Dissertations / Theses on the topic 'Nano-Biomaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 dissertations / theses for your research on the topic 'Nano-Biomaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dougherty, Shelley A. "Template-assisted fabrication of nano-biomaterials." Digital WPI, 2009. https://digitalcommons.wpi.edu/etd-dissertations/351.
Full textSCOGNAMIGLIO, FRANCESCA. "Nano-engineered adhesive biomaterials for biomedical applications." Doctoral thesis, Università degli Studi di Trieste, 2016. http://hdl.handle.net/11368/2907994.
Full textArulmuthu, Eugene Raj. "Formulation and aerosol delivery of nano-sized biomaterials." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/33593.
Full textZhou, Zhuolong, and 周卓龍. "The mechanics of biomaterials studied at micro- and nano-scales." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206327.
Full textMatsumoto, Shinji. "Novel Stimuli-Responsive Supramolecular Hydrogels toward Sophisticated Nano-Micro Biomaterials." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/57282.
Full text0048
新制・課程博士
博士(工学)
甲第13850号
工博第2954号
新制||工||1436(附属図書館)
26066
UT51-2008-C766
京都大学大学院工学研究科合成・生物化学専攻
(主査)教授 濵地 格, 教授 青山 安宏, 教授 木村 俊作
学位規則第4条第1項該当
Devarakonda, Surendra B. "Enhanced Thermal Ablation of Biomaterials Using High-Intensity Focused Ultrasound (HIFU) Energized Nano-particles." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1544001995977567.
Full textD’Alessandro, Teresa <1982>. "Development of newly conceived biomimetic nano-structured biomaterials as scaffolds for bone and osteochondral regeneration." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5275/1/D%27Alessandro_Teresa_tesi.pdf.
Full textD’Alessandro, Teresa <1982>. "Development of newly conceived biomimetic nano-structured biomaterials as scaffolds for bone and osteochondral regeneration." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5275/.
Full textWright, Jack Samuel <1992>. "Colloidal characterisations for environmental exposure assessment in support of the risk assessment of nano-biomaterials for biomedical applications." Master's Degree Thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/16325.
Full textCazzagon, Virginia <1992>. "Development and application of a Risk Management Framework for nano-biomaterials used in medical devices and medicinal products." Doctoral thesis, Università Ca' Foscari Venezia, 2022. http://hdl.handle.net/10579/22058.
Full textTakinami, Patrícia Yoko Inamura. "Obtenção de biopolímeros de gelatina por radiação ionizante." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/85/85131/tde-13062014-092057/.
Full textThe gelatin (GEL) is a biocompatible and biodegradable biopolymer, which naturally forms semi-solid colloids or hydrogels in aqueous solutions. As a hydrophilic polymer, the GEL has structural and physico-mechanical properties that distinguish it from synthetic hydrophilic polymers. The study of these properties led to the development of the present work. Thus, GEL-based films and hydrogels were developed using ionizing radiation technology by different techniques: irradiation with 60Co, electron beam (EB) and/or pulsed EB. The GEL based-films enriched with different additives, such as glycerol (GLY), polyvinyl alcohol (PVA), butylated hydroxytoluene (BHT), acrylamide and/or vegetal fiber, were irradiated with doses from 10 to 60 kGy, depending on the additive; some parameters like mechanical properties, color, and water absorption were analyzed. In the radio-induced synthesis of GEL nanohydrogels, polyethylene glycol (PEG) and the mixture (MIX) of additives, PEG and GEL, the size, molar mass and surface morphology of the nanohydrogels were analyzed. There was a significant increase of gel fraction with increase of the radiation dose for the GEL/fiber samples. The GEL based-films with 10% PVA irradiated at 20 kGy showed the highest puncture strength. The addition of antioxidant BHT affected on some GEL based-films properties on applied conditions. Regarding the nanohydrogels, there was a decrease of hydrodynamic radius of MIX irradiated with 60Co from 68 ± 25 nm (2 kGy) to 35 ± 4 nm (5 kGy). The radiation proved to be a convenient tool in the modification of polymeric materials for both, GEL films and hydrogels.
Mabrouk, Mohamed Mostafa. "Preparation of PVA / Bioactive Glass nanocomposite scaffolds : in vitro studies for applications as biomaterials : association with active molecule." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S063/document.
