Academic literature on the topic 'NANO PHASE CHANGE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NANO PHASE CHANGE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "NANO PHASE CHANGE"
Long, Jian You. "Study on Phase-Change Temperature and Latent Heat of Organic Phase-Change Nano-Fluid." Advanced Materials Research 152-153 (October 2010): 1591–94. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.1591.
Full textChu, Cheng Hung, Ming Lun Tseng, Chiun Da Shiue, Shuan Wei Chen, Hai-Pang Chiang, Masud Mansuripur, and Din Ping Tsai. "Fabrication of phase-change Ge_2Sb_2Te_5 nano-rings." Optics Express 19, no. 13 (June 15, 2011): 12652. http://dx.doi.org/10.1364/oe.19.012652.
Full textSinha-Ray, S., R. P. Sahu, and A. L. Yarin. "Nano-encapsulated smart tunable phase change materials." Soft Matter 7, no. 19 (2011): 8823. http://dx.doi.org/10.1039/c1sm05973d.
Full textPereira, José, Ana Moita, and António Moreira. "An Overview of the Nano-Enhanced Phase Change Materials for Energy Harvesting and Conversion." Molecules 28, no. 15 (July 30, 2023): 5763. http://dx.doi.org/10.3390/molecules28155763.
Full textLong, Jian You. "Study on Thermal Conductivity of Organic Phase-Change Nano-Fluid." Advanced Materials Research 152-153 (October 2010): 1579–82. http://dx.doi.org/10.4028/www.scientific.net/amr.152-153.1579.
Full textKersting, Benedikt, and Martin Salinga. "Exploiting nanoscale effects in phase change memories." Faraday Discussions 213 (2019): 357–70. http://dx.doi.org/10.1039/c8fd00119g.
Full textShi, L. P., and T. C. Chong. "Nanophase Change for Data Storage Applications." Journal of Nanoscience and Nanotechnology 7, no. 1 (January 1, 2007): 65–93. http://dx.doi.org/10.1166/jnn.2007.18007.
Full textTeng, Tun Ping, Bo Gu Lin, and Yun Yu Yeh. "Characterization of Heat Storage by Nanocomposite-Enhanced Phase Change Materials." Advanced Materials Research 287-290 (July 2011): 1448–55. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.1448.
Full textIrwan, M. A. M., C. S. Nor Azwadi, Y. Asako, and J. Ghaderian. "Review on numerical simulations for nano-enhanced phase change material (NEPCM) phase change process." Journal of Thermal Analysis and Calorimetry 141, no. 2 (November 21, 2019): 669–84. http://dx.doi.org/10.1007/s10973-019-09038-2.
Full textRao, Feng, Kun Ren, Yifeng Gu, Zhitang Song, Liangcai Wu, Xilin Zhou, Bo Liu, Songlin Feng, and Bomy Chen. "Nano composite Si2Sb2Te film for phase change memory." Thin Solid Films 519, no. 16 (June 2011): 5684–88. http://dx.doi.org/10.1016/j.tsf.2011.03.015.
Full textDissertations / Theses on the topic "NANO PHASE CHANGE"
Huang, Yaoting. "Fundamental studies on nano-composite phase change materials (PCM) for cold storage applications." Thesis, University of Birmingham, 2019. http://etheses.bham.ac.uk//id/eprint/8844/.
Full textXing, Keqiang. "Numerical Investigation on the Heat Transfer Enhancement Using Micro/Nano Phase-Change Particulate Flow." FIU Digital Commons, 2007. http://digitalcommons.fiu.edu/etd/28.
Full textHernandez, Gerardo Rodriguez. "Study of mixed mode electro-optical operations of Ge2Sb2Te5." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:5bb8c1f5-2f4b-4eb0-a61a-3978af04211f.
Full textZhang, Guanhua. "Fabrication, characterization and thermo-physical properties of micro- and nano- scaled phase change materials for thermal energy storage." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57041/.
Full textWang, Yuan. "Liquid-vapour phase change and multiphase flow heat transfer in single micro-channels using pure liquids and nano-fluids." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5752.
Full textJohn, Jimmy. "VO2 nanostructures for dynamically tunable nanophotonic devices." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI044.
Full textInformation has become the most valuable commodity in the world. This drive to the new information age has been propelled by the ability to transmit information faster, at the speed of light. This erupted the need for finer researches on controlling the information carriers more efficiently. With the advancement in this sector, majority of the current technology for controlling the light, face certain roadblocks like size, power consumption and are built to be passive or are restrained technologically to be less active (Si- backed technology). Even though nothing travels faster than light, the real speed at which information can be carried by light is the speed at which we can modulate or control it. My task in this thesis aimed at investigating the potential of VO2, a phase change material, for nano-photonics, with a specific emphasis on how to circumvent the drawbacks of the material and to design and demonstrate efficient integrated devices for efficient manipulation of light both in telecommunication and visible spectrum. In addition to that we experimentally demonstrate the multipolar resonances supported by VO2 nanocrystals (NCs) can be dynamically tuned and switched leveraging phase change property of VO2. And thus achieving the target tailoring of intrinsic property based on Mie formalism by reducing the dimensions of VO2 structures comparable to the wavelength of operation, creating a scope for user defined tunable metamaterial
Ray, Kamal Kanti. "Characterization of phase state, morphological, mechanical and electrical properties of nano- and macro-dimensional materials." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/7017.
