Academic literature on the topic 'Nano-interface'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nano-interface.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nano-interface"

1

Ramsden, J. J. "The bio–nano interface." Nanotechnology Perceptions 5, no. 2 (July 30, 2009): 151–65. http://dx.doi.org/10.4024/n11ra09a.ntp.05.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ostrikov, Kostya (Ken). "Plasma-nano-interface in perspective: from plasma-for-nano to nano-plasmas." Plasma Physics and Controlled Fusion 61, no. 1 (November 21, 2018): 014028. http://dx.doi.org/10.1088/1361-6587/aad770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Liqiang, Ping Yang, Chun Li, Xuenan Wang, Xialong Li, and Yanfang Zhao. "Comparison Approach on Mechanical Behavior of Al /Cr Nano-Interface and Cu/Cr Nano-Interface." Current Nanoscience 8, no. 5 (October 1, 2012): 715–19. http://dx.doi.org/10.2174/157341312802884526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

NISHINO, Takashi. "Nano Analyses of Polymer/Polymer Interface." Journal of the Japan Society of Colour Material 87, no. 11 (2014): 410–14. http://dx.doi.org/10.4011/shikizai.87.410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leszczynski, Jerzy. "Nano meets bio at the interface." Nature Nanotechnology 5, no. 9 (September 2010): 633–34. http://dx.doi.org/10.1038/nnano.2010.182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Prinz Setter, Ofer, and Ester Segal. "Halloysite nanotubes – the nano-bio interface." Nanoscale 12, no. 46 (2020): 23444–60. http://dx.doi.org/10.1039/d0nr06820a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ibach, Harald, Guillermo Beltramo, and Margret Giesen. "Interface capacitance of nano-patterned electrodes." Surface Science 605, no. 1-2 (January 2011): 240–47. http://dx.doi.org/10.1016/j.susc.2010.10.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lin, Ziliang, Wenting Zhao, Lindsey Hanson, Chong Xie, Yi Cui, and Bianxiao Cui. "At the Nano-Bio Interface: Probing Live Cells with Nano Sensors." Biophysical Journal 106, no. 2 (January 2014): 225a. http://dx.doi.org/10.1016/j.bpj.2013.11.1318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, Kakara S. J., M. V. Seshagiri Rao, V. Srinivasa Reddy, and S. Shrihari. "Performance evaluation of nano-silica concrete." E3S Web of Conferences 184 (2020): 01076. http://dx.doi.org/10.1051/e3sconf/202018401076.

Full text
Abstract:
In this paper, the study of the influence of nano-silica (nano-SiO2) on the properties of the interface between CSH gel and cement particles and its effect on nano-mechanical properties of the products at the interface zone was examined. In this paper M50 grade SCC mixes were developed using 5% micro-silica and various percentages of 0.5%, 1.0% and 1.5% nano-SiO2. For 1.0% nano-SiO2 addition to M50 grade SCC mix, the compressive strength is maximum. Similarly concrete quality using non-destructive techniques, water absorbtion capacity and porosity are also assessed.
APA, Harvard, Vancouver, ISO, and other styles
10

Du, Zhihong, Xinhua Ni, Xiequan Liu, Zhaogang Cheng, Yunwei Fu, and Jinfeng Yu. "Strength model for composite ceramics with nano-interface and micro-interface." Composite Interfaces 26, no. 4 (August 2018): 357–77. http://dx.doi.org/10.1080/09276440.2018.1504194.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nano-interface"

1

Neibert, Kevin. "Quantum Dots-interactions at the nano-bio interface." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=122999.

