Journal articles on the topic 'NAC TFs'

To see the other types of publications on this topic, follow the link: NAC TFs.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'NAC TFs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chen, Qian, Danlong Jing, Shuming Wang, Fan Xu, Chaoya Bao, Ming Luo, and Qigao Guo. "The Putative Role of the NAC Transcription Factor EjNACL47 in Cell Enlargement of Loquat (Eriobotrya japonica Lindl.)." Horticulturae 7, no. 9 (September 17, 2021): 323. http://dx.doi.org/10.3390/horticulturae7090323.

Full text
Abstract:
NAC transcription factors (TFs) are plant-specific TFs that play essential roles in plant development; however, the function of NAC TFs in loquat development remains unknown. The natural triploid loquat (Eriobotrya japonica Lindl.), Longquan No.1. B355, has larger organs than its corresponding diploid loquat (B2). Here, we cloned an NAC-like TF (EjNACL47 (NAC-like 47)) from the cDNA of triploid loquat B355 flowers. EjNACL47 has a conserved domain of NAC TFs and is homologous to AtNAC47. Transient expression in tobacco leaves revealed that EjNACL47 localized to the nucleus, and yeast-two-hybrid screening confirmed that the C-terminus displayed transcriptional activity. Interestingly, real-time qRT-PCR indicated that the expression levels of EjNACL47 in leaves and flower organs in triploid loquat (B355) were higher than those in diploid loquat (B2), implying that EjNACL47 might be associated with the larger organ size in B355. Moreover, Arabidopsis lines ectopically expressing EjNACL47 presented obviously larger leaves, flowers, and siliques than the wild-type variant, suggesting that EjNACL47 plays a positive role in Arabidopsis organ enlargement. These results offer insight into the molecular mechanism of NAC TFs involved in regulating organ size in loquat.
APA, Harvard, Vancouver, ISO, and other styles
2

Bian, Zhiyuan, Huanhuan Gao, and Chongying Wang. "NAC Transcription Factors as Positive or Negative Regulators during Ongoing Battle between Pathogens and Our Food Crops." International Journal of Molecular Sciences 22, no. 1 (December 23, 2020): 81. http://dx.doi.org/10.3390/ijms22010081.

Full text
Abstract:
The NAC (NAM, ATAF1/2, and CUC2) family of proteins is one of the largest plant-specific transcription factor (TF) families and its members play varied roles in plant growth, development, and stress responses. In recent years, NAC TFs have been demonstrated to participate in crop-pathogen interactions, as positive or negative regulators of the downstream defense-related genes. NAC TFs link signaling pathways between plant hormones, including salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA), or other signals, such as reactive oxygen species (ROS), to regulate the resistance against pathogens. Remarkably, NAC TFs can also contribute to hypersensitive response and stomatal immunity or can be hijacked as virulence targets of pathogen effectors. Here, we review recent progress in understanding the structure, biological functions and signaling networks of NAC TFs in response to pathogens in several main food crops, such as rice, wheat, barley, and tomato, and explore the directions needed to further elucidate the function and mechanisms of these key signaling molecules.
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Gang-Shuai, Hong-Li Li, Donald Grierson, and Da-Qi Fu. "NAC Transcription Factor Family Regulation of Fruit Ripening and Quality: A Review." Cells 11, no. 3 (February 2, 2022): 525. http://dx.doi.org/10.3390/cells11030525.

Full text
Abstract:
The NAC transcription factor (TF) family is one of the largest plant-specific TF families and its members are involved in the regulation of many vital biological processes during plant growth and development. Recent studies have found that NAC TFs play important roles during the ripening of fleshy fruits and the development of quality attributes. This review focuses on the advances in our understanding of the function of NAC TFs in different fruits and their involvement in the biosynthesis and signal transduction of plant hormones, fruit textural changes, color transformation, accumulation of flavor compounds, seed development and fruit senescence. We discuss the theoretical basis and potential regulatory models for NAC TFs action and provide a comprehensive view of their multiple roles in modulating different aspects of fruit ripening and quality.
APA, Harvard, Vancouver, ISO, and other styles
4

Jensen, Michael K., Trine Kjaersgaard, Michael M. Nielsen, Pernille Galberg, Klaus Petersen, Charlotte O'Shea, and Karen Skriver. "The Arabidopsis thaliana NAC transcription factor family: structure–function relationships and determinants of ANAC019 stress signalling." Biochemical Journal 426, no. 2 (February 9, 2010): 183–96. http://dx.doi.org/10.1042/bj20091234.

Full text
Abstract:
TFs (transcription factors) are modular proteins minimally containing a DBD (DNA-binding domain) and a TRD (transcription regulatory domain). NAC [for NAM (no apical meristem), ATAF, CUC (cup-shaped cotyledon)] proteins comprise one of the largest plant TF families. They are key regulators of stress perception and developmental programmes, and most share an N-terminal NAC domain. On the basis of analyses of gene expression data and the phylogeny of Arabidopsis thaliana NAC TFs we systematically decipher structural and functional specificities of the conserved NAC domains and the divergent C-termini. Nine of the ten NAC domains analysed bind a previously identified conserved DNA target sequence with a CGT[GA] core, although with different affinities. Likewise, all but one of the NAC proteins analysed is dependent on the C-terminal region for transactivational activity. In silico analyses show that the NAC TRDs contain group-specific sequence motifs and are characterized by a high degree of intrinsic disorder. Furthermore, ANAC019 was identified as a new positive regulator of ABA (abscisic acid) signalling, conferring ABA hypersensitivity when ectopically expressed in plants. Interestingly, ectopic expression of the ANAC019 DBD or TRD alone also resulted in ABA hypersensitivity. Expression of stress-responsive marker genes [COR47 (cold-responsive 47), RD29b (responsive-to-desiccation 29b) and ERD11 (early-responsive-to-dehydration 11)] were also induced by full-length and truncated ANAC019. Domain-swapping experiments were used to analyse the specificity of this function. Chimaeric proteins, where the NAC domain of ANAC019 was replaced with the analogous regions from other NAC TFs, also have the ability to positively regulate ABA signalling. In contrast, replacing the ANAC019 TRD with other TRDs abolished ANAC019-mediated ABA hypersensitivity. In conclusion, our results demonstrate that the biochemical and functional specificity of NAC TFs is associated with both the DBDs and the TRDs.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Hai, Tong Li, Wei Li, Wang Wang, and Huien Zhao. "Identification and analysis of Chrysanthemum nankingense NAC transcription factors and an expression analysis of OsNAC7 subfamily members." PeerJ 9 (May 26, 2021): e11505. http://dx.doi.org/10.7717/peerj.11505.

Full text
Abstract:
NAC (NAM, ATAF1-2, and CUC2) transcription factors (TFs) play a vital role in plant growth and development, as well as in plant response to biotic and abiotic stressors (Duan et al., 2019; Guerin et al., 2019). Chrysanthemum is a plant with strong stress resistance and adaptability; therefore, a systematic study of NAC TFs in chrysanthemum is of great significance for plant breeding. In this study, 153 putative NAC TFs were identified based on the Chrysanthemum nankingense genome. According to the NAC family in Arabidopsis and rice, a rootless phylogenetic tree was constructed, in which the 153 CnNAC TFs were divided into two groups and 19 subfamilies. Moreover, the expression levels of 12 CnNAC TFs belonging to the OsNAC7 subfamily were analyzed in C. nankingense under osmotic and salt stresses, and different tissues were tested during different growth periods. The results showed that these 12 OsNAC7 subfamily members were involved in the regulation of root and stem growth, as well as in the regulation of drought and salt stresses. Finally, we investigated the function of the CHR00069684 gene, and the results showed that CHR00069684 could confer improved salt and low temperature resistance, enhance ABA sensitivity, and lead to early flowering in tobacco. It was proved that members of the OsNAC7 subfamily have dual functions including the regulation of resistance and the mediation of plant growth and development. This study provides comprehensive information on analyzing the function of CnNAC TFs, and also reveals the important role of OsNAC7 subfamily genes in response to abiotic stress and the regulation of plant growth. These results provide new ideas for plant breeding to control stress resistance and growth simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Huang, Wang, Dang, Jiang, and Han. "Expression Analysis of the NAC Transcription Factor Family of Populus in Response to Salt Stress." Forests 10, no. 8 (August 14, 2019): 688. http://dx.doi.org/10.3390/f10080688.