Full textFay, Aurélien. "Couplage variable entre un qubit de charge et un qubit de phase." Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00310131.
Full textNous avons mesuré par spectroscopie micro-onde les premiers niveaux d'énergie du circuit couplé en fonction des paramètres de contrôle. Les mesures des états quantiques des qubits de charge et de phase sont réalisées par une mesure d'échappement du SQUID dc avec une impulsion de flux nanoseconde appliquée dans celui-ci. La mesure de l'ACPT utilise un nouveau processus quantique : l'état excité de l'ACPT est transféré adiabatiquement vers l'état excité du SQUID durant l'impulsion de flux.
Notre circuit permet de manipuler indépendamment chaque qubit tout comme il permet d'intriquer les états quantiques des deux circuits. Nous avons observé des anti-croisements des niveaux d'énergie des deux qubits lorsqu'ils sont mis en résonance. Le couplage a été mesuré sur une large gamme de fréquence, pouvant varier de 60 MHz à 1.1 GHz. Nous avons réussi à obtenir un couplage variable entre le qubit de charge et le qubit de phase. Nous avons analysé théoriquement la dynamique quantique de notre circuit. Cette analyse a permis de bien expliquer le couplage variable mesuré par une combinaison entre un couplage Josephson et un couplage capacitif entre les deux qubits.
Guen, Eloise. "Microscopie thermique à sonde locale : Etalonnages, protocoles de mesure et applications quantitatives sur des matériaux nanostructurés." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI003.
Full textScanning thermal microscopy (SThM) is a technique that allows characterizing the thermal properties of nanomaterials and helps understanding heat transfer at submicron scales. To interpret the measurements, parameters influencing heat transfer between the probe and the sample are studied. Firstly, three resistive SThM probes, differing in particular by their micro and nanometric radii of curvature, are analyzed and a systematic methodology for the measurements is proposed. It is put forward that the sensitive zone to thermal conductivity of bulk planar materials is limited to few W.m-1.K-1 for the three probes. For the more conductive materials, SThM measurements are dominated by interfacial thermal resistance. Heat transfer at the solid-solid nanocontact between the probe and the sample can be both ballistic and diffusive. It is further demonstrated that surface roughness strongly impacts SThM measurements, decreasing heat transfer at the contact by more than 50 % in some cases. This work is used for characterizations of nanomaterials. The determination of the thermal conductivity of SiO2 thin film on silicon substrate indicates that thicknesses of a few nanometers up to 1 µm are detected by certain probes. Phase transition temperature measurement by SThM is also studied, using a calibration with bulk polymers. The application of this calibration for the characterization of polymer thin films demonstrates the influence of the substrate and the thin film thickness on the temperature determined by SThM. These results demonstrate that scanning thermal microscopy allows obtaining quantitative measurements
Maaza, Malik. "Latent and thermal energy storage enhancement of silver nanowires-nitrate molten salt for concentrated solar power." University of Western Cape, 2020. http://hdl.handle.net/11394/8038.
Full textPhase change material (PCM) through latent heat of molten salt, is a convincing way for thermal energy storage in CSP applications due to its high volume density. Molten salt, with (60% NaNO3 and 40% KNO3) has been used extensively for energy storage however; the low thermal conductivity and specific heat have limited its large implementation in solar applications. For that, molten salt with the additive of silver nanowires (AgNWs) was synthesized and characterized. This research project aims to investigate the thermophysical properties enhancement of nanosalt (Mixture of molten salt and silver nanowires). The results obtained showed that by simply adjusting the temperature, Silver nanowires with high aspect ratio have been synthesized through the enhanced PVP polyol process method. SEM results revealed a network of silver nanowires and TEM results confirmed the presence of silver nanowires with an average diameter of 129 nm and 16 μm in length.
Book chapters on the topic "NANO PHASE CHANGE"
Wu, Liangcai, and Zhitang Song. "Phase Change Materials for Memory Application." In Advanced Nano Deposition Methods, 267–84. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527696406.ch14.
Full textPapade, C. V., and A. B. Kanase-Patil. "Nano-Mixed Phase Change Material for Solar Cooker Application." In Engineering Optimization: Methods and Applications, 165–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4502-1_8.
Full textKannan, K. Gopi, R. Kamatchi, and D. Dsilva Winfred Rufuss. "Potential Applications of Nano-Enhanced Phase Change Material Composites." In Composite and Composite Coatings, 233–42. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003109723-13.
Full textValance, S., M. Coref, J. Réthoré, and R. de Borsf. "Solid Phase Change Observation Using Digital Image Correlation." In Experimental Analysis of Nano and Engineering Materials and Structures, 465–66. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_231.