Full text
Abstract:
Nanotechnology is an area of research that lies at the interface of physics, chemistry, engineering and biotechnology. The last decade has seen nanotechnology become a household term, as nano-scale products, known as nanoparticles, have become diverse in nature and form. Despite their immense promise, the widespread application of nanoparticles is currently limited due to their questionable biocompatibility and unclear consequences on cells and other biological components. We have selected fluorescent nanocrystals, called quantum dots (QDs), to investigate the interactions between nanoparticles and the biological environment, due to their superior optical properties. In the present studies, the mechanisms underlying the adaptive cell response to QDs were examined in multiple model cell lines. We observed significant morphological and functional changes at the cellular and subcellular levels following long term exposure to uncapped QDs. We showed that QD-induced toxicity included the production of reactive oxygen and nitrogen species as well as disruption of mitochondrial function. In addition, we found a novel role for transcription factor EB (TFEB), a master regulator of lysosome biogenesis in the successful cellular adaptation process. We showed that modifications to the QD surface can significantly decrease its toxicity, and in some cases, render the QDs non-toxic. Understanding the mechanisms of cellular adaptation to QDs is a first step for the establishment of protocols to evaluate the safety of other nanomaterials. We then investigated the effects of QD surface properties and how they contribute to particle uptake by using QDs with the same core, but with different surface functionalization. We demonstrated that QD surface charge plays an important role in internalization in two different human cell lines. In addition, we provided evidence for the involvement of several overlapping modes of uptake and export from the cell. Finally, we systematically investigated the effects of QD surface properties on particle stability in biological media. We found that serum proteins were differently adsorbed to the particle surface, and this played a key role in determining the primary mode of internalization. Taken together, the results from this work contribute to the development of nano-scale materials in two main ways:1)by presenting in vitro measures as the first step in the evaluation of nanomaterial safety.2)by demonstrating how surface charge and ligand properties drive specific modes of internalization The findings presented herein promote understanding of the intricacies at the nano-bio interface and provide guiding principles for sensible nanoparticle design, with careful consideration for size, shape and surface charge.
La nanotechnologie se trouve à l'interface de la physique, de la chimie, de l'ingénierie et de la biotechnologie. Au cours de la dernière décennie, les produits de taille nanométrique, appelées nanoparticules, sont devenus de nature et forme de plus en plus diversifiée menant à un grand essor de la nanotechnologie. Malgré leur immense potentiel, l'application généralisée des nanoparticules est actuellement limitée en raison du manque d'information sur leur biocompatibilité et leurs conséquences néfastes sur les cellules et autres composants biologiques. Nous avons sélectionné des nanocristaux fluorescents de propriétés optiques supérieures, appelés points quantiques (QD), afin d'étudier les interactions entre les nanoparticules et l'environnement biologique. Dans cette étude, les mécanismes sous-jacents de la réponse adaptative des cellules lors de l'exposition à des points quantiques ont été examinés dans plusieurs lignées cellulaires. Nous avons observé des changements morphologiques et fonctionnels importants aux niveaux cellulaire et subcellulaire suite à une exposition de long terme à des points quantiques non-revêtu de coque. Nous avons démontré que la toxicité induite par ces QD implique la production d'espèces réactives de l'oxygène et de l'azote ainsi que des perturbations de la fonction mitochondriale. Nous avons également découvert un nouveau rôle pour transcription factor EB (TFEB), un régulateur clé de la biogenèse des lysosomes, dans la réussite du processus d'adaptation cellulaire. Nous avons montré que la présence d'une coque recouvrant les QD ainsi que des modifications à leur surface peuvent diminuer significativement leur toxicité, et dans certains cas, les rendre non-toxiques. La compréhension des mécanismes d'adaptation cellulaire en réaction aux points quantiques est essentielle au développement de procédés évaluant la sécurité d'autres nanomatériaux.Nous avons par la suite étudié l'effet des propriétés de surface des QD et comment elles contribuent à l'absorption des particules. Nous avons utilisé des points quantiques de même noyau mais ayant des modifications de surface distinctes. Nous avons démontré que la charge de surface des QD joue un rôle important dans leur internalisation cellulaire dans deux lignés de cellules humaines différentes. De plus, nous avons montré que plusieurs modes d'importation et d'exportation de la cellule étaient impliqués dans ce processus. Enfin, nous avons étudié systématiquement les effets des propriétés de surface des QD sur la stabilité des particules dans les milieux biologiques. Nous avons découvert que les protéines du sérum sont différemment adsorbées à la surface des particules ce qui joue un rôle déterminant dans le mode d'intériorisation principal.En conclusion, ces résultats aident au développement de matériaux d'échelle nanométrique de deux façons:1 ) en promouvant les modèles in vitro comme une première étape dans l'évaluation de la sécurité des nanomatériaux.2 ) en démontrant un lien entre la charge de surface ainsi que les propriétés des ligands et les modes spécifiques d'internalisation cellulaire.Les résultats présentés ici contribuent à la compréhension de la complexité de l'interface nano-bio et fournissent des principes directeurs pour la conception minutieuse de nanoparticules, avec une attention particulière pour la taille, la forme et la charge de surface.
APA, Harvard, Vancouver, ISO, and other styles
2

Kozyra, Jerzy Wieslaw. "Computation and programmability at the nano-bio interface." Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3694.