Full text
Abstract:
Research Highlights: Sequence phylogeny, genome organisation, gene structure, conserved motifs, promoter cis-element and expression profiling of poplar NACs related to salt stress were detected. In addition, expression of two salt-induced NACs was analysed. Background and Objectives: NAC transcription factor (TF) proteins are involved in a wide range of functions during plant development and stress-related endurance processes. To understand the function of Populus NAC TFs in salt stress tolerance, we characterised the structure and expression profile of a total of 289 NAC members. Materials and Methods: Sequence phylogeny, genome organisation, gene structure, motif composition and promoter cis-element were detected using bioinformatics. The expression pattern of Populus NAC TFs under salt stress was also detected using RNA-Seq and RT-qPCR. Results: Synteny analysis showed that 46 and 37 Populus NAC genes were involved in whole-genome duplication and tandem duplication events, respectively. The expression pattern of Populus NAC TFs under salt stress showed the expression of the 289 PtNACs of 84K poplar was induced. Similar expression trends of NACs were found in Populus simonii × P. nigra T. S. Hwang et Liang and Arabidopsis thaliana (L.) Heynh. Conclusions: The correlation analysis showed that the expression of two differentially expressed NAC genes PtNAC024 and PtNAC182 was significantly associated with most of the 63 differentially expressed genes tested. The expression of PtNAC024 and PtNAC182 in different tissues was also analysed in silico and different expression patterns were found. Together, this study provides a solid basis to explore stress-related NAC TF functions in Populus salt tolerance and development.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Bo, Zhaohui Zhong, Xia Wang, Xiangyan Han, Deshui Yu, Chunguo Wang, Wenqin Song, Xuelian Zheng, Chengbin Chen, and Yong Zhang. "Knockout of the OsNAC006 Transcription Factor Causes Drought and Heat Sensitivity in Rice." International Journal of Molecular Sciences 21, no. 7 (March 26, 2020): 2288. http://dx.doi.org/10.3390/ijms21072288.

Full text
Abstract:
Rice (Oryza sativa) responds to various abiotic stresses during growth. Plant-specific NAM, ATAF1/2, and CUC2 (NAC) transcription factors (TFs) play an important role in controlling numerous vital growth and developmental processes. To date, 170 NAC TFs have been reported in rice, but their roles remain largely unknown. Herein, we discovered that the TF OsNAC006 is constitutively expressed in rice, and regulated by H2O2, cold, heat, abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), NaCl, and polyethylene glycol (PEG) 6000 treatments. Furthermore, knockout of OsNAC006 using the CRISPR-Cas9 system resulted in drought and heat sensitivity. RNA sequencing (RNA-seq) transcriptome analysis revealed that OsNAC006 regulates the expression of genes mainly involved in response to stimuli, oxidoreductase activity, cofactor binding, and membrane-related pathways. Our findings elucidate the important role of OsNAC006 in drought responses, and provide valuable information for genetic manipulation to enhance stress tolerance in future plant breeding programs.
APA, Harvard, Vancouver, ISO, and other styles
8

Liang, Kehao, Aibin Wang, Yongjiang Sun, Mingxin Yu, and Lingyun Zhang. "Identification and Expression of NAC Transcription Factors of Vaccinium corymbosum L. in Response to Drought Stress." Forests 10, no. 12 (December 1, 2019): 1088. http://dx.doi.org/10.3390/f10121088.

Full text
Abstract:
Research Highlights: Phenotypic changes and expression profiles, phylogeny, conserved motifs, and expression correlations of NAC (NAM, ATAF1, ATAF2 and CUC2) transcription factors (TFs) in blueberry genome were detected under drought stress, and the expression patterns and functions of 12 NACs were analyzed. Background and Objectives: Blueberry is an important shrub species with a high level of flavonoids in fruit, which are implicated in a broad range of health benefits. However, the molecular mechanism of this shrub species in response to drought stress still remains elusive. NAC TFs widely participate in stress tolerance in many plant species. The characterization and expression profiles of NAC TFs were analyzed on the basis of genome data in blueberry when subjected to drought stress. Materials and Methods: Combined with the analysis of chlorophyll a fluorescence and endogenous phytohormones, the phenotypic changes of blueberry under drought stress were observed. The phylogenetic tree, conserved motifs, differently expressed genes, and expression correlation were determined by means of multiple bioinformatics analysis. The expression profiles of NACs in different organs were examined and compared through RNA-seq and qRT-PCR assay. Results: The chlorophyll a fluorescence parameters φPo, φEo, φRo, and PIabs of leaves were significantly inhibited under drought stress. ABA (abscisic acid) content noticeably increased over the duration of drought, whereas GA3 (gibberellic acid) and IAA (indole acetic acid) content decreased continuously. A total of 158 NACs were identified in blueberry genome and 62 NACs were differently expressed in leaf and root of blueberry under drought stress. Among them, 14 NACs were significantly correlated with the expression of other NAC genes. Conclusions: Our results revealed the phenotypic changes of this shrub under drought stress and linked them with NAC TFs, which are potentially involved in the process of response to drought stress.
APA, Harvard, Vancouver, ISO, and other styles
9

Kjaersgaard, Trine, Michael K. Jensen, Michael W. Christiansen, Per Gregersen, Birthe B. Kragelund, and Karen Skriver. "Senescence-associated Barley NAC (NAM, ATAF1,2, CUC) Transcription Factor Interacts with Radical-induced Cell Death 1 through a Disordered Regulatory Domain." Journal of Biological Chemistry 286, no. 41 (August 19, 2011): 35418–29. http://dx.doi.org/10.1074/jbc.m111.247221.

Full text
Abstract:
Senescence in plants involves massive nutrient relocation and age-related cell death. Characterization of the molecular components, such as transcription factors (TFs), involved in these processes is required to understand senescence. We found that HvNAC005 and HvNAC013 of the plant-specific NAC (NAM, ATAF1,2, CUC) TF family are up-regulated during senescence in barley (Hordeum vulgare). Both HvNAC005 and HvNAC013 bound the conserved NAC DNA target sequence. Computational and biophysical analyses showed that both proteins are intrinsically disordered in their large C-terminal domains, which are transcription regulatory domains (TRDs) in many NAC TFs. Using motif searches and interaction studies in yeast we identified an evolutionarily conserved sequence, the LP motif, in the TRD of HvNAC013. This motif was sufficient for transcriptional activity. In contrast, HvNAC005 did not function as a transcriptional activator suggesting that an involvement of HvNAC013 and HvNAC005 in senescence will be different. HvNAC013 interacted with barley radical-induced cell death 1 (RCD1) via the very C-terminal part of its TRD, outside of the region containing the LP motif. No significant secondary structure was induced in the HvNAC013 TRD upon interaction with RCD1. RCD1 also interacted with regions dominated by intrinsic disorder in TFs of the MYB and basic helix-loop-helix families. We propose that RCD1 is a regulatory protein capable of interacting with many different TFs by exploiting their intrinsic disorder. In addition, we present the first structural characterization of NAC C-terminal domains and relate intrinsic disorder and sequence motifs to activity and protein-protein interactions.
APA, Harvard, Vancouver, ISO, and other styles
10

Hu, Haichao, Lei Ma, Xin Chen, Xitong Fei, Beibei He, Yingli Luo, Yonghong Liu, and Anzhi Wei. "Genome-Wide Identification of the NAC Gene Family in Zanthoxylum bungeanum and Their Transcriptional Responses to Drought Stress." International Journal of Molecular Sciences 23, no. 9 (April 26, 2022): 4769. http://dx.doi.org/10.3390/ijms23094769.

