Academic literature on the topic 'NANO BIOACTIVE GLASS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NANO BIOACTIVE GLASS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "NANO BIOACTIVE GLASS"
Odermatt, Reto, Matej Par, Dirk Mohn, Daniel B. Wiedemeier, Thomas Attin, and Tobias T. Tauböck. "Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glass." Journal of Clinical Medicine 9, no. 3 (March 12, 2020): 772. http://dx.doi.org/10.3390/jcm9030772.
Full textNabian, Nima, Maedeh Delavar, Mahmood Rabiee, and Mohsen Jahanshahi. "Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA." Chemical Industry and Chemical Engineering Quarterly 19, no. 2 (2013): 231–39. http://dx.doi.org/10.2298/ciceq120323057n.
Full textAl-Sayed, Fatema Aziz, Radwa Hamed Hegazy, Zeinab Amin Salem, and Hanan Hassan El-Beheiry. "COMBINED USE OF HYALURONIC ACID WITH NANO-BIOACTIVE GLASS ENHANCED BIOCEMENT BASED SILICATE STIMULATED BONE REGENERATIVE CAPACITY IN TIBIAL BONE DEFECTS OF RABBITS: IN-VIVO STUDY." Journal of Experimental Biology and Agricultural Sciences 9, no. 5 (October 30, 2021): 630–38. http://dx.doi.org/10.18006/2021.9(5).630.638.
Full textAnitha, D. R., and P. Jayashri. "Nano Structured Bioactive Glass on Dental Disease." Indian Journal of Public Health Research & Development 10, no. 11 (2019): 3459. http://dx.doi.org/10.5958/0976-5506.2019.04118.4.
Full textNawaz, Qaisar, Araceli de Pablos-Martín, Lutz Berthold, Juliana Martins de Souza e Silva, Katrin Hurle, and Aldo R. Boccaccini. "Mapping the elemental and crystalline phase distribution in Cu2+ doped 45S5 bioactive glass upon crystallization." CrystEngComm 24, no. 2 (2022): 284–93. http://dx.doi.org/10.1039/d1ce01160j.
Full textWaltimo, T., T. J. Brunner, M. Vollenweider, W. J. Stark, and M. Zehnder. "Antimicrobial Effect of Nanometric Bioactive Glass 45S5." Journal of Dental Research 86, no. 8 (August 2007): 754–57. http://dx.doi.org/10.1177/154405910708600813.
Full textAguilar-Pérez, Fernando J., Rossana F. Vargas-Coronado, Jose M. Cervantes-Uc, Juan V. Cauich-Rodríguez, Cristian Covarrubias, and Merhdad Pedram-Yazdani. "Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites." Journal of Biomaterials Applications 30, no. 9 (January 14, 2016): 1362–72. http://dx.doi.org/10.1177/0885328215626361.
Full textRocton, N., H. Oudadesse, S. Mosbahi, L. Bunetel, P. Pellen-Mussi, and B. Lefeuvre. "Study of nano bioactive glass for use as bone biomaterial comparison with micro bioactive glass behaviour." IOP Conference Series: Materials Science and Engineering 628 (October 8, 2019): 012005. http://dx.doi.org/10.1088/1757-899x/628/1/012005.
Full textMoawad, H. M. M., and H. Jain. "Development of nano-macroporous soda-lime phosphofluorosilicate bioactive glass and glass-ceramics." Journal of Materials Science: Materials in Medicine 20, no. 7 (February 28, 2009): 1409–18. http://dx.doi.org/10.1007/s10856-009-3711-7.
Full textSarmast Sh, M., S. George, A. B. Dayang Radiah, D. Hoey, N. Abdullah, and S. Kamarudin. "Synthesis of bioactive glass using cellulose nano fibre template." Journal of the Mechanical Behavior of Biomedical Materials 130 (June 2022): 105174. http://dx.doi.org/10.1016/j.jmbbm.2022.105174.
Full textDissertations / Theses on the topic "NANO BIOACTIVE GLASS"
Ravarian, Roya. "The Effect of Nano-Scale Interaction on the Physico-Chemical Properties of Polymer-Bioactive Glass Composites." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10147.
Full textMabrouk, Mohamed Mostafa. "Preparation of PVA / Bioactive Glass nanocomposite scaffolds : in vitro studies for applications as biomaterials : association with active molecule." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S063/document.
Full textThe aim of the present work is the preparation of Bioactive Glass (BG) 46S6 by different techniques. Fabrication of composite scaffolds by using of Poly Vinyl Alcohol (PVA) and quaternary BG (two methods melting and sol-gel) with different ratios to the prepared scaffolds was carried out. Different factor affecting the final properties of the prepared composite scaffolds were investigated in this study, such as; temperature of treatment, BG particle size, polymer/glass ratio, microstructure, porosity, biodegradation, bioactivity, and drug release. The thermal behavior of the prepared bioactive glass by sol-gel and melting techniques were identified using Differential Scanning Calorimetric/Thermo Gravimetric (DSC/TG) or Differential Thermal Analysis/Thermo Gravimetric (DTA /TG). The elemental composition of the prepared bioactive glasses was determined by X-rays Fluorescence (XRF) to confirm that the prepared bioactive glasses have the same elemental compositions and high purity for biomedical applications. The particle size of the prepared bioactive glass was determined by Transmission Electron Microscopic (TEM). Nano-bioactive glass could be obtained by modified sol-gel and the obtained particle size ranged between 40 to 61 nm. The prepared bioactive glass by both applied methods has the same amorphous phase and all identified groups as well as. The porous scaffold has 85% porosity with a slight decrease by increasing the glass contents. The degradation rate decreased by increasing of glass content in the prepared scaffolds. The bioactivity of the prepared composite scaffolds was evaluated by XRD, FTIR, SEM coupled with EDX and Inductively Coupled Plasma-Optical Emission Spectroscopic (ICP-OES). It has been observed that after soaking in Simulated Body Fluid (SBF), there was an apatite layer formed on the surface of the prepared samples with different thickness depending on the glass particle size and polymer/glass ratio
RAI, PRAGYA. "MECHANICAL STUDIES ON NANO BIOACTIVE GLASS EMBEDDED GELATIN-PECTIN NANOFIBERS." Thesis, 2017. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15930.