Full text
Abstract:
The manipulation of physical reality on the molecular level and construction of devices operating on the nanoscale has been the focal point of nanotechnology. In particular, nanotechnology based on DNA and RNA has a potential to nd applications in the eld of Synthetic Biology thanks to the inherent compatibility of nucleic acids with biological systems. Sca olded DNA origami, proposed by P. Rothemund, is one of the leading and most successful methods in which nanostructures are realised through rational programming of short 'staple' oligomers which fold a long single-stranded DNA called the 'sca old' strand into a variety of desired shapes. DNA origami already has many applications; including intelligent drug delivery, miniaturisation of logic circuits and computation in vivo. However, one of the factors that are limiting the complexity, applicability and scalability of this approach is the source of the sca old which commonly originates from viruses or phages. Furthermore, developing a robust and orthogonal interface between DNA nanotechnology and biological parts remains a signi cant challenge. The rst part of this thesis tackles these issues by challenging the fundamental as- sumption in the eld, namely that a viral sequence is to be used as the DNA origami sca old. A method is introduced for de novo generation of long synthetic sequences based on De Bruijn sequence, which has been previously proposed in combinatorics. The thesis presents a collection of algorithms which allow the construction of custom- made sequences that are uniquely addressable and biologically orthogonal (i.e. they do not code for any known biological function). Synthetic sca olds generated by these algorithms are computationally analysed and compared with their natural counter- parts with respect to: repetition in sequence, secondary structure and thermodynamic addressability. This also aids the design of wet lab experiments pursuing justi cation and veri cation of this novel approach by empirical evidence. The second part of this thesis discusses the possibility of applying evolutionary op- timisation to synthetic DNA sequences under constraints dictated by the biological interface. A multi-strand system is introduced based on an alternative approach to DNA self-assembly, which relies on strand-displacement cascades, for molecular data storage. The thesis demonstrates how a genetic algorithm can be used to generate viable solutions to this sequence optimisation problem which favours the target self- assembly con guration. Additionally, the kinetics of strand-displacement reactions are analysed with existing coarse-grained DNA models (oxDNA). This thesis is motivated by the application of scienti c computing to problems which lie on the boundary of Computer Science and the elds of DNA Nanotechnology, DNA Computing and Synthetic Biology, and thus I endeavour to the best of my ability to establish this work within the context of these disciplines.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Tan Tan. "Nano-watt class CMOS interface circuits for wireless sensor nodes." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3952097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Zhou. "Surface Polymerization, Interface Structure, and Low Temperature Consolidation of Nano Ceramic Particles." University of Cincinnati / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ucin971379308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Walker, Nicholas David Leyland. "The role of the nano-environmental interface in ZnO and CeO2 nanoparticle ecotoxicology." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/3734.

Full text
Abstract:
An increase in nanotechnology has seen an associated rise in nanoparticles released into the environment. Their potential toxicity and exposure to humans and the environment, the field of nanoecotoxicology, is not yet well understood. The interactions at the nanoparticle surface will play a fundamental role in the nanoparticle behaviour once released into the environment. This study aims to characterise the particle surface interaction, determining key parameters influential in the nanoparticle fate. Evanescent Wave Cavity Ring Down Spectroscopy techniques have been applied to study molecular interactions at the silica-water charged interface. The adsorption of the electronic spectrum of Crystal Violet has demonstrated the formation of a monolayer with different binding site orientation at the interface. The binding affinity for the chromophore was calculated as 29.15 ± 0.02 kJmol-1 at pH 9 and this was compared with other interface structures involving both inorganic and organic components. The study of the model interface was extended to the properties of CeO2 nanoparticles, where the surface charge density was determined to be 1.6 ± 0.3 e- nm-2.The nanoparticle surface charge controls the suspension stability which was measured for CeO2 nanoparticles giving a stability half-life of 330 ± 60 hours in pure water, and 3.6 ± 0.6 hours in ISOFish water. Studies were extended to the toxicity of ZnO nanoparticles. An assay was developed to quantify the photo-electron production for nanoparticles exposed to UV light both in deionised water and soil suspensions with a photo-radical production yield of 19 ± 2 % and an electron production of 709 e-s-1np-1 for a 100 mgL-1 suspension. The species-specific photo-radical assay was subsequently used to determine the rate of ZnO nanoparticle dissolution in water and soil suspensions. Comparable dissolution rates in complex cell growth media were also measured, detecting total zinc by Inductively Coupled Plasma Atomic Emission Spectroscopy, with comparable dissolution rates derived.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhen, Cao. "Elastocapillarity at Nano- and Micro-Scales: from Wetting and Adhesion to Interface Reinforcement." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1494328999181011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peditto, Francesca. "Photopolymerized micro-and nano-composites : interface chemistry and its role on interfacial adhesion." Lyon, INSA, 2004. http://theses.insa-lyon.fr/publication/2004ISAL0011/these.pdf.