Full text
Abstract:
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the largest plant-specific TF families and play a pivotal role in adaptation to abiotic stresses. The genome-wide analysis of NAC TFs is still absent in Zanthoxylum bungeanum. Here, 109 ZbNAC proteins were identified from the Z. bungeanum genome and were classified into four groups with Arabidopsis NAC proteins. The 109 ZbNAC genes were unevenly distributed on 46 chromosomes and included 4 tandem duplication events and 17 segmental duplication events. Synteny analysis of six species pairs revealed the closely phylogenetic relationship between Z. bungeanum and C. sinensis. Twenty-four types of cis-elements were identified in the ZbNAC promoters and were classified into three types: abiotic stress, plant growth and development, and response to phytohormones. Co-expression network analysis of the ZbNACs revealed 10 hub genes, and their expression levels were validated by real-time quantitative polymerase chain reaction (qRT-PCR). Finally, ZbNAC007, ZbNAC018, ZbNAC047, ZbNAC072, and ZbNAC079 were considered the pivotal NAC genes for drought tolerance in Z. bungeanum. This study represented the first genome-wide analysis of the NAC family in Z. bungeanum, improving our understanding of NAC proteins and providing useful information for molecular breeding of Z. bungeanum.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Gijing, Tong Li, Lijie zhang, Wenxuan dong, and Aide Wang. "Expression analysis of NAC genes during the growth and ripening of apples." Horticultural Science 45, No. 1 (February 22, 2018): 1–10. http://dx.doi.org/10.17221/153/2016-hortsci.

Full text
Abstract:
Plant-specific NAC transcription factors (TFs) play crucial roles in various pathways related to the stress response. However, to date, little information regarding NAC gene regulation during fruit ripening is available for the apple (Malus domestica). Here, we report that 13 out of 182 MdNAC genes were differentially expressed during the stages of fruit growth and ripening. Sequence analysis indicates that these 13 MdNAC genes harbour distinct structures and potentially diverse functions. The expression of both MdNAC1a and MdNAC78 was repressed by ethylene and induced by 1-MCP during storage. MdNAC2, MdNAC26, MdNAC41, MdNAC57, MdNAC80, MdNAC91, MdNAC119 and MdNAC141 were up-regulated by ethylene and their transcription mirrored ethylene production rates during storage. MdNAC1, MdNAC16 and MdNAC32 did not respond to 1-MCP exposure. Additionally, the 13 MdNAC genes identified displayed differential tissue-specific expression patterns. These results suggest that NAC TFs play an important role in the regulation of apple development via both ethylene-dependent and -independent mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
12

Zong, Xifang, Qi Yan, Fan Wu, Qian Ma, and Jiyu Zhang. "Genome-Wide Analysis of the Role of NAC Family in Flower Development and Abiotic Stress Responses in Cleistogenes songorica." Genes 11, no. 8 (August 12, 2020): 927. http://dx.doi.org/10.3390/genes11080927.

Full text
Abstract:
Plant-specific NAC (NAM, ATAF, CUC) transcription factor (TF) family plays important roles in biological processes such as plant growth and response to stress. Nevertheless, no information is known about NAC TFs in Cleistogenes songorica, a prominent xerophyte desert grass in northwestern China. In this study, 162 NAC genes were found from the Cleistogenes songorica genome, among which 156 C. songoricaNAC (CsNAC) genes (96.3%) were mapped onto 20 chromosomes. The phylogenetic tree constructed by CsNAC and rice NAC TFs can be separated into 14 subfamilies. Syntenic and Ka/Ks analyses showed that CsNACs were primarily expanded by genomewide replication events, and purifying selection was the primary force driving the evolution of CsNAC family genes. The CsNAC gene expression profiles showed that 36 CsNAC genes showed differential expression between cleistogamous (CL) and chasmogamous (CH) flowers. One hundred and two CsNAC genes showed differential expression under heat, cold, drought, salt and ABA treatment. Twenty-three CsNAC genes were commonly differentially expressed both under stress responses and during dimorphic floret development. Gene Ontology (GO) annotation, coexpression network and qRT-PCR tests revealed that these CsNAC genes may simultaneously regulate dimorphic floret development and the response to stress. Our results may help to characterize the NAC transcription factors in C. songorica and provide new insights into the functional research and application of the NAC family in crop improvement, especially in dimorphic floret plants.
APA, Harvard, Vancouver, ISO, and other styles
13

O’Shea, Charlotte, Mikael Kryger, Emil G. P. Stender, Birthe B. Kragelund, Martin Willemoës, and Karen Skriver. "Protein intrinsic disorder in Arabidopsis NAC transcription factors: transcriptional activation by ANAC013 and ANAC046 and their interactions with RCD1." Biochemical Journal 465, no. 2 (January 6, 2015): 281–94. http://dx.doi.org/10.1042/bj20141045.

Full text
Abstract:
The regulatory domains of NAC [no apical meristem, ATAF (Arabidopsis transcription activation factor), cup-shaped cotyledon] transcription factors (TFs) are mostly disordered. The single molecular recognition feature (MoRF) in ANAC046 (Arabidopsis NAC domain containing protein 46) is a functional hot spot mediating interactions with RCD1 (radical-induced cell death 1), a stress-associated hub which exploits disorder and different mechanisms for interactions.
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Changxia, Wenjin Yu, Junrong Xu, Xuefang Lu, and Yunzhi Liu. "Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants." International Journal of Molecular Sciences 23, no. 19 (October 2, 2022): 11701. http://dx.doi.org/10.3390/ijms231911701.

Full text
Abstract:
Anthocyanins act as polyphenolic pigment that is ubiquitously found in plants. Anthocyanins play a role not only in health-promoting as an antioxidant, but also in protection against all kinds of abiotic and biotic stresses. Most recent studies have found that MYB transcription factors (MYB TFs) could positively or negatively regulate anthocyanin biosynthesis. Understanding the roles of MYB TFs is essential in elucidating how MYB TFs regulate the accumulation of anthocyanin. In the review, we summarized the signaling pathways medicated by MYB TFs during anthocyanin biosynthesis including jasmonic acid (JA) signaling pathway, cytokinins (CKs) signaling pathway, temperature-induced, light signal, 26S proteasome pathway, NAC TFs, and bHLH TFs. Moreover, structural and regulator genes induced by MYB TFs, target genes bound and activated or suppressed by MYB TFs, and crosstalk between MYB TFs and other proteins, were found to be vitally important in the regulation of anthocyanin biosynthesis. In this study, we focus on the recent knowledge concerning the regulator signaling and mechanism of MYB TFs on anthocyanin biosynthesis, covering the signaling pathway, genes expression, and target genes and protein expression.
APA, Harvard, Vancouver, ISO, and other styles
15

Yang, Chengfeng, Yanzhong Huang, Peiyun Lv, Augustine Antwi-Boasiako, Naheeda Begum, Tuanjie Zhao, and Jinming Zhao. "NAC Transcription Factor GmNAC12 Improved Drought Stress Tolerance in Soybean." International Journal of Molecular Sciences 23, no. 19 (October 10, 2022): 12029. http://dx.doi.org/10.3390/ijms231912029.