Full textThe aim of the present work is the preparation of Bioactive Glass (BG) 46S6 by different techniques. Fabrication of composite scaffolds by using of Poly Vinyl Alcohol (PVA) and quaternary BG (two methods melting and sol-gel) with different ratios to the prepared scaffolds was carried out. Different factor affecting the final properties of the prepared composite scaffolds were investigated in this study, such as; temperature of treatment, BG particle size, polymer/glass ratio, microstructure, porosity, biodegradation, bioactivity, and drug release. The thermal behavior of the prepared bioactive glass by sol-gel and melting techniques were identified using Differential Scanning Calorimetric/Thermo Gravimetric (DSC/TG) or Differential Thermal Analysis/Thermo Gravimetric (DTA /TG). The elemental composition of the prepared bioactive glasses was determined by X-rays Fluorescence (XRF) to confirm that the prepared bioactive glasses have the same elemental compositions and high purity for biomedical applications. The particle size of the prepared bioactive glass was determined by Transmission Electron Microscopic (TEM). Nano-bioactive glass could be obtained by modified sol-gel and the obtained particle size ranged between 40 to 61 nm. The prepared bioactive glass by both applied methods has the same amorphous phase and all identified groups as well as. The porous scaffold has 85% porosity with a slight decrease by increasing the glass contents. The degradation rate decreased by increasing of glass content in the prepared scaffolds. The bioactivity of the prepared composite scaffolds was evaluated by XRD, FTIR, SEM coupled with EDX and Inductively Coupled Plasma-Optical Emission Spectroscopic (ICP-OES). It has been observed that after soaking in Simulated Body Fluid (SBF), there was an apatite layer formed on the surface of the prepared samples with different thickness depending on the glass particle size and polymer/glass ratio
Hamandi, Farah Mohammed Ridha Abdulateef. "Hierarchical Structure, Properties and Bone Mechanics at Macro, Micro, and Nano Levels." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1607294294076853.
Full textRealista, Coelho Dos Santos Pedrosa Catarina. "Nanotopographies bioactives pour le contrôle de la différenciation des cellules souches mésenchymateuses pour des applications en ingénierie de tissu osseux." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0319/document.
Full textNanotopography with length scales of the order of extracellular matrix elements offers the possibility of regulating cell behavior. Investigation of the impact of nanotopography on cell response has been limited by inability to precisely control geometries, especially at high spatial resolutions, and across practically large areas. This work allowed the fabrication of well-controlled and periodic nanopillar arrays of silicon to investigate their impact on osteogenic differentiation of human mesenchymal stem cells (hMSCs). Silicon nanopillar arrays with critical dimensions in the range of 40-200 nm, exhibiting standard deviations below 15% across full wafers were realized using self-assembly of block copolymer colloids. To investigate if modifications of surface chemistry could further improve the modulation of hMSC differentiation, mimetic peptides were grafted on the fabricated nanoarrays. A peptide known for its ability to ameliorate cell adhesion (RGD peptide), a synthetic peptide able to enhance osteogenesis (BMP-2 mimetic peptide), and a combination or both molecules were covalently grafted on the nanostructures.Immunofluorescence and quantitative polymerase chain reaction (RT-qPCR) measurements reveal clear dependence of osteogenic differentiation of hMSCs on the diameter and periodicity of the arrays. Moreover, the differentiation of hMSCs was found to be dependent on the age of the donor. Surface functionalization allowed additional enhancement of the expression of osteogenic markers, in particular when RGD peptide and BMP-2 mimetic peptide were co-immobilized. These findings can contribute for the development of personalized treatments of bone diseases, namely novel implant nanostructuring depending on patient age
SERINO, GIANPAOLO. "MECHANICAL CHARACTERIZATION OF MATERIALS AND NANO-DEVICESO F BIOMEDICAL INTEREST THROUGH NANOINDENTATION TEST." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2706761.
Full textMemarzadeh, Kaveh. "Investigations into the use of nano-based antimicrobial and osteoconductive coatings for bone implants." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9001.
Full textKalasová, Dominika. "Rentgenová počítačová nano tomografie polymerních strukturovaných bio materiálu." Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2019. http://www.nusl.cz/ntk/nusl-409089.
Full textDavidson, Patricia. "The interaction of healthy and cancerous cells with nano- and microtopography." Phd thesis, Université de Haute Alsace - Mulhouse, 2011. http://tel.archives-ouvertes.fr/tel-00704904.
Full textStrang, William Christopher. "THE FORMATION OF NANO-SIZED CHEMICAL DOMAINS AND THE SUBSEQUENT EFFECTS ON CONNECTIVE TISSUE ADHESION." Kent State University Honors College / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1418413006.
Full textGrimes, Logan. "DEVELOPENT OF A PHOSPHOLIPID ENCAPSULATION PROCESS FOR QUANTUM DOTS TO BE USED IN BIOLOGIC APPLICATIONS." DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1237.
Full textFrost, Samuel J. "Chitosan-based nano-structured biomaterials for sutureless tissue repair." Thesis, 2018. http://hdl.handle.net/1959.7/uws:51722.
Full textHsiao, Hui-Ling, and 蕭卉羚. "Regulation of Composite Antibacterial Effect in Nano-biomaterials Prepared with Bacterial Cellulose." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/44703227243277650345.
