Academic literature on the topic 'NADH-dehydrogenase activity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NADH-dehydrogenase activity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "NADH-dehydrogenase activity"
Murray, G. I., M. D. Burke, and S. W. Ewen. "Enzyme histochemical demonstration of NADH dehydrogenase on resin-embedded tissue." Journal of Histochemistry & Cytochemistry 36, no. 7 (July 1988): 815–19. http://dx.doi.org/10.1177/36.7.3385192.
Full textSmall, W. Curtis, and Lee McAlister-Henn. "Identification of a Cytosolically Directed NADH Dehydrogenase in Mitochondria of Saccharomyces cerevisiae." Journal of Bacteriology 180, no. 16 (August 15, 1998): 4051–55. http://dx.doi.org/10.1128/jb.180.16.4051-4055.1998.
Full textHayashi, Takeshi, Tsuyoshi Kato, and Kensuke Furukawa. "Respiratory Chain Analysis of Zymomonas mobilis Mutants Producing High Levels of Ethanol." Applied and Environmental Microbiology 78, no. 16 (June 1, 2012): 5622–29. http://dx.doi.org/10.1128/aem.00733-12.
Full textThiagalingam, Sam, and Tsanyen Yang. "Purification and characterization of NADH dehydrogenase from Bacillus megaterium." Canadian Journal of Microbiology 39, no. 9 (September 1, 1993): 826–33. http://dx.doi.org/10.1139/m93-123.
Full textMarchenko, M. M., and O. N. Voloshchuk. "The state of the mitochondrial energy-supplying system of blood leukocytes in the dynamics of guerin's carcinoma growth under the low-level irradiation conditions." Biomeditsinskaya Khimiya 60, no. 6 (2014): 631–35. http://dx.doi.org/10.18097/pbmc20146006631.
Full textHuston, Scott, John Collins, Fangfang Sun, Ting Zhang, Timothy D. Vaden, Y. ‐H Percival Zhang, and Jinglin Fu. "An activity transition from NADH dehydrogenase to NADH oxidase during protein denaturation." Biotechnology and Applied Biochemistry 65, no. 3 (October 2, 2017): 286–93. http://dx.doi.org/10.1002/bab.1607.
Full textMiesel, Lynn, Torin R. Weisbrod, Jovita A. Marcinkeviciene, Robert Bittman, and William R. Jacobs. "NADH Dehydrogenase Defects Confer Isoniazid Resistance and Conditional Lethality in Mycobacterium smegmatis." Journal of Bacteriology 180, no. 9 (May 1, 1998): 2459–67. http://dx.doi.org/10.1128/jb.180.9.2459-2467.1998.
Full textChapuy-Regaud, Sabine, Frédérique Duthoit, Laurence Malfroy-Mastrorillo, Pierre Gourdon, Nic D. Lindley, and Marie-Claude Trombe. "Competence Regulation by Oxygen Availability and by Nox Is Not Related to Specific Adjustment of Central Metabolism inStreptococcus pneumoniae." Journal of Bacteriology 183, no. 9 (May 1, 2001): 2957–62. http://dx.doi.org/10.1128/jb.183.9.2957-2962.2001.
Full textPowell, Charles S., and Robert M. Jackson. "Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD." American Journal of Physiology-Lung Cellular and Molecular Physiology 285, no. 1 (July 2003): L189—L198. http://dx.doi.org/10.1152/ajplung.00253.2002.
Full textSmyth, G. E., and B. A. Orsi. "Nitroreductase activity of NADH dehydrogenase of the respiratory redox chain." Biochemical Journal 257, no. 3 (February 1, 1989): 859–63. http://dx.doi.org/10.1042/bj2570859.
Full textDissertations / Theses on the topic "NADH-dehydrogenase activity"
Boyer, Christian. "Identification et caractérisation de composés circulants d’intérêt dans le sérum d’ours brun hibernant – Étude des effets biologiques du sérum d’ours hibernant sur cellules humaines." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2023. http://www.theses.fr/2023UCFA0012.
Full textMuscle atrophy, which is a major public health issue, is a condition that affects the elderly, but also people who are sedentary, immobilized or suffering from chronic inflammation. The use of animal models, in particular laboratory rodents, has made it possible to elucidate the molecular and physiopathological mechanisms at the origin of muscle atrophy. In the search for therapeutic solutions, the exploration of a model of natural resistance to muscle atrophy should open up new and innovative avenues of research. The laboratory is exploring how the hibernating brown bear is able to preserve its muscle tissue during several months of immobility, and how its serum is able to induce changes in the protein balance of human muscle cells. The main objective of my thesis work was to identify compounds or families of compounds circulating in the hibernating bear and responsible for biological effects on human cells. First, I looked for a biological activity that could be easily measured and that could be used to screen the circulating compounds. The measurement of NADH dehydrogenase activity by a colorimetric assay, allows to follow the inhibitory effects of serum and its fractions on human cells in culture, in a robust and reproducible way. Thanks to this tool, we were able to initiate the screening of several fractions from hibernating bear serum, thus starting an unbiased approach in the search for active compounds in hibernating bear serum. This work opens the way to the testing of new fractions, allowing to advance towards the identification of new molecules having a positive effect on the cellular energy balance. According to the same approach, the development of several measurement tools covering other domains of cellular metabolism should allow to complete this approach in the future. In parallel, in the search for active circulating compounds present in the serum of hibernating bears, I focused my research on compounds related to the endocannabinoid system. I was thus able to highlight a global decrease of the endocannabinoid tone, with a decrease of the ligands of the canonical pathway. Surprisingly, the concentration of circulating oleoylethanolamide (OEA) is multiplied by three in winter, suggesting an important role of this compound in the physiology of hibernation in brown bears. The continuation of this work should allow to better identify circulating compounds of interest for human medicine, and to advance towards innovative therapeutic solutions in the fight against certain pathologies, such as muscle atrophy
Peinnequin, André. "La nadh : ubiquinone oxydoréductase de la bactérie photosynthétique Rhodobacter capsulatus : étude et caractérisation de 5 gènes (nuo8, nuo10, nuo11, nuo12 et nuo13) homologues aux gènes mitochondriaux nd1, nd6, nd4L, nd5 et nd4." Université Joseph Fourier (Grenoble ; 1971-2015), 1994. http://www.theses.fr/1994GRE10177.
Full textBook chapters on the topic "NADH-dehydrogenase activity"
Sazanov, L. A., P. Burrows, and P. J. Nixon. "Presence of a large protein complex containing the ndhK gene product and possessing NADH-specific dehydrogenase activity in thylakoid membranes of higher plant chloroplasts." In Photosynthesis: from Light to Biosphere, 1683–86. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0173-5_395.
Full textRandall, D. D., J. A. Miernyk, N. R. David, J. Gemel, and M. H. Luethy. "Regulation of leaf mitochondrial pyruvate dehydrogenase complex activity by reversible phosphorylation." In Protein Phosphorylation in Plants, 87–104. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198577775.003.0007.
Full textZanella, Alberto, and Paola Bianchi. "Erythrocyte enzymopathies." In Oxford Textbook of Medicine, edited by Chris Hatton and Deborah Hay, 5463–72. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0540.
Full text