Full text
Abstract:
NAC transcription factors (TFs) could regulate drought stresses in plants; however, the function of NAC TFs in soybeans remains unclear. To unravel NAC TF function, we established that GmNAC12, a NAC TF from soybean (Glycine max), was involved in the manipulation of stress tolerance. The expression of GmNAC12 was significantly upregulated more than 10-fold under drought stress and more than threefold under abscisic acid (ABA) and ethylene (ETH) treatment. In order to determine the function of GmNAC12 under drought stress conditions, we generated GmNAC12 overexpression and knockout lines. The present findings showed that under drought stress, the survival rate of GmNAC12 overexpression lines increased by more than 57% compared with wild-type plants, while the survival rate of GmNAC12 knockout lines decreased by at least 46%. Furthermore, a subcellular localisation analysis showed that the GmNAC12 protein is concentrated in the nucleus of the tobacco cell. In addition, we used a yeast two-hybrid assay to identify 185 proteins that interact with GmNAC12. Gene ontology (GO) and KEGG analysis showed that GmNAC12 interaction proteins are related to chitin, chlorophyll, ubiquitin–protein transferase, and peroxidase activity. Hence, we have inferred that GmNAC12, as a key gene, could positively regulate soybean tolerance to drought stress.
APA, Harvard, Vancouver, ISO, and other styles
16

Jin, Xueying, Yuchen Zheng, Jingyi Wang, Wei Chen, Zhen Yang, Yaxin Chen, Yonghua Yang, Guihua Lu, and Bo Sun. "SbNAC9 Improves Drought Tolerance by Enhancing Scavenging Ability of Reactive Oxygen Species and Activating Stress-Responsive Genes of Sorghum." International Journal of Molecular Sciences 24, no. 3 (January 26, 2023): 2401. http://dx.doi.org/10.3390/ijms24032401.

Full text
Abstract:
Drought stress severely threatens the yield of cereal crops. Therefore, understanding the molecular mechanism of drought stress response of plants is crucial for developing drought-tolerant cultivars. NAC transcription factors (TFs) play important roles in abiotic stress of plants, but the functions of NAC TFs in sorghum are largely unknown. Here, we characterized a sorghum NAC gene, SbNAC9, and found that SbNAC9 can be highly induced by polyethylene glycol (PEG)-simulated dehydration treatments. We therefore investigated the function of SbNAC9 in drought stress response. Sorghum seedlings overexpressing SbNAC9 showed enhanced drought-stress tolerance with higher chlorophyll content and photochemical efficiency of PSII, stronger root systems, and higher reactive oxygen species (ROS) scavenging capability than wild-type. In contrast, sorghum seedlings with silenced SbNAC9 by virus-induced gene silencing (VIGS) showed weakened drought stress tolerance. Furthermore, SbNAC9 can directly activate a putative peroxidase gene SbC5YQ75 and a putative ABA biosynthesis gene SbNCED3. Silencing SbC5YQ75 and SbNCED3 led to compromised drought tolerance and reduced ABA content of sorghum seedlings, respectively. Therefore, our findings revealed the important role of SbNAC9 in response to drought stress in sorghum and may shed light on genetic improvement of other crop species under drought-stress conditions.
APA, Harvard, Vancouver, ISO, and other styles
17

Chen, Qian, Chaoya Bao, Fan Xu, Caixia Ma, Li Huang, Qigao Guo, and Ming Luo. "Silencing GhJUB1L1 (JUB1-like 1) reduces cotton (Gossypium hirsutum) drought tolerance." PLOS ONE 16, no. 11 (November 5, 2021): e0259382. http://dx.doi.org/10.1371/journal.pone.0259382.

Full text
Abstract:
Drought stress massively restricts plant growth and the yield of crops. Reducing the deleterious effects of drought is necessary for agricultural industry. The plant-specific NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) are widely involved in the regulation of plant development and stress response. One of the NAC TF, JUNGBRUNNEN1 (JUB1), has been reported to involve in drought resistance in Arabidopsis. However, little is known of how the JUB1 gene respond to drought stress in cotton. In the present study, we cloned GhJUB1L1, a homologous gene of JUB1 in upland cotton. GhJUB1L1 is preferentially expressed in stem and leaf and could be induced by drought stress. GhJUB1L1 protein localizes to the cell nucleus, and the transcription activation region of which is located in the C-terminal region. Silencing GhJUB1L1 gene via VIGS () reduced cotton drought tolerance, and retarded secondary cell wall (SCW) development. Additionally, the expression of some drought stress-related genes and SCW synthesis-related genes were altered in the GhJUB1L1 silencing plants. Collectively, our findings indicate that GhJUB1L1 may act as a positive regulator in response to drought stress and SCW development in cotton. Our results enriched the roles of NAC TFs in cotton drought tolerance and laid a foundation for the cultivation of transgenic cotton with higher drought tolerance.
APA, Harvard, Vancouver, ISO, and other styles
18

Punia, Himani, Jayanti Tokas, Anurag Malik, Sonali Sangwan, Anju Rani, Shikha Yashveer, Saleh Alansi, Maha J. Hashim, and Mohamed A. El-Sheikh. "Genome-Wide Transcriptome Profiling, Characterization, and Functional Identification of NAC Transcription Factors in Sorghum under Salt Stress." Antioxidants 10, no. 10 (October 13, 2021): 1605. http://dx.doi.org/10.3390/antiox10101605.

Full text
Abstract:
Salinity stress has become a significant concern to global food security. Revealing the mechanisms that enable plants to survive under salinity has immense significance. Sorghum has increasingly attracted researchers interested in understanding the survival and adaptation strategies to high salinity. However, systematic analysis of the DEGs (differentially expressed genes) and their relative expression has not been reported in sorghum under salt stress. The de novo transcriptomic analysis of sorghum under different salinity levels from 60 to 120 mM NaCl was generated using Illumina HiSeq. Approximately 323.49 million high-quality reads, with an average contig length of 1145 bp, were assembled de novo. On average, 62% of unigenes were functionally annotated to known proteins. These DEGs were mainly involved in several important metabolic processes, such as carbohydrate and lipid metabolism, cell wall biogenesis, photosynthesis, and hormone signaling. SSG 59-3 alleviated the adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, APX, POX, GR, GSH, ASC, proline, and GB), as well as protecting cell membrane integrity (MDA and electrolyte leakage). Significant up-regulation of transcripts encoding the NAC, MYB, and WRYK families, NHX transporters, the aquaporin protein family, photosynthetic genes, antioxidants, and compatible osmolyte proteins were observed. The tolerant line (SSG 59-3) engaged highly efficient machinery in response to elevated salinity, especially during the transport and influx of K+ ions, signal transduction, and osmotic homeostasis. Our data provide insights into the evolution of the NAC TFs gene family and further support the hypothesis that these genes are essential for plant responses to salinity. The findings may provide a molecular foundation for further exploring the potential functions of NAC TFs in developing salt-resistant sorghum lines.
APA, Harvard, Vancouver, ISO, and other styles
19

Yi, So Young, Jana Jeevan Rameneni, Myungjin Lee, Seul Gi Song, Yuri Choi, Lu Lu, Hyeokgeun Lee, and Yong Pyo Lim. "Comparative Transcriptome-Based Mining of Senescence-Related MADS, NAC, and WRKY Transcription Factors in the Rapid-Senescence Line DLS-91 of Brassica rapa." International Journal of Molecular Sciences 22, no. 11 (June 2, 2021): 6017. http://dx.doi.org/10.3390/ijms22116017.