Full text國立宜蘭大學
食品科學系碩士班
99
The antibacterial materials have some functions to prevent microorganism pollution, to control and release antibacterial reagent to prolong the storage duration of foods. Nevertheless, high-dose and narrow antibacterial targets were the problems for treatment by single antibacterial substance. Therefore, this study mainly investigated the composite antibacterial effect of natural antibacterial substances, nisin and low molecular weight chitosan (LMWC), against Staphylococcus aureus G(+) and Escherichia coli G(─) to lessen the dosage in antibacterial reaction. Bacterial cellulose (BC) with nano-networks was then selected to be the carrier to absorb and control-release nisin and LMWC to obtain the composite antibacterial effect. The results showed that the minimum inhibitory concentration (MIC) of nisin against S. aureus and LMWC against E. coli are 6 IU and 200 μg/mL, respectively. The composite antibacterial effect is various according to the strains. The desirable composite antibacterial effect was obtained when nisin was applied prior to LMWC treatment against S. aureus as well as LMWC was applied prior to nisin treatment against E. coli. Meanwhile, the desirable addition interval was 6 hrs. These two composite methods lessened the dosage of antibacterial substances and exhibited the hurdle effect in antibacterial ability, while, the lowest antibacterial effect was observed for simultaneous treatment with nisin and LMWC. Since the network of BC can absorb and release nisin and LMWC, the HBC (HPMC modified BC) which can extend the release of nisin was selected to be the carrier to control-release antibacterial substance. The releasing speed from HBC of nisin was faster than that of LMWC, it can be regarded as nisin was applied prior to LMWC treatment, and resulted in 95% strong inhibition percentage against S. aureus and E. coli when 30 IU nisin contained HBC (NBC) and 62.5 μg/mL LMWC contained HBC (CBC) existed simultaneously. The control release of nisin and LMWC by using HBC offered composite antibacterial ability by hurdle effect and minimized the interaction between nisin and LMWC, the dosage in antibacterial reaction and broadened the antibacterial targets. It revealed that the HBC might be treated as a nano-biofilm to facilitate the control-release of antibacterial substance.
Kim, Minkyu. "Design and Characterization of Protein-Based Building Blocks for Self-Assembled Nano-Structured Biomaterials." Diss., 2011. http://hdl.handle.net/10161/3948.
Full textThis study is focused on designing and characterizing protein-based building blocks in order to construct self-assembled nano-structured biomaterials. In detail, this research aims to: (1) investigate a new class of proteins that possess nanospring behaviors at a single-molecule level, and utilize these proteins along with currently characterized elastomeric proteins as building blocks for nano-structured biomaterials; (2) develop a new method to accurately measure intermolecular interactions of self-assembling two or more arbitrary (poly)peptides, and select some of them which have appropriate tensile strength for crosslinking the proteins to construct elastomeric biomaterials; (3) construct well-defined protein building blocks which are composed of elastomeric proteins terminated with self-oligomerizing crosslinkers, and characterize self-assembled structures created by the building blocks to determine whether the elasticity of proteins at single-molecule level can be maintained.
Primary experimental methods of this research are (1) atomic force microscope (AFM) based single-molecule force spectroscopy (SMFS) that allows us to manipulate single molecules and to obtain their mechanical properties such as elasticity, unfolding and refolding properties, and force-induced conformational changes, (2) AFM imaging that permits us to identify topology of single molecules and supramolecular structures, and (3) protein engineering that allows us to genetically connect elastomeric proteins and self-assembling linkers together to construct well-defined protein building blocks.
Nanospring behavior of á-helical repeat proteins: We revealed that á-helical repeat proteins, composed of tightly packed á-helical repeats that form spiral-shaped protein structures, unfold and refold in near equilibrium, while they are stretched and relaxed during AFM based SMFS measurements. In addition to minimal energy dissipation by the equilibrium process, we also found that these proteins can yield high stretch ratios (>10 times) due to their packed initial forms. Therefore, we, for the first time, recognized a new class of polypeptides with nanospring behaviors.
Protein-based force probes for gauging molecular interactions: We developed protein-based force probes for simple, robust and general AFM assays to accurately measure intermolecular forces between self-oligomerization of two or more arbitrary polypeptides that potentially can serve as molecular crosslinkers. For demonstration, we genetically connected the force probe to the Strep-tag II and mixed it with its molecular self-assembling partner, the Strep-Tactin. Clearly characterized force fingerprints by the force probe allowed identification of molecular interactions of the single Strep-tag II and Strep-Tactin complex when the complex is stretched by AFM. We found a single energy barrier exists between Strep-tag II and Strep-Tactin in our given loading rates. Based upon our demonstration, the use of the force probe can be expanded to investigate the strength of interactions within many protein complexes composed of homo- and hetero-dimers, and even higher oligomeric forms. Obtained information can be used to choose potential self-assembling crosslinkers which can connect elastomeric proteins with appropriate strength in higher-order structures.