Full textSundararajan, Swati, and Asit B. Samui. "Smart Nano-Enhanced Organic Phase Change Materials for Thermal Energy Storage Applications." In Advanced Polymeric Systems, 3–29. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003337058-2.
Full textAthikesavan, Muthu Manokar, Fausto Pedro García Márquez, Mohamed Thalib Mohamed Rafeek, and Ravishankar Sathyamurthy. "Annual Yield, Energy and Economic Analysis of Tubular Solar Stills with Phase Change Material and Nano-enhanced Phase Change Material." In Proceedings of the Fifteenth International Conference on Management Science and Engineering Management, 463–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79206-0_35.
Full textHayat, Muhammad Aamer, and Yong Chen. "A Brief Review on Nano Phase Change Material-Based Polymer Encapsulation for Thermal Energy Storage Systems." In Springer Proceedings in Energy, 19–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_3.
Full textBora, Neetu, Jaspreet Singh Aulakh, and Deepika P. Joshi. "Thermal Properties of Nano-SiO2/Paraffin Composite Phase Change Material for Thermal Energy Storage." In Green Energy and Technology, 367–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2279-6_31.
Full textVaradaraj, Praveen Kumar, Sandeep D., Ravi Kiran N., Balaji Padya, and P. K. Jain. "Xylitol Based Phase Change Material with Graphene Nano Platelets as Fillers for Thermal Energy Management." In Learning and Analytics in Intelligent Systems, 551–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24314-2_66.
Full textSoni, Vikram, and Arvind Kumar. "Behavior of Nano-enhanced Phase Change Material in a Spherical Thermal Battery During Unrestricted Melting." In Advances in Energy Research, Vol. 1, 309–19. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2666-4_31.
Full textConference papers on the topic "NANO PHASE CHANGE"
Shi, L. P., T. C. Chong, X. Q. Wei, R. Zhao, W. J. Wang, H. X. Yang, H. K. Lee, et al. "Investigation of Nano-Phase Change for Phase Change Random Access Memory." In 2006 7th Annual Non-Volatile Memory Technology Symposium. IEEE, 2006. http://dx.doi.org/10.1109/nvmt.2006.378881.
Full textZeng, Xie, Haifeng Hu, Yongkang Gao, Dengxin Ji, Nan Zhang, Haomin Song, Kai Liu, and Qiaoqiang Gan. "Phase change dispersion of plasmonic nano-objects." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.jtu5a.76.
Full textBaris, Oksen T., and Sanjiv Sinha. "Nano-Structured Phase Change Materials and Their Calorimetry." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11799.
Full textBurrow, Joshua A., Md Shah Alam, Evan M. Smith, Riad Yahiaoui, Ryan Laing, Piyush J. Shah, Thomas Searles, et al. "Reconfigurable chiral phase change nanomaterials." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sm3h.6.
Full textShi, Luping. "Nano Phase Change for Data Storage and Beyond." In Joint International Symposium on Optical Memory and Optical Data Storage. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/isom_ods.2011.otub4.
Full textZeng, Xie, Haifeng Hu, Yongkang Gao, Dengxin Ji, Nan Zhang, Haomin Song, Kai Liu, and Qiaoqiang Gan. "Revealing dispersive phase change in plasmonic nano-objects." In Frontiers in Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/fio.2015.fm3b.5.
Full textKawabata, Ken-ichi, Rei Asami, Takashi Azuma, Hideki Yoshikawa, and Shin-ichiro Umemura. "Cavitation assisted HIFU with phase-change nano droplet." In 2008 IEEE Ultrasonics Symposium (IUS). IEEE, 2008. http://dx.doi.org/10.1109/ultsym.2008.0187.
Full textMiao, X. S., B. J. Zeng, Z. Li, and W. L. Zhou. "Nanopatterning by phase change nanolithography." In 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2012. http://dx.doi.org/10.1109/nems.2012.6196708.
Full textLi, Yiming, Chih-Hong Hwang, Yi-Ting Kuo, and Hui-Wen Cheng. "Structure Effect of Cylindrical-Shaped GeSbTe Alloy on Phase Transition in Phase Change Memory." In 2008 8th IEEE Conference on Nanotechnology (NANO). IEEE, 2008. http://dx.doi.org/10.1109/nano.2008.109.
Full textColburn, Shane, Alan Zhan, Sanchit Deshmukh, Jason Myers, Jesse Frantz, Eric Pop, and Arka Majumdar. "Metasurfaces Based on Nano-Patterned Phase-Change Memory Materials." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_si.2017.sm3n.6.
Full textReports on the topic "NANO PHASE CHANGE"
Wicker, Louise, and Nissim Garti. Entrapment and controlled release of nutraceuticals from double emulsions stabilized by pectin-protein hybrids. United States Department of Agriculture, October 2004. http://dx.doi.org/10.32747/2004.7695864.bard.
Full text