Full text
Abstract:
Leaf senescence is a developmental process induced by various molecular and environmental stimuli that may affect crop yield. The dark-induced leaf senescence-91 (DLS-91) plants displayed rapid leaf senescence, dramatically decreased chlorophyll contents, low photochemical efficiencies, and upregulation of the senescence-associated marker gene BrSAG12-1. To understand DLS molecular mechanism, we examined transcriptomic changes in DLS-91 and control line DLS-42 following 0, 1, and 4 days of dark treatment (DDT) stages. We identified 501, 446, and 456 DEGs, of which 16.7%, 17.2%, and 14.4% encoded TFs, in samples from the three stages. qRT-PCR validation of 16 genes, namely, 7 MADS, 6 NAC, and 3 WRKY, suggested that BrAGL8-1, BrAGL15-1, and BrWRKY70-1 contribute to the rapid leaf senescence of DLS-91 before (0 DDT) and after (1 and 4 DDT) dark treatment, whereas BrNAC046-2, BrNAC029-2/BrNAP, and BrNAC092-1/ORE1 TFs may regulate this process at a later stage (4 DDT). In-silico analysis of cis-acting regulatory elements of BrAGL8-1, BrAGL42-1, BrNAC029-2, BrNAC092-1, and BrWRKY70-3 of B. rapa provides insight into the regulation of these genes. Our study has uncovered several AGL-MADS, WRKY, and NAC TFs potentially worthy of further study to understand the underlying mechanism of rapid DLS in DLS-91.
APA, Harvard, Vancouver, ISO, and other styles
20

Huang, Xiaoyu, Xiaojun Qiu, Yue Wang, Aminu Shehu Abubakar, Ping Chen, Jikang Chen, Kunmei Chen, et al. "Genome-Wide Investigation of the NAC Transcription Factor Family in Apocynum venetum Revealed Their Synergistic Roles in Abiotic Stress Response and Trehalose Metabolism." International Journal of Molecular Sciences 24, no. 5 (February 26, 2023): 4578. http://dx.doi.org/10.3390/ijms24054578.

Full text
Abstract:
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the most prominent plant-specific TF families and play essential roles in plant growth, development and adaptation to abiotic stress. Although the NAC gene family has been extensively characterized in many species, systematic analysis is still relatively lacking in Apocynum venetum (A. venetum). In this study, 74 AvNAC proteins were identified from the A. venetum genome and were classified into 16 subgroups. This classification was consistently supported by their gene structures, conserved motifs and subcellular localizations. Nucleotide substitution analysis (Ka/Ks) showed the AvNACs to be under the influence of strong purifying selection, and segmental duplication events were found to play the dominant roles in the AvNAC TF family expansion. Cis-elements analysis demonstrated that the light-, stress-, and phytohormone-responsive elements being dominant in the AvNAC promoters, and potential TFs including Dof, BBR-BPC, ERF and MIKC_MADS were visualized in the TF regulatory network. Among these AvNACs, AvNAC58 and AvNAC69 exhibited significant differential expression in response to drought and salt stresses. The protein interaction prediction further confirmed their potential roles in the trehalose metabolism pathway with respect to drought and salt resistance. This study provides a reference for further understanding the functional characteristics of NAC genes in the stress-response mechanism and development of A. venetum.
APA, Harvard, Vancouver, ISO, and other styles
21

Matias Hurtado, Fernando Manuel, Maísa de Siqueira Pinto, Perla Novais de Oliveira, Diego Mauricio Riaño-Pachón, Laura Beatriz Inocente, and Helaine Carrer. "Analysis of NAC Domain Transcription Factor Genes of Tectona grandis L.f. Involved in Secondary Cell Wall Deposition." Genes 11, no. 1 (December 23, 2019): 20. http://dx.doi.org/10.3390/genes11010020.

Full text
Abstract:
NAC proteins are one of the largest families of plant-specific transcription factors (TFs). They regulate diverse complex biological processes, including secondary xylem differentiation and wood formation. Recent genomic and transcriptomic studies of Tectona grandis L.f. (teak), one of the most valuable hardwood trees in the world, have allowed identification and analysis of developmental genes. In the present work, T. grandis NAC genes were identified and analyzed regarding to their evolution and expression profile during wood formation. We analyzed the recently published T. grandis genome, and identified 130 NAC proteins that are coded by 107 gene loci. These proteins were classified into 23 clades of the NAC family, together with Populus, Eucalyptus, and Arabidopsis. Data on transcript expression revealed specific temporal and spatial expression patterns for the majority of teak NAC genes. RT-PCR indicated expression of VND genes (Tg11g04450-VND2 and Tg15g08390-VND4) related to secondary cell wall formation in xylem vessels of 16-year-old juvenile trees. Our findings open a way to further understanding of NAC transcription factor genes in T. grandis wood biosynthesis, while they are potentially useful for future studies aiming to improve biomass and wood quality using biotechnological approaches.
APA, Harvard, Vancouver, ISO, and other styles
22

Meraj, Tehseen Ahmad, Jingye Fu, Muhammad Ali Raza, Chenying Zhu, Qinqin Shen, Dongbei Xu, and Qiang Wang. "Transcriptional Factors Regulate Plant Stress Responses Through Mediating Secondary Metabolism." Genes 11, no. 4 (March 25, 2020): 346. http://dx.doi.org/10.3390/genes11040346.

Full text
Abstract:
Plants are adapted to sense numerous stress stimuli and mount efficient defense responses by directing intricate signaling pathways. They respond to undesirable circumstances to produce stress-inducible phytochemicals that play indispensable roles in plant immunity. Extensive studies have been made to elucidate the underpinnings of defensive molecular mechanisms in various plant species. Transcriptional factors (TFs) are involved in plant defense regulations through acting as mediators by perceiving stress signals and directing downstream defense gene expression. The cross interactions of TFs and stress signaling crosstalk are decisive in determining accumulation of defense metabolites. Here, we collected the major TFs that are efficient in stress responses through regulating secondary metabolism for the direct cessation of stress factors. We focused on six major TF families including AP2/ERF, WRKY, bHLH, bZIP, MYB, and NAC. This review is the compilation of studies where researches were conducted to explore the roles of TFs in stress responses and the contribution of secondary metabolites in combating stress influences. Modulation of these TFs at transcriptional and post-transcriptional levels can facilitate molecular breeding and genetic improvement of crop plants regarding stress sensitivity and response through production of defensive compounds.
APA, Harvard, Vancouver, ISO, and other styles
23

Fraga, Otto Teixeira, Bruno Paes de Melo, Iana Pedro Silva Quadros, Pedro Augusto Braga Reis, and Elizabeth Pacheco Batista Fontes. "Senescence-Associated Glycine max (Gm)NAC Genes: Integration of Natural and Stress-Induced Leaf Senescence." International Journal of Molecular Sciences 22, no. 15 (August 1, 2021): 8287. http://dx.doi.org/10.3390/ijms22158287.