Self-assembled nano-structured biomaterials with well-defined protein-based building blocks: We constructed well-defined protein building blocks with tailored mechanical properties for self-assembled nano-structured materials. We engineered protein constructs composed of tandem repeats of either a I27-SNase dimer or a I27 domain alone and terminated them with a monomeric streptavidin which is known to form extremely stable tetramers naturally. By using molecular biology and AFM imaging techniques, we found that these protein building blocks transformed into stable tetrameric complexes. By using AFM based SMFS, we measured, to our knowledge for the first time, the mechanical strength of the streptavidin tetramer at a single-molecule level and captured its mechanical anisotropy. Using streptavidin tetramers as crosslinkers offers a unique opportunity to create well-defined protein based self-assembled materials that preserve the molecular properties of their building blocks.
Dissertation
Coutinho, Daniela F. "Micro/nano-scale strategies for engineering in vitro the celular microenvironment using biodegradable biomaterials." Doctoral thesis, 2011. http://hdl.handle.net/1822/19991.
Full textBiological tissues result of a specific spatial organization of cells, extracellular matrix (ECM) molecules, and soluble factors. These micro and nanoscaled biological entities organize into regional tissue architectures, creating highly complex and heterogeneous cellular microenvironments. To generate functional tissue equivalents in vitro, engineered biomaterials should mimic the structural, chemical and cellular complexity by recapitulating the unique native microenvironments. Thus, the main goal of this thesis was to engineer biodegradable polymers using various micro and nanofabrication techniques, with specific structural, biochemical and cellular cues for improved performance. The main governing hypotheses of this thesis were: 1) substrates with improved structural properties can be engineered using biodegradable polymers that have previously shown good results in in vivo studies, 2) biochemical cues can be incorporated into biodegradable polymers, yielding biomaterials with integrated chemical cues for improved cellular performance, and 3) these structural and biochemical cues can be incorporated into a single system. To develop biomaterials with structural cues, micromolding of poly(butylene succinate) (PBS) was performed to engineer surfaces with features at a microscale that induced the alignment of human adipose stem cells. Although this polymeric material has been processed at a macroscale into scaffolds, this was the first report on the engineering of this material at a microscale, demonstrated by the development of twenty features with different dimensions. Improved substrates with structural cues were also engineered using the polysaccharide gellan gum (GG), which has been extensively studied at 3B’s Research Group. Microcapsules of GG, aimed at being used as drug or cell carriers and/or delivery agents, were engineered using a two-phase system. The principle of hydrophobic-hydrophilic repulsion forces was combined with a microfabrication process by means of a needle/syringe pump system. Microcapsules with different diameters were produced by varying the system parameters. As an original proof-of-concept, fluorescent beads, cell suspensions and cell aggregates were encapsulated within this microfabrication system. To develop biomaterials with enhanced biochemical cues, GG was chemically modified with ester bonds, yielding novel hydrogels crosslinkable by ultraviolet (UV) light. Methacrylated GG (MeGG) hydrogels were formed using physical and chemical mechanisms resulting in hydrogels with tunable mechanical properties, matching those of natural tissues from soft to hard, as the brain or collagenous bone. In a subsequent step, this material was combined with chitosan (CHT), a natural polysaccharide, resulting in a polyelectrolyte complex (PEC) hydrogel that combined the most advantageous properties of CHT and MeGG. PEC hydrogels are commonly formed by the interaction between the chains of oppositely charged polymers and are thus held together by ionic forces, which can be disrupted by changes in physiological conditions. However, in our new system, the biochemical cues earlier introduced in GG, allowed to crosslink the MeGG-CHT hydrogel using UV light, stabilizing the structure of the hydrogel. This rather important property also enabled for the development of microgels by photolithography. The encapsulation of rat cardiac fibroblasts within MeGG before PEC hydrogel production, led to the fabrication of microgels with combined biochemical, structural and cellular cues. The developed MeGG-CHT hydrogel was further engineered into a multi-hierarchical fibrous hydrogel by means of combining fluidics technology and chemistry principles of the interaction of two oppositely charged polymers. Two converging fluidic channels were used to extrude the MeGG-CHT hydrogel, formed by the assembly of the polymeric chains at the location where the channels converged. The resulting hydrogel closely mimicked the architecture of natural collagen fibers not only at a micro but also at a nanoscale. The developed hydrogel with relevant biological structural properties was enhanced by incorporating cell adhesive motifs (RGD peptides) into the MeGG backbone before processing. The research work described in this thesis addresses strategies to mimic several parameters of the native microenvironment of tissues. Biochemical and cellular cues were incorporated into biomaterials that were microprocessed with relevant biological micro and nanoscale features. In summary, the works reported in this thesis show the importance of combining different areas of knowledge into the development of improved systems for biomedical engineering applications. Undoubtfully, chemistry and micro and nanofabrication technologies are two areas of knowledge that allow the fabrication of micro and nanostructured materials. Herein, this synergy was achieved with a top-down approach (by micromolding, photolithography or fluidics technologies) and/or with a bottom-up approach (by the assembly of polymer chains). The last work of this thesis is the result of the original combination of both approaches for the development of enhanced micro and nanostructured biomaterials, thus presenting significant improved features compared to currently developed systems to be successfully used in several regenerative medicine approaches.