Full text
Abstract:
The aim of this work is to realize epoxy-based UV-cured polymer composites reinforced by nanosilica or glass fibres and to characterize them using specific techniques (ATG, FT-IR, SEM, AFM, wettability measurements, microbond test ). The inorganic surfaces were chemically modified in order to improve their compatibility with the selected polymetric matrix. Their characterization shows that the obtained surface properties promote the chemical interaction between the matrix and the fillers. The influence of the type and treatment of the inorganic filler on the photopolymerization kinetics and on adhesion properties were evaluated. The obtained results show that the presence of inorganic fillers modifies the reaction kinetics and that the surface treatment promotes the formations of strong bonds between the two phases of the composites. Thanks to this work, new composites materials with innovative properties were obtained
Le but de ce travail est de réaliser par photopolymérisation UV des composites à matrice époxy avec soit des nanocharges de silice soit des fibres de verre et de les caractériser à l'aide de techniques appropriées (ATG, FT-IR, SEM, AFM, mouillage, test d'adhérence). Les surfaces inorganiques ont été modifiées par greffage chimique pour optimiser leur compatibilité avec les différentes matrices. La caractérisation montre que les propriétés obtenues améliorent l'interaction chimique entre la matrice et les charges. L'influence de la nature des charges et leur traitement de surface sur les cinétiques de photopolymérisation et l'adhérence ont été évalués. Les résultats montrent que la présence des charges modifie les cinétiques de réaction et que le greffage porte à la formation de liaisons fortes entre les deux phases. L'ensemble de ce travail a permis d'obtenir des matériaux composites ayant des propriétés encore jamais signalées à ce jour
APA, Harvard, Vancouver, ISO, and other styles
8

Radhakrishnan, Vikram. "Cohesive zone modeling of the interface in linear and nonlinear carbon nano-composites." Cincinnati, Ohio : University of Cincinnati, 2008. http://rave.ohiolink.edu/etdc/view.cgi?acc_num=ucin1206453509.

Full text
Abstract:
Thesis (M.S.)--University of Cincinnati, 2008.
Advisor: Kumar Vemaganti. Title from electronic thesis title page (viewed Feb.25, 2009). Includes abstract. Keywords: carbon nano-composites; cohesive zone modeling (CZM); interface; finite element analysis. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
9

Peditto, Francesca Priola Aldo Gérard Jean-François. "Photopolymerized micro-and nano-composites interface chemistry and its role on interfacial adhesion /." Villeurbanne : Doc'INSA, 2005. http://docinsa.insa-lyon.fr/these/pont.php?id=peditto.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jijie, Roxana. "Synthesis and characterization of complex nano-structures at the interface with biological medium." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10084/document.

Full text
Abstract:
L’augmentation des infections causées par des pathogènes résistants aux médicaments est devenue un problème de santé majeur dans le monde entier qui impose le développement de nouvelles stratégies destinées à empêcher la formation de biofilms et à éliminer les bactéries. Dans ce contexte, l’objectif de cette thèse a été la préparation de nanostructures complexes pour contrôler l’adhérence des cellules à des surfaces et inactiver les bactéries pathogènes. Ainsi, nous proposons différentes approches qui consistent en l’utilisation de : i) une couche micro-structurée de polystyrène polymérisé à l’aide d’un plasma (pPS), ii) la thérapie photodynamique à base de nanoparticules hybrides activées par un rayon laser dans le proche infrarouge (NIR) et iii) des nanoparticules de carbone fonctionnalisées par l’ampicilline, comme solutions possibles pour éliminer les bactéries
The increase of infections by multi-drug resistant pathogens has become an important worldwide healthcare issue that requires the development of new strategies to prevent biofilm formation and to kill bacteria. In this context, the aim of this thesis was the design of complex nano-structures to control cells adhesion to surfaces and to inactivate pathogenic bacteria. To this end, we propose different strategies relying on the use of i) micro-structured plasma polymerized styrene (pPS) films, ii) particle-based photodynamic therapy combined with a pulsed laser in the near infrared (NIR) region and iii) ampicillin-functionalized, fluorescent carbon dots (CDs) as possible solutions for bacterial killing. Firstly, we performed a detail characterization of pPS films used as substrates to study the behavior of biological systems
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nano-interface"