Full text
Abstract:
Leaf senescence is a genetically regulated developmental process that can be triggered by a variety of internal and external signals, including hormones and environmental stimuli. Among the senescence-associated genes controlling leaf senescence, the transcriptional factors (TFs) comprise a functional class that is highly active at the onset and during the progression of leaf senescence. The plant-specific NAC (NAM, ATAF, and CUC) TFs are essential for controlling leaf senescence. Several members of Arabidopsis AtNAC-SAGs are well characterized as players in elucidated regulatory networks. However, only a few soybean members of this class display well-known functions; knowledge about their regulatory circuits is still rudimentary. Here, we describe the expression profile of soybean GmNAC-SAGs upregulated by natural senescence and their functional correlation with putative AtNAC-SAGs orthologs. The mechanisms and the regulatory gene networks underlying GmNAC081- and GmNAC030-positive regulation in leaf senescence are discussed. Furthermore, new insights into the role of GmNAC065 as a negative senescence regulator are presented, demonstrating extraordinary functional conservation with the Arabidopsis counterpart. Finally, we describe a regulatory circuit which integrates a stress-induced cell death program with developmental leaf senescence via the NRP-NAC-VPE signaling module.
APA, Harvard, Vancouver, ISO, and other styles
24

Lv, Shikai, Huan Guo, Min Zhang, Qiaohui Wang, Hong Zhang, and Wanquan Ji. "Large-Scale Cloning and Comparative Analysis of TaNAC Genes in Response to Stripe Rust and Powdery Mildew in Wheat (Triticum aestivum L.)." Genes 11, no. 9 (September 12, 2020): 1073. http://dx.doi.org/10.3390/genes11091073.

Full text
Abstract:
The NAM, ATAF1/2, and CUC2 (NAC) transcription factors (TFs) constitute the largest plant-specific TF superfamily, and play important roles in various physiological processes, including stress responses. Stripe rust and powdery mildew are the most damaging of the fungal diseases that afflict wheat (Triticum aestivum L.). However, studies on Triticum aestivum NAC (TaNAC)s’ role in resistance to the two diseases are still limited, especially in an overall comparative analysis of TaNACs responding or not to fungal stress. In the present study, 186 TaNAC transcripts were obtained from the resistant hexaploid wheat line N9134 under fungal stress, and 180 new transcripts were submitted to GenBank. Statistical results show that 35.1% (54/154) of TaNAC genes responded to stripe rust and powdery mildew in the seedling stage. “Abnormal” coding transcripts of differentially expressed (DE)-TaNAC genes in wheat responding to fungal stress were found in a significantly higher proportion (24/117 vs. 8/69, p = 0.0098) than in non-DE-NACs. This hinted that the alternative splicing of TaNAC genes was active in transcriptional or post-transcriptional regulation during plant-pathogen interactions. Full-length NAC proteins were classified into nine groups via phylogenetic analysis. Multiple-sequence alignment revealed diversity in the C-terminal structural organization, but the differentially expressed gene (DEG)-encoding proteins enriched in Subgroups VI and VII were conserved, with WV[L/V]CR amino acid residues in Motif 7 following the NAM domain. Our data that showed TaNAC TFs responded to fungal disease, which was affected by expression levels and by the regulation of multifarious transcript variants. These data for TaNAC responses to stripe rust and/or powdery mildew and their numerous structural variants provide a good resource for NAC function–mechanism analysis in the context of biotic-stress tolerance in wheat.
APA, Harvard, Vancouver, ISO, and other styles
25

Iqbal, Adnan, Joanna Bocian, Amir Hameed, Waclaw Orczyk, and Anna Nadolska-Orczyk. "Cis-Regulation by NACs: A Promising Frontier in Wheat Crop Improvement." International Journal of Molecular Sciences 23, no. 23 (December 6, 2022): 15431. http://dx.doi.org/10.3390/ijms232315431.

Full text
Abstract:
Crop traits are controlled by multiple genes; however, the complex spatio-temporal transcriptional behavior of genes cannot be fully understood without comprehending the role of transcription factors (TFs) and the underlying mechanisms of the binding interactions of their cis-regulatory elements. NAC belongs to one of the largest families of plant-specific TFs and has been associated with the regulation of many traits. This review provides insight into the cis-regulation of genes by wheat NACs (TaNACs) for the improvement in yield-related traits, including phytohormonal homeostasis, leaf senescence, seed traits improvement, root modulation, and biotic and abiotic stresses in wheat and other cereals. We also discussed the current potential, knowledge gaps, and prospects of TaNACs.
APA, Harvard, Vancouver, ISO, and other styles
26

Jiang, Chunji, He Zhang, Jingyao Ren, Jiale Dong, Xinhua Zhao, Xiaoguang Wang, Jing Wang, et al. "Comparative Transcriptome-Based Mining and Expression Profiling of Transcription Factors Related to Cold Tolerance in Peanut." International Journal of Molecular Sciences 21, no. 6 (March 11, 2020): 1921. http://dx.doi.org/10.3390/ijms21061921.

Full text
Abstract:
Plants tolerate cold stress by regulating gene networks controlling cellular and physiological traits to modify growth and development. Transcription factor (TF)-directed regulation of transcription within these gene networks is key to eliciting appropriate responses. Identifying TFs related to cold tolerance contributes to cold-tolerant crop breeding. In this study, a comparative transcriptome analysis was carried out to investigate global gene expression of entire TFs in two peanut varieties with different cold-tolerant abilities. A total of 87 TF families including 2328 TF genes were identified. Among them, 445 TF genes were significantly differentially expressed in two peanut varieties under cold stress. The TF families represented by the largest numbers of differentially expressed members were bHLH (basic helix—loop—helix protein), C2H2 (Cys2/His2 zinc finger protein), ERF (ethylene-responsive factor), MYB (v-myb avian myeloblastosis viral oncogene homolog), NAC (NAM, ATAF1/2, CUC2) and WRKY TFs. Phylogenetic evolutionary analysis, temporal expression profiling, protein–protein interaction (PPI) network, and functional enrichment of differentially expressed TFs revealed the importance of plant hormone signal transduction and plant-pathogen interaction pathways and their possible mechanism in peanut cold tolerance. This study contributes to a better understanding of the complex mechanism of TFs in response to cold stress in peanut and provides valuable resources for the investigation of evolutionary history and biological functions of peanut TFs genes involved in cold tolerance.
APA, Harvard, Vancouver, ISO, and other styles
27

Kou, XiaoHong, JiaQian Zhou, Cai E. Wu, Sen Yang, YeFang Liu, LiPing Chai, and ZhaoHui Xue. "The interplay between ABA/ethylene and NAC TFs in tomato fruit ripening: a review." Plant Molecular Biology 106, no. 3 (February 25, 2021): 223–38. http://dx.doi.org/10.1007/s11103-021-01128-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sidorenko, M. V., and S. V. Chebotar. "Genetic determination of drought resistance in common wheat (Triticum aestivum L.)." Visnik ukrains'kogo tovaristva genetikiv i selekcioneriv 20, no. 1-2 (January 2, 2023): 31–47. http://dx.doi.org/10.7124/visnyk.utgis.20.1-2.1511.