A funcionalidade dos tecidos biológicos está associada à organização espacial de células, à composição e distribuição de moléculas da matriz extracelular e a outros componentes solúveis. Estas entidades biológicas à escala micro/nanométrica organizam-se em arquitecturas locais específicas, criando micro-ambientes celulares complexos e heterogéneos. Existe portanto um grande interesse no desenvolvimento de equivalentes funcionais dos tecidos humanos usando biomateriais de modo a mimetizar a complexidade química, estrutural e celular. Acredita-se que estes biomateriais poderão recapitular as características únicas dos micro-ambientes dos tecidos, favorecendo a sua regeneração funcional. O objectivo principal desta tese consistiu em produzir e desenvolver polímeros biodegradáveis com estímulos químicos, estruturais e celulares de modo a obter uma elevada funcionalidade, usando para isso diferentes técnicas de micro/nano-fabricação. As hipóteses científicas que estão na base do trabalho descrito nesta tese são: 1) é possível desenvolver substratos com estímulos estruturais usando polímeros biodegradáveis que já tenham demonstrado resultados promissores in vivo, 2) é possível incorporar estímulos bioquímicos em sistemas baseados em polímeros biodegradáveis, produzindo biomateriais com sinais bioquímicos integrados para o melhor desempenho biológico dos materiais, e 3) é possível combinar estes sinais estruturais e bioquímicos num único sistema. O polímero polibutileno succinato foi micro-moldado de modo a desenvolver superfícies com topografias à escala micrométrica, visando o desenvolvimento de biomateriais com sinais estruturais, capazes de induzir o alinhamento de células do tecido adiposo humano. Embora este material tenha sido processado anteriormente sob a forma de estrutura 3D porosa, esta foi a primeira vez que foi descrito o processamento deste material à escala micrométrica, demonstrado pelo desenvolvimento de vinte padrões com diferentes dimensões. O polissacarídeo goma gelana (GG), extensivamente estudado no Grupo de Investigação 3B’s, foi usado para desenvolver substratos com sinais estruturais. Micro-cápsulas de GG foram fabricadas usando um sistema de duas fases, com o intuito de serem usadas para o transporte ou libertação de drogas ou células. O princípio de repulsão entre soluções hidrofóbicas e hidrófilas foi combinado com um processo de micro-fabricação, usando uma bomba de injecção. De modo a demonstrar o conceito, partículas fluorescentes, suspensões celulares e agregados celulares foram encapsulados usando este sistema. Para desenvolver biomateriais com sinais bioquímicos, a GG foi modificada quimicamente com ligações éster, produzindo hidrogéis reticuláveis por radiação ultravioleta (UV). Os hidrogéis de GG metacrilada (MeGG) são formados com mecanismos físicos e químicos, resultando em géis com propriedades mecânicas ajustáveis numa gama que se situa próximo da dos tecidos humanos moles e duros, como o cérebro e o osso. Este material foi posteriormente combinado com quitosano, um polissacarídeo de origem natural, resultando num complexo polieletrolítico (PEC) que combina as melhores propriedades do quitosano e da MeGG. A formação de hidrogéis de PECs resulta da interacção entre cadeias de polímeros com cargas opostas, sendo o mecanismo de ligação dependente de forças iónicas, as quais podem ser perturbadas por mudanças na composição da solução. Os sinais bioquímicos introduzidos anteriormente permitiram reticular o hidrogel MeGG-CHT com a radiação UV, estabilizando a estrutura do hidrogel. Este material permitiu também o desenvolvimento de micro-géis por fotolitografia. O encapsulamento de fibroblastos do coração de ratos na MeGG previamente à produção dos hidrogéis conduziu à fabricação de micro-géis com sinais bioquímicos, estruturais e celulares integrados num mesmo sistema. O sistema de hidrogel MeGG-CHT foi usado para obter um hidrogel fibroso hierárquico, através da combinação de microfluídica e complexação polieletrolitica. Extrudiu-se o MeGGCHT em dois canais convergentes com o objectivo de obter a complexação das cadeias poliméricas na forma de fibra. O hidrogel desenvolvido mimetiza a arquitectura das fibras de colagénio existentes no corpo humano, não só ao nível micrométrico mas também à escala nanométrica. O hidrogel desenvolvido foi funcionalizado através da incorporação de moléculas adesivas (péptidos RGD) na MeGG antes do seu processamento. O trabalho de investigação descrito nesta tese demonstra o potencial de diferentes estratégias para mimetizar várias características do micro-ambiente existente nos tecidos. Sinais bioquímicos e celulares foram incorporados em biomateriais que foram posteriormente processados para obter estruturas biológicas relevantes à escala micro/nanométrica. Esta tese demonstra a importância de combinar diferentes áreas do conhecimento para o desenvolvimento de sistemas funcionais para aplicações biomédicas. É inquestionável