1

Arakha, Manoranjan, Arun Kumar Pradhan, and Suman Jha, eds. Bio-Nano Interface. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-2516-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Van de Voorde, Marcel, Matthias Werner, and Hans-Jörg Fecht, eds. The Nano-Micro Interface. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527679195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hans-Jörg, Fecht, and Werner Matthias Dr, eds. The nano-micro interface: Bridging the micro and nano worlds. Weinheim: Wiley-VCH, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rahman, Masoud. Protein-Nanoparticle Interactions: The Bio-Nano Interface. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tadigadapa, Srinivas A. MEMS/MOEMS components and their applications V: Special focus topics : transducers at the micro-nano interface : 21-22 January 2008, San Jose, California, USA. Edited by Society of Photo-optical Instrumentation Engineers and Boston University Photonics Center. Bellingham, Wash: SPIE, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

The Nano-Micro Interface. Weinheim: John Wiley & Sons, Inc., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fecht, Hans‐Jörg, and Matthias Werner, eds. The Nano–Micro Interface. Wiley, 2004. http://dx.doi.org/10.1002/3527604111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Werner, Matthias, Marcel Van de Voorde, and Hans-J�rg Fecht. Nano-Micro Interface: Bridging the Micro and Nano Worlds. Wiley & Sons, Incorporated, John, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Werner, Matthias, Marcel Van de Voorde, and Hans-J�rg Fecht. Nano-Micro Interface: Bridging the Micro and Nano Worlds. Wiley & Sons, Incorporated, John, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Werner, Matthias, Marcel Van de Voorde, and Hans-Jörg Fecht. Nano-Micro Interface: Bridging the Micro and Nano Worlds. Wiley & Sons, Incorporated, John, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nano-interface"

1

Biswas, Kunal, Avik Sett, Debashis De, Jaya Bandyopadhyay, and Yugal Kishore Mohanta. "Smart Nanomaterials for Bioimaging Applications: An Overview." In Bio-Nano Interface, 287–306. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2516-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Preetam, Subham, Lipsa Dash, Suman Sudha Sarangi, Mitali Madhusmita Sahoo, and Arun Kumar Pradhan. "Application of Nanobiosensor in Health Care Sector." In Bio-Nano Interface, 251–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2516-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mir, Showkat, Nirius Jenan Ekka, Binata Nayak, and Iswar Baitharu. "Bioactive Nanoparticles: A Next Generation Smart Nanomaterials for Pollution Abatement and Ecological Sustainability." In Bio-Nano Interface, 271–85. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2516-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Das, Bhabani Shankar, Ankita Das, Abhisek Mishra, and Manoranjan Arakha. "Classification, Synthesis and Application of Nanoparticles Against Infectious Diseases." In Bio-Nano Interface, 35–58. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2516-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sahu, Jayanta Kumar, Rajendra Kumar Behera, Iswar Baitharu, and Prajna Paramita Naik. "Biology of Earthworm in the World of Nanomaterials: New Room, Challenges, and Future Perspectives." In Bio-Nano Interface, 307–28. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2516-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Das, Nabojit, and Rayavarapu Raja Gopal. "Impact of Isotropic and Anisotropic Plasmonic Metal Nanoparticles on Healthcare and Food Safety Management." In Bio-Nano Interface, 1–20. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2516-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ningthoujam, Rina, Barsarani Jena, Sabita Pattanayak, Santwona Dash, Manasa Kumar Panda, Rajendra Kumar Behera, Nabin Kumar Dhal, and Yengkhom Disco Singh. "Nanotechnology in Food Science." In Bio-Nano Interface, 59–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2516-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jit, Bimal Prasad, Biswajita Padhan, and Ashok Sharma. "Nanotechnology and Its Potential Implications in Ovary Cancer." In Bio-Nano Interface, 161–75. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2516-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mahanta, Sailendra Kumar, and Manoranjan Arakha. "Nanosystems for Cancer Therapy." In Bio-Nano Interface, 127–42. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2516-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jena, Sonali, Sonali Mohanty, Monalisha Ojha, Kumari Subham, and Suman Jha. "Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics." In Bio-Nano Interface, 177–207. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2516-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nano-interface"