Full text
Abstract:
The aim of the work is to analyze the literature data on genetic determinants and molecular mechanisms involved in the regulation of adaptation and resistance to drought in common wheat. Results. Regulation of the response to osmotic stress in common wheat is carried out through several abscisic acid-dependent or independent pathways. ABA inhibits the growth processes of aerial parts of the plant by inhibiting the action of auxins and cytokinins, increases the hydraulic conductivity of roots by modulating the activity of aquaporins - membrane water channels, changes the flow of ions in the closing cells of the stomata, which leads to their closure and a decrease in water consumption for transpiration. ABA activates a number of TFs that regulate the expression of genes, the products of which are necessary to eliminate the negative consequences of water deficit. ABA-dependent is activation of the genes of antioxidant defense enzymes - superoxide dismutase, peroxidase, catalase and enzymes of the ascorbate-glutathione cycle. Activators of their transcription are NAC, MYB, WRKY, NF-Y, ZFHD and TaERF3 TFs. Expression of LEA genes and dehydrins, which prevent protein aggregation due to dehydration, is ensured by both ABA-dependent and -independent signal transduction pathways, with the help of AREB/ABF, NAC, MYB, WRKY, AP2/EREBP and ZFHD TFs. ABA also activates the biosynthesis of proline - one of the main low-molecular osmoprotectants that accumulate in the cell and ensure the stability of its water regime. Osmolyte accumulation is regulated by MYB, WRKY, NF-Y and TaERF3 TFs. Conclusions. Thus, in the article is considered the regulatory role of ABA in the formation of drought resistance through molecular interactions involving aquaporins, dehydrins, SNRK2 protein kinases, LEA proteins and their genes, as well as genes of transcription factors NAC, MYB, WRKY, NF-Y, AP/ EREBP, ZFHD, DREB. However, due to the complexity of the wheat genome and the polygenicity of the drought resistance trait, there is currently no line of molecular genetic markers for certain alleles of drought resistance genes that would allow predicting the drought resistance of Ukrainian breeding varieties. The molecular genetic mechanisms underlying drought resistance and the identification of genes with the greatest phenotypic effect, as well as the modeling of the work of these genes at different stages of ontogenesis and the involvement of drought resistance alleles in breeding programs, currently require further research.
APA, Harvard, Vancouver, ISO, and other styles
29

Gong, Fangyi, Tian Zhang, Zhe Wang, Tiangang Qi, Yusen Lu, Yuhang Liu, Shuhong Zhao, et al. "Genome-Wide Survey and Functional Verification of the NAC Transcription Factor Family in Wild Emmer Wheat." International Journal of Molecular Sciences 23, no. 19 (September 30, 2022): 11598. http://dx.doi.org/10.3390/ijms231911598.

Full text
Abstract:
The NAC transcription factor (TF) family is one of the largest TF families in plants, which has been widely reported in rice, maize and common wheat. However, the significance of the NAC TF family in wild emmer wheat (Triticum turgidum ssp. dicoccoides) is not yet well understood. In this study, a genome-wide investigation of NAC genes was conducted in the wild emmer genome and 249 NAC family members (TdNACs) were identified. The results showed that all of these genes contained NAM/NAC-conserved domains and most of them were predicted to be located on the nucleus. Phylogenetic analysis showed that these 249 TdNACs can be classified into seven clades, which are likely to be involved in the regulation of grain protein content, starch synthesis and response to biotic and abiotic stresses. Expression pattern analysis revealed that TdNACs were highly expressed in different wheat tissues such as grain, root, leaves and shoots. We found that TdNAC8470 was phylogenetically close to NAC genes that regulate either grain protein or starch accumulation. Overexpression of TdNAC8470 in rice showed increased grain starch concentration but decreased grain Fe, Zn and Mn contents compared with wild-type plants. Protein interaction analysis indicated that TdNAC8470 might interact with granule-bound starch synthase 1 (TdGBSS1) to regulate grain starch accumulation. Our work provides a comprehensive understanding of the NAC TFs family in wild emmer wheat and establishes the way for future functional analysis and genetic improvement of increasing grain starch content in wheat.
APA, Harvard, Vancouver, ISO, and other styles
30

Huang, Juan, Rongrong Ren, Yuping Rong, Bin Tang, Jiao Deng, Qingfu Chen, and Taoxiong Shi. "Identification, Expression, and Functional Study of Seven NAC Transcription Factor Genes Involved in Stress Response in Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn.)." Agronomy 12, no. 4 (March 30, 2022): 849. http://dx.doi.org/10.3390/agronomy12040849.

Full text
Abstract:
Plant NAC transcription factors play vital roles in diverse biological processes, especially in response to stress. However, only a limited number of the FtNAC genes have been cloned and functionally analyzed in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.), which is a coarse grain crop that is highly resistant to abiotic stress. Here, we identified seven Tartary buckwheat FtNAC genes, namely FtNAC11, FtNAC12, FtNAC26, FtNAC28, FtNAC65, FtNAC70, and FtNAC78. Multiple-sequence alignments revealed that all of them contained the conserved NAM domain, which consisted of the A, B, C, D, and E subdomains. Seven NAC proteins were classified into six subgroups based on phylogenetic analyses. Cis-acting regulatory elements analyses (CARE) indicated that there were numerous CAREs related to biotic and abiotic responses and hormone responses in the promoters of FtNAC genes. qRT-PCR showed that they were tissue-specifically expressed and could be induced by four out of six treatments, namely PEG, NaCl, cold, MeJA, ABA, and GA, implying that they were abiotic and hormone responsive. Among these, FtNAC70 was the most strongly induced gene and could be induced by all six treatments. Meanwhile, FtNAC70-overexpressed Arabidopsis showed more resistance to salt and drought. The identification, phylogenetics, expression, and functional study of seven stress-responsive FtNAC genes laid a foundation for further research on the molecular mechanism of abiotic stress regulated by NAC TFs in Tartary buckwheat.
APA, Harvard, Vancouver, ISO, and other styles
31

Mahmood, Kashif, Ivone Torres-Jerez, Nick Krom, Wei Liu, and Michael K. Udvardi. "Transcriptional Programs and Regulators Underlying Age-Dependent and Dark-Induced Senescence in Medicago truncatula." Cells 11, no. 9 (May 6, 2022): 1570. http://dx.doi.org/10.3390/cells11091570.

Full text
Abstract:
In forage crops, age-dependent and stress-induced senescence reduces forage yield and quality. Therefore, delaying leaf senescence may be a way to improve forage yield and quality as well as plant resilience to stresses. Here, we used RNA-sequencing to determine the molecular bases of age-dependent and dark-induced leaf senescence in Medicago truncatula. We identified 6845 differentially expressed genes (DEGs) in M3 leaves associated with age-dependent leaf senescence. An even larger number (14219) of DEGs were associated with dark-induced senescence. Upregulated genes identified during age-dependent and dark-induced senescence were over-represented in oxidation–reduction processes and amino acid, carboxylic acid and chlorophyll catabolic processes. Dark-specific upregulated genes also over-represented autophagy, senescence and cell death. Mitochondrial functions were strongly inhibited by dark-treatment while these remained active during age-dependent senescence. Additionally, 391 DE transcription factors (TFs) belonging to various TF families were identified, including a core set of 74 TFs during age-dependent senescence while 759 DE TFs including a core set of 338 TFs were identified during dark-induced senescence. The heterologous expression of several senescence-induced TFs belonging to NAC, WKRY, bZIP, MYB and HD-zip TF families promoted senescence in tobacco leaves. This study revealed the dynamics of transcriptomic responses to age- and dark-induced senescence in M. truncatula and identified senescence-associated TFs that are attractive targets for future work to control senescence in forage legumes.
APA, Harvard, Vancouver, ISO, and other styles
32

Janiak, Agnieszka, Miroslaw Kwasniewski, Marta Sowa, Anetta Kuczyńska, Krzysztof Mikołajczak, Piotr Ogrodowicz, and Iwona Szarejko. "Insights into Barley Root Transcriptome under Mild Drought Stress with an Emphasis on Gene Expression Regulatory Mechanisms." International Journal of Molecular Sciences 20, no. 24 (December 5, 2019): 6139. http://dx.doi.org/10.3390/ijms20246139.