que a química e as tecnologias de micro e nano-fabricação são duas áreas de conhecimento que se complementam e permitem a fabricação de materiais micro e nanoestruturados. Esta sinergia foi alcançada usando para o efeito uma abordagem top-down (através de fotolitografia, micro-moldação ou microfluídica) e/ou uma abordagem bottom-up (através da complexação de cadeias poliméricas). No último trabalho da tese estas duas abordagens convergem para o desenvolvimento de biomateriais micro e nano-estruturados. Este tipo de sistemas permitem a funcionalização de biomateriais até níveis de aproximação dos tecidos biológicos não tem paralelo nos sistemas convencionais, o que se traduz no desenvolvimento de sistemas de elevado desempenho para diferentes abordagens em engenharia de tecidos.
Machado, Raul Miguel Ribeiro. "Design, bioproduction and characterization of protein recombinant silk-elastin-based polymers: a new class of nano-biomaterials." Doctoral thesis, 2012. http://hdl.handle.net/1822/23177.
Full textRecombinant protein-based polymers (rPBPs) are an emerging class of biopolymers with unique chemical, physical and biological characteristics that provide promising solutions for the increasing demand of advanced functional biomaterials. The use of recombinant DNA technology allows to fine tune the molecular structure of rPBPs by the precise control of its size and composition. The copolymers developed in the scope of this thesis were obtained by genetic engineering by combining selected properties from two of the most extraordinary structural biopolymers found in nature: silk fibroin and elastin. Silk fibroin, with a semicrystalline structure, has long been known as a reference material, combining strength and ductility, with a long history of medical use in humans as a material for sutures. Elastin, found in mammalian tissues such as skin, lungs and arteries is one of the most remarkable rubber-like proteins. By combining the elasticity and high resilience of an ideal elastomer like elastin, with the mechanical and tensile strength of silk fibroin, we have created copolymers that in theory will exhibit the properties of both proteins. In the present work, molecular biotechnology approaches were used to develop new copolymers based on silk fibroin and elastin, and explore their suitability for a wide range of applications. A state of the art review is presented in Chapter I, focusing on the current developments and applications of silk-elastin-like polymers (SELPs) through an extensive bibliographic revision. Chapter II describes the genetic constructions for a set of novel SELPs as well as the development of an easy and inexpensive method for small/laboratory scale production and purification. The use of auto-induction medium allowed obtaining high levels of SELP expression in Escherichia coli while minimizing culture handling. Purification of the recombinant copolymers was achieved by a novel two-step protocol involving an acidification step to precipitate endogenous E. coli proteins, followed by ammonium sulphate precipitation for recombinant SELP concentration. By following this methodology, it was possible to obtain volumetric productivities between 150-200 mg/L with no detectable losses of recombinant copolymer throughout the entire purification process. In order to optimize protein expression, Chapter III is dedicated to the optimization of culture conditions for maximum volumetric productivities of a representative SELP copolymer (SELP-510-A). In this work, several key factors and parameters were studied allowing achieving 0.5 g/L of purified SELP copolymer which are the highest volumetric productivities reported to date. In opposition to the general protein expression protocols based on IPTG induction, maximum expression levels were attained by inducing cell culture at the end of the declining exponential growth phase. With all the upstream processes performed (genetic constructions, production and purification), the next logical step was the processing of the produced recombinant copolymers and its characterization. Chapter IV reports the electrospinning of two of the novel SELP copolymers namely, SELP-510-A and SELP-1020-A. The resulted electrospun structures showed to be size-dependent of the type of solvent and copolymer concentration. While low concentrations of polymer solution lead to the formation of nano-microsized spherical structures, higher polymer concentrations produced electrospun fibers with increasing diameter and size distribution, ranging from the nano to the sub-microscale. Comparing the solvents formic acid and water, electrospun fibers in aqueous solution led to the formation of fibers with higher diameter and size distribution. Structure stabilization was obtained by methanol treatment rendering waterinsoluble electrospun mats. As SELP copolymers undergo an irreversible solution to gel transition, these copolymers are of great interest for the production