1

Li Xu, Cong Yue, Johan Liu, Yan Zhang, Xiu Zhen Lu, and Zhaonian Cheng. "Nano-thermal interface material with CNT nano-particles for heat dissipation application." In 2008 International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP). IEEE, 2008. http://dx.doi.org/10.1109/icept.2008.4607085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boser, Bernhard. "From Micro to Nano: MEMS as an interface to the nano world." In 2006 IEEE/ACM International Conference on Computer Aided Design. IEEE, 2006. http://dx.doi.org/10.1109/iccad.2006.320127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsukagoshi, K., I. Yagi, J. Tanabe, K. Shigeto, K. Yanagisawa, and Y. Aoyagi. "Nano-scale fabrication and nano-scale interface control for molecular/organic devices." In Digest of Papers Microprocesses and Nanotechnology 2005. 2005 International Microprocesses and Nanotechnology Conference. IEEE, 2005. http://dx.doi.org/10.1109/imnc.2005.203736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liang, L. H., X. M. You, H. S. Ma, Y. G. Wei, Jane W. Z. Lu, Andrew Y. T. Leung, Vai Pan Iu, and Kai Meng Mok. "Nano-size Effect of Interface Energy and Its Effect on Interface Fracture." In PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MECHANICS AND THE 12TH INTERNATIONAL CONFERENCE ON THE ENHANCEMENT AND PROMOTION OF COMPUTATIONAL METHODS IN ENGINEERING AND SCIENCE. AIP, 2010. http://dx.doi.org/10.1063/1.3452186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brusentseva, T. A. "Interface layer characteristics in nano-sized polymer composites." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2017 (AMHS’17). Author(s), 2017. http://dx.doi.org/10.1063/1.5013702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, K. J., and X. F. Peng. "Dynamic Behavior of Nano-Particles on Bubble Interface." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52138.

Full text
Abstract:
The dynamic behavior of particles on a bubble interface contains axial and radial motions and is highly dependent upon the energy of this system. By introducing the concept of particle energy density (the average of the system energy based on particle number), four kinds of energy elements are estimated as critical elements, namely surface energy, line tension (an additive interaction at the contact line), electrostatic interaction and hydrophobic interaction (only for hydrophobic particle whose contact angle is greater than 64°). With consideration of different energy influences, the radial motion, vertical to bubble interface, and circumferential motion, parallel with bubble interface, are theoretically described and discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Shiraishi, K., Y. Akasaka, K. Torii, T. Nakayama, S. Miyazaki, T. Nakaoka, H. Watanabe, et al. "New findings in nano-scale interface physics and their relations to nano-CMOS technologies." In 2006 International Workshop on Nano CMOS (IWNC). IEEE, 2006. http://dx.doi.org/10.1109/iwnc.2006.4570992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

LIU, Lingyun, Fei QIN, Yanwei DAI, and Pei CHEN. "Nano-indentation test across the sintered silver/ copper interface." In 2020 21st International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2020. http://dx.doi.org/10.1109/icept50128.2020.9202888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matkowski, Przemyslaw, Tomasz Falat, and Andrzej Moscicki. "Comparative analysis of novel thermal interface containing nano additives." In 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC). IEEE, 2014. http://dx.doi.org/10.1109/eptc.2014.7028330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, X., Linxi Wu, Ali Khanehzar, Amin Feizpour, Fangda Xu, and Björn M. Reinhard. "Probing the nano-bio interface with nanoplasmonic optical probes." In SPIE NanoScience + Engineering, edited by Hooman Mohseni, Massoud H. Agahi, and Manijeh Razeghi. SPIE, 2014. http://dx.doi.org/10.1117/12.2060612.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nano-interface"

1

R.W. Carpick and M.E. Plesha. Development and Integration of Single-Asperity Nanotribology Experiments & Nanoscale Interface Finite Element Modeling for Prediction and Control of Friction and Damage in Micro- and Nano-mechnical Systems. Office of Scientific and Technical Information (OSTI), March 2007. http://dx.doi.org/10.2172/922930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography