as Nano-Theranostics Agents. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3563-0.
Full textNano-Pharmacokinetics and Theranostics. Elsevier, 2021. http://dx.doi.org/10.1016/c2020-0-02014-1.
Full textLiu, Qing, and Donglu Shi. Tissue Engineering and Nano Theranostics. World Scientific Publishing Co Pte Ltd, 2017.
Find full textZarepour, Atefeh, Ali Zarrabi, and Arezoo Khosravi. SPIONs as Nano-Theranostics Agents. Springer, 2017.
Find full textZarepour, Atefeh, Ali Zarrabi, and Arezoo Khosravi. SPIONs as Nano-Theranostics Agents. Springer, 2017.
Find full textThorat, Nanasaheb D., and Nitesh Kumar. Nano-Pharmacokinetics and Theranostics: Advancing Cancer Therapy. Elsevier Science & Technology Books, 2021.
Find full textBook chapters on the topic "Nano-Theranostics"
Zarepour, Atefeh, Ali Zarrabi, and Arezoo Khosravi. "SPIONs as Nano-Theranostics Agents." In SPIONs as Nano-Theranostics Agents, 1–44. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3563-0_1.
Full textIchiyanagi, Yuko. "Magnetic Nanoparticles for Diagnostics and Therapy." In Extracellular Fine Particles, 261–73. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-7067-0_18.
Full textJain, Kopal, Nikita Basant, and Amit Panwar. "New Developments in Nano-theranostics Combined with Intelligent Bio-responsive Systems." In Smart Nanomaterials Targeting Pathological Hypoxia, 347–65. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1718-1_18.
Full textSaini, Neha, Prem Pandey, Mandar Shirolkar, Atul Kulkarni, Sang-Hyun Moh, and Anjali A. Kulkarni. "Role of Carbon Nanostructures as Nano-Theranostics Against Breast and Brain Cancer." In Materials Horizons: From Nature to Nanomaterials, 1151–72. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7188-4_41.
Full textFatima, Syeda Warisul, Shahenvaz Alam, and Sunil K. Khare. "Janus Nano-Assembly Based Sensing Platform for Cancer Theranostics: An Unrivaled Mastering Bioimaging Perspective." In Nanoscale Sensors and their Applications in Biomedical Imaging, 225–49. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3144-2_14.
Full textPham, Tuan, Carl Beigie, Yoonjee Park, and Joyce Y. Wong. "Microbubbles as Theranostics Agents." In Nano-Oncologicals, 329–50. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08084-0_12.
Full textSingh, Gagandeep, L. Preethi, and Neelam Thakur. "Nano–Bio Dynamics." In Nanoparticles in Cancer Theranostics, 53–68. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003463191-4.
Full textSingh, Gagandeep, Arshiya Sood, and Neelam Thakur. "Nano Contrast Agents." In Nanoparticles in Cancer Theranostics, 110–22. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003463191-8.
Full textConde, João, Furong Tian, Pedro V. Baptista, and Jesús M. de la Fuente. "Multifunctional Gold Nanocarriers for Cancer Theranostics: From Bench to Bedside and Back Again?" In Nano-Oncologicals, 295–328. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08084-0_11.
Full textParihar, Vipan Kumar. "Nano-pharmacokinetics and cancer theranostics." In Nano-Pharmacokinetics and Theranostics, 221–32. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-323-85050-6.00014-1.
Full textConference papers on the topic "Nano-Theranostics"
Delehanty, James B., Juan B. Blanco-Canosa, Christopher E. Bradburne, Kimihiro Susumu, Michael H. Stewart, Duane E. Prasuhn, Philip E. Dawson, and Igor L. Medintz. "Controlling the intracellular fate of nano-bioconjugates: pathways for realizing nanoparticle-mediated theranostics." In SPIE NanoScience + Engineering, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2014. http://dx.doi.org/10.1117/12.2064372.
Full textSuttee, Ashish, and Prashant Tandale. "Graphene oxide based multifunctional nano composite for cancer theranostics: Present clinical and regulatory breakthroughs." In THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0162990.
Full textGoswami, Mayank, Xinlei Wang, Pengfei Zhang, Wenwu Xiao, Kit S. Lam, Edward N. Pugh, and Robert J. Zawadzki. "Methods for non-surgical cancer nano-theranostics of ocular tumors in the mouse eye (Conference Presentation)." In Ophthalmic Technologies XXVII, edited by Fabrice Manns, Per G. Söderberg, and Arthur Ho. SPIE, 2017. http://dx.doi.org/10.1117/12.2251803.
Full textLodi, Matteo B. "A Preliminary Propagation Study on Magnetic Scaffolds for Microwave Theranostics." In 2023 IEEE 23rd International Conference on Nanotechnology (NANO). IEEE, 2023. http://dx.doi.org/10.1109/nano58406.2023.10231176.
Full textChauhan, Deepak Singh, and Rohit Srivastava. "Synthesis and characterization of gold encapsulated and tamoxifen loaded PLGA nanoparticles for breast cancer theranostics." In 2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED). IEEE, 2015. http://dx.doi.org/10.1109/nanomed.2015.7492510.
Full textReports on the topic "Nano-Theranostics"
Tantsyrev, Anatoliy, Yuliya Titova, and Andrey Ivanov. Polysaccharide macromolecules as transport matrices of nano-size compositions, candidates for diagnostics, therapy and theranostics of cancer diseases. Peeref, June 2023. http://dx.doi.org/10.54985/peeref.2306p9855801.
Full text