of hydrogels suitable for biomedical applications. The thermogelling properties of aqueous solutions of SELP-510-A were characterized by rheological and differential scanning calorimetry studies (Chapter V). Gelation showed to be concentration dependent displaying increased elastic modulus at higher concentrations. In addition to electrospinning and hydrogel formation, the use of solvent cast was also exploited to produce SELP-510-A films from aqueous and formic acid solutions (Chapter V). Films cast on Petri dishes displayed insulating properties and were thermally stable to temperatures of near 220 ºC. Additionally, the cast films were optically clean, displaying great mechanical properties which were further improved after methanol exposure. As in the electrospun mats, structure stabilization of cast films was obtained by methanol treatment, rendering water-insoluble films with great mechanical properties. Furthermore, addition of glycerol demonstrated to greatly improve the flexibility of cast films. The elastin-block present in the molecular formulation of SELPs displays a smart thermoresponsive behaviour associated with thermal hysteresis and characterized by a selfassembling process that leads to the formation of nanoparticles. This “smart” behaviour was explored for biotechnological applications in the textile and biomedical fields. Chapter VI describes the use of the elastin-block VPAVG as a tag to increase the molecular weight of a recombinant serine protease (subtilisin E). The DNA coding for 220 repeats of the pentamer VPAVG was cloned in frame with subtilisin E and biologically produced in E. coli. The resulting fusion protein displayed a molecular weight above 116 kDa and was tested for wool finishing assays. With this strategy, the hydrolysis of SubtilisinE-(VPAVG)220 was retained at the surface of wool yarns, in the cuticle layer; while the commercial enzyme Esperase penetrated into the wool cortex damaging the fibre. When compared to the commercial protease, this novel method for wool surface controlled-hydrolysis allowed a significant reduction of pilling, weight loss and tensile strength loss of wool fibres. In Chapter VII the elastin-like nanoparticles, created by the self-assembling process of poly(VPAVG), were used to encapsulate bone morphogenetic protein -2 and -14 (BMP-2 and BMP-14). Both cytokines were encapsulated with high efficiency, retaining their bioactivity, and delivered in a combined and sustained way for 14 days. Increased activity was observed with a combined release of BMP-2 and BMP-14.
Os polímeros recombinantes de origem proteica (rPBPs) são uma nova classe de biopolímeros que devido às suas propriedades singulares, fornecem soluções promissoras para a crescente procura por biomateriais funcionais avançados. Com recurso a tecnologias de DNA recombinante, é possível aperfeiçoar a estrutura molecular dos rPBPs através do controlo preciso da sua estrutura e composição. Os co-polímeros desenvolvidos no âmbito desta tese foram obtidos por engenharia genética e combinam as propriedades de duas das proteínas estruturais mais extraordinárias da Natureza: a seda (fibroína) e a elastina. A fibroína, mais conhecida por seda, exibe uma estrutura semi-cristalina e é conhecida desde a antiguidade como um material de referência combinando propriedades de resistência e ductilidade. A elastina, encontrada nos tecidos de mamíferos como na pele, pulmões e artérias, é uma das proteínas elásticas mais notáveis. No trabalho aqui descrito, e com recurso a técnicas de biotecnologia molecular, as propriedades de elasticidade e resiliência da elastina foram combinadas com a resistência tênsil e mecânica da fibroína. Assim, no âmbito desta tese, foram criados novos co-polímeros que em teoria exibirão as propriedades de ambas as proteínas e a sua aplicabilidade para uma variedade de aplicações. Uma extensa revisão do estado da arte é apresentada no Capítulo I, com foco nos atuais desenvolvimentos e aplicações de co-polímeros com base na seda e elastina (SELPs). No Capítulo II são descritas as construções genéticas para uma série de novos SELPs, assim como o desenvolvimento de um método simples e económico para produção e purificação destes novos co-polímeros à escala laboratorial. A utilização de um meio de cultura autoindutivo, para além de minimizar o manuseamento da cultura, permitiu a obtenção de altos níveis de expressão de SELPs em Escherichia coli. A purificação destes polímeros recombinantes foi conseguida através de um novo método envolvendo um primeiro passo de acidificação, para precipitação das proteínas endógenas de E. coli, seguido de saturação com sulfato de amónio para precipitação e concentração dos SELPs. Através desta nova metodologia, foi possível obter produtividades volumétricas na ordem dos 150-200 mg/L, sem perdas assinaláveis de SELP recombinante durante todo o processo de purificação. De forma a otimizar a expressão proteica, no Capítulo III foram