Full textRodrigues, José Miguel Botica. "Production and characterization of magnetic bioactive glass membranes." Master's thesis, 2019. http://hdl.handle.net/10362/80557.
Full textMurty, Hara Prasad. "Development of Porous Bioactive SiO2-Na2O-CaO-P2O5 Glass Ceramic Scaffold." Thesis, 2012. http://ethesis.nitrkl.ac.in/3628/1/Hara_Prasad_Murty.pdf.
Full textBook chapters on the topic "NANO BIOACTIVE GLASS"
Moawad, Hassan M. M., and Himanshu Jain. "Fabrication of Nano-Macro Porous Soda-Lime Phosphosilicate Bioactive Glass by the Melt-Quench Method." In Progress in Nanotechnology, 17–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9780470588260.ch4.
Full textMoawad, Hassan M. M., and Himanshu Jain. "Creation of Nano-Macro-lnterconnected Porosity in a Bioactive Glass-Ceramic by the Melt-Quench-Heat-Etch Method." In Progress in Nanotechnology, 45–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9780470588260.ch7.
Full textMassera, Jonathan. "Bioactive glass-ceramics: From macro to nano." In Nanostructured Biomaterials for Regenerative Medicine, 275–92. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102594-9.00010-3.
Full textSaiz, E., S. Lopez-Esteban, S. Fujino, T. Oku, K. Suganuma, and A. P. Tomsia. "CHARACTERIZATION OF METAL/GLASS INTERFACES IN BIOACTIVE GLASS COATINGS ON Ti-6Al-4V AND Co-Cr ALLOYS." In Nano and Microstructural Design of Advanced Materials, 61–67. Elsevier, 2003. http://dx.doi.org/10.1016/b978-008044373-7/50034-6.
Full textBin Zafar Auniq, Reedwan, Namon Hirun, and Upsorn Boonyang. "Three-Dimensionally Ordered Macroporous-Mesoporous Bioactive Glass Ceramics for Drug Delivery Capacity and Evaluation of Drug Release." In Ceramic Materials [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95290.
Full textConference papers on the topic "NANO BIOACTIVE GLASS"
Batra, Uma, Seema Kapoor, J. D. Sharma, S. K. Tripathi, Keya Dharamvir, Ranjan Kumar, and G. S. S. Saini. "Nano-Hydroxyapatite∕Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation." In INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM-2011). AIP, 2011. http://dx.doi.org/10.1063/1.3653714.
Full textDixit, K., and N. Sinha. "Additively Manufactured Nanofiber Reinforced Bioactive Glass Based Functionally Graded Scaffolds for Bone Tissue Engineering." In 2019 IEEE 13th International Conference on Nano/Molecular Medicine & Engineering (NANOMED). IEEE, 2019. http://dx.doi.org/10.1109/nanomed49242.2019.9130605.
Full textAniket and Ahmed R. El-Ghannam. "Zeta Potential of Silica Calcium Phosphate Nanocomposite: Effect of Material Composition and Medium pH." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192883.
Full textLiu, Xueran, and Ahmed R. El-Ghannam. "Effect of Processing Parameters on the Microstructure and Mechanical Behaviour of Nano Bioceramic." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193076.
Full textWetaify, Ahmed Rajih Hassan, Firas Fouad Abdullah, and Safaa Hashim Radhi. "Enhancement of bioactive glass ceramic using magnesium nano rod addition: (B. A. G. C / Mg NRs nanocomposite materials for bone repairing)." In 2ND INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING & SCIENCE (IConMEAS 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000460.
Full textDucheyne, Paul, Hongxia Gao, Ahmed El-Ghannam, Irving Shapiro, and Portonovo Ayyaswamy. "The Use of Bioactive Glass Particles As Microcarriers." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-1192.
Full textRojas, O., M. Prudent, M. E. López, F. Vargas, and H. Ageorges. "Study of Atmospheric Plasma Parameters for Denser Bioactive Glass Coatings." In ITSC2019, edited by F. Azarmi, K. Balani, H. Koivuluoto, Y. Lau, H. Li, K. Shinoda, F. Toma, J. Veilleux, and C. Widener. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.itsc2019p0872.
Full textYatongchai, Chokchai, Mark R. Towler, and Anthony W. Wren. "An Investigation into the Structure and Properties of CaO-ZnO-SiO2-TiO2-Na2O Bioactive Glass/Hydroxyapatite Composite." In 2013 39th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2013. http://dx.doi.org/10.1109/nebec.2013.51.
Full text