estudados vários fatores e parâmetros chave para atingir valores máximos de produção de um SELP representativo (SELP-510-A). Neste estudo, foram atingidas produtividades volumétricas de 0.5g/L, representando os maiores valores descritos até à data. Contrariamente aos protocolos utilizados normalmente para expressão proteica com base em indução por IPTG, os maiores níveis de expressão foram obtidos induzindo a cultura celular no final do declínio da fase exponencial de crescimento. Uma vez terminados os processos a montante (construções genéticas, produção e purificação), procedeu-se então ao processamento e caracterização dos SELPs produzidos. No Capítulo IV, dois dos novos SELPs, nomeadamente SELP-510-A e SELP-1020-A, foram processados por quer do tipo de solvente usado como da concentração da solução. Enquanto concentrações baixas levaram à obtenção de nano e microestruturas esféricas, um aumento na concentração permitiu fabricar fibras de diâmetro e distribuição de tamanho crescentes variando entre a escala nano e sub-micro. Comparando o tipo de solvente, ácido fórmico ou água, obtiveram-se fibras de maior tamanho e dispersão em solução aquosa. A estabilização das estruturas fabricadas por electrospinning foi obtida por tratamento com metanol, tornando-as insolúveis em água. Devido à capacidade de espontaneamente transitarem do estado líquido para estado gel, os SELPs são de grande interesse para o desenvolvimento de hidrogéis com aplicação biomédica. No Capítulo V, as propriedades de termogelificação de soluções aquosas de SELP- 510-A foram caracterizadas por reologia e calorimetria diferencial de varrimento. O processo de gelificação mostrou ser dependente da concentração, com o módulo de elasticidade a variar proporcionalmente com a concentração. Neste mesmo capítulo, a técnica de solvent cast foi utilizada para fabricar filmes a partir de soluções aquosas e de ácido fórmico de SELP-510-A. Filmes produzidos em placa de Petri mostraram ser eletricamente isolantes, com uma excelente transparência e termicamente estáveis até temperaturas de aproximadamente 220 ºC. Estes filmes demonstraram excelentes propriedades mecânicas cuja estrutura foi subsequentemente estabilizada com metanol, obtendo-se desta forma, filmes insolúveis em água com propriedades mecânicas melhoradas. A adição de um agente plasticizante como glicerol mostrou melhorar dramaticamente a flexibilidade dos filmes produzidos. O bloco elastina presente na formulação dos SELPs exibe um comportamento termo-sensível “inteligente” associado a um comportamento de histerese térmica, o qual é caracterizado por um processo de auto-organização em nanopartículas. Este comportamento “inteligente” foi explorado para aplicações biotecnológicas quer a nível têxtil como a nível biomédico. Neste aspeto, o Capítulo VI descreve a utilização do bloco de elastina VPAVG como uma proteína de fusão para aumentar o peso molecular de uma serina protease recombinante (subtilisin E). O DNA codificante para 220 repetições do pentâmero VPAVG foi clonado com a subtilisin E, tendo-se posteriormente procedido à sua produção biológica em E. coli. A proteína de fusão resultante, com um peso molecular de 116 kDa, foi testada para ensaios de acabamento da lã, mostrando que com esta estratégia a hidrólise da SubtilisinE-(VPAVG)220 ficou retida à superfície, na cutícula das fibras. No Capítulo VII, utilizaram-se nanopartículas formadas a partir do processo de auto-organização de poly(VPAVG) para encapsulação de proteínas morfogenéticas do osso (BMP-2 e BMP-14). Ambas as citocinas foram encapsuladas com grande eficiência, mantiveram a sua bioatividade e foram libertadas de uma forma combinada e sustida durante um período de 14 dias. É de salientar que uma libertação combinada de BMP-2 e BMP-14 conduziu a um aumento da atividade osteogénica. O último capítulo (Capítulo VIII) apresenta uma discussão geral com as conclusões mais relevantes e perspetivas futuras para uma posterior continuidade deste trabalho nesta linha de investigação.
Radhakrishnan, Krishna. "Design & Fabrication of Bio-responsive Drug Carriers Based on Protamine & Chondroitin Sulphate Biopolymers." Thesis, 2014. http://etd.iisc.ac.in/handle/2005/2734.
Full textRadhakrishnan, Krishna. "Design & Fabrication of Bio-responsive Drug Carriers Based on Protamine & Chondroitin Sulphate Biopolymers." Thesis, 2014. http://etd.iisc.ernet.in/handle/2005/2734.
Full textSherikar, Baburao Neelkantappa. "Investigations of Solution Combustion Process and their Utilization for Bioceramic Applications." Thesis, 2014. http://etd.iisc.ac.in/handle/2005/3015.
Full textSherikar, Baburao Neelkantappa. "Investigations of Solution Combustion Process and their Utilization for Bioceramic Applications." Thesis, 2014. http://hdl.handle.net/2005/3015.
Full textFeng, Fangzhou. "Effects of Surface Properties on Adhesion of Protein to Biomaterials." Thesis, 2010. http://hdl.handle.net/1969.1/ETD-TAMU-2010-08-8399.
Full text