Full text
Abstract:
Root systems play a pivotal role in coupling with drought stress, which is accompanied with a substantial transcriptome rebuilding in the root tissues. Here, we present the results of global gene expression profiling of roots of two barley genotypes with contrasting abilities to cope with drought that were subjected to a mild level of the stress. We concentrate our analysis on gene expression regulation processes, which allowed the identification of 88 genes from 39 families involved in transcriptional regulation in roots upon mild drought. They include 13 genes encoding transcription factors (TFs) from AP2 family represented by ERFs, DREB, or B3 domain-containing TFs, eight WRKYs, six NACs, five of the HD-domain, MYB or MYB-related, bHLH and bZIP TFs. Also, the representatives of C3H, CPP, GRAS, LOB-domain, TCP, Tiffy, Tubby, and NF-Ys TFs, among others were found to be regulated by the mild drought in barley roots. We found that drought tolerance is accompanied with a lower number of gene expression changes than the amount observed in a susceptible genotype. The better drought acclimation may be related to the activation of transcription factors involved in the maintenance of primary root growth and in the epigenetic control of chromatin and DNA methylation. In addition, our analysis pointed to fives TFs from ERF, LOB, NAC, WRKY and bHLH families that may be important in the mild but not the severe drought response of barley roots.
APA, Harvard, Vancouver, ISO, and other styles
33

Shan, Yang, Xu, Zhu, and Gao. "Genome-Wide Investigation of the NAC Gene Family and Its Potential Association with the Secondary Cell Wall in Moso Bamboo." Biomolecules 9, no. 10 (October 14, 2019): 609. http://dx.doi.org/10.3390/biom9100609.

Full text
Abstract:
NAC (NAM, ATAF, and CUC) transcription factors (TFs) are implicated in the transcriptional regulation of diverse processes and have been characterized in a number of plant species. However, NAC TFs are still not well understood in bamboo, especially their potential association with the secondary cell wall (SCW). Here, 94 PeNACs were identified and characterized in moso bamboo (Phyllostachys edulis). Based on their gene structures and conserved motifs, the PeNACs were divided into 11 groups according to their homologs in Arabidopsis. PeNACs were expressed variously in different tissues of moso bamboo, suggesting their functional diversity. Fifteen PeNACs associated with the SCW were selected for co-expression analysis and validation. It was predicted that 396 genes were co-expressed with the 15 PeNACs, in which 16 and 55 genes were involved in the lignin catabolic process and cellulose biosynthetic process respectively. As the degree of lignification in the growing bamboo shoots increased, all 15 PeNACs were upregulated with a trend of rising first and then decreasing except PeNAC37, which increased continuously. These results indicated that these PeNACs might play important roles in SCW biosynthesis and lignification in bamboo shoots. Seven of 15 PeNACs had been found positively co-expressed with seven PeMYBs, and they had similar expression patterns with those of the PeMYBs in bamboo shoots. The targeted sites of miR164 were found in 16 PeNACs, of which three PeNACs associated with SCW were validated to have an opposite expression trend to that of miR164 in growing bamboo shoots. In addition, three PeNACs were selected and verified to have self-activation activities. These results provide comprehensive information of the NAC gene family in moso bamboo, which will be helpful for further functional studies of PeNACs to reveal the molecular regulatory mechanisms of bamboo wood property.
APA, Harvard, Vancouver, ISO, and other styles
34

Hussain, Quaid, Muhammad Asim, Rui Zhang, Rayyan Khan, Saqib Farooq, and Jiasheng Wu. "Transcription Factors Interact with ABA through Gene Expression and Signaling Pathways to Mitigate Drought and Salinity Stress." Biomolecules 11, no. 8 (August 5, 2021): 1159. http://dx.doi.org/10.3390/biom11081159.

Full text
Abstract:
Among abiotic stressors, drought and salinity seriously affect crop growth worldwide. In plants, research has aimed to increase stress-responsive protein synthesis upstream or downstream of the various transcription factors (TFs) that alleviate drought and salinity stress. TFs play diverse roles in controlling gene expression in plants, which is necessary to regulate biological processes, such as development and environmental stress responses. In general, plant responses to different stress conditions may be either abscisic acid (ABA)-dependent or ABA-independent. A detailed understanding of how TF pathways and ABA interact to cause stress responses is essential to improve tolerance to drought and salinity stress. Despite previous progress, more active approaches based on TFs are the current focus. Therefore, the present review emphasizes the recent advancements in complex cascades of gene expression during drought and salinity responses, especially identifying the specificity and crosstalk in ABA-dependent and -independent signaling pathways. This review also highlights the transcriptional regulation of gene expression governed by various key TF pathways, including AP2/ERF, bHLH, bZIP, DREB, GATA, HD-Zip, Homeo-box, MADS-box, MYB, NAC, Tri-helix, WHIRLY, WOX, WRKY, YABBY, and zinc finger, operating in ABA-dependent and -independent signaling pathways.
APA, Harvard, Vancouver, ISO, and other styles
35

Ng, Danny, Jayami Abeysinghe, and Maedeh Kamali. "Regulating the Regulators: The Control of Transcription Factors in Plant Defense Signaling." International Journal of Molecular Sciences 19, no. 12 (November 24, 2018): 3737. http://dx.doi.org/10.3390/ijms19123737.

Full text
Abstract:
Being sessile, plants rely on intricate signaling pathways to mount an efficient defense against external threats while maintaining the cost balance for growth. Transcription factors (TFs) form a repertoire of master regulators in controlling various processes of plant development and responses against external stimuli. There are about 58 families of TFs in plants and among them, six major TF families (AP2/ERF (APETALA2/ethylene responsive factor), bHLH (basic helix-loop-helix), MYB (myeloblastosis related), NAC (no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF1/2), and cup-shaped cotyledon (CUC2)), WRKY, and bZIP (basic leucine zipper)) are found to be involved in biotic and abiotic stress responses. As master regulators of plant defense, the expression and activities of these TFs are subjected to various transcriptional and post-transcriptional controls, as well as post-translational modifications. Many excellent reviews have discussed the importance of these TFs families in mediating their downstream target signaling pathways in plant defense. In this review, we summarize the molecular regulatory mechanisms determining the expression and activities of these master regulators themselves, providing insights for studying their variation and regulation in crop wild relatives (CWR). With the advance of genome sequencing and the growing collection of re-sequencing data of CWR, now is the time to re-examine and discover CWR for the lost or alternative alleles of TFs. Such approach will facilitate molecular breeding and genetic improvement of domesticated crops, especially in stress tolerance and defense responses, with the aim to address the growing concern of climate change and its impact on agriculture crop production.
APA, Harvard, Vancouver, ISO, and other styles
36

Mijiti, Meiheriguli, Yucheng Wang, Liuqiang Wang, and Xugela Habuding. "Tamarix hispida NAC Transcription Factor ThNAC4 Confers Salt and Drought Stress Tolerance to Transgenic Tamarix and Arabidopsis." Plants 11, no. 19 (October 8, 2022): 2647. http://dx.doi.org/10.3390/plants11192647.

Full text
Abstract:
Salt and drought are considered two major abiotic stresses that have a significant impact on plants. Plant NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) have been shown to play vital roles in plant development and responses to various abiotic stresses. ThNAC4, a NAC gene from Tamarix hispida involved in salt and osmotic stress tolerance, was identified and characterized in this study. According to a phylogenetic study, ThNAC4 is a member of NAC subfamily II. Subcellular localization analysis showed that ThNAC4 is located in the nucleus, and transcriptional activation experiments demonstrated that ThNAC4 is a transcriptional activator. Transgenic Arabidopsis plants overexpressing ThNAC4 exhibited improved salt and osmotic tolerance, as demonstrated by improved physiological traits. ThNAC4-overexpressing and ThNAC4-silenced T. hispida plants were generated using the transient transformation method and selected for gain- and loss-of-function analysis. The results showed that overexpression of ThNAC4 in transgenic Tamarix and Arabidopsis plants increased the activities of antioxidant enzymes (SOD, POD, and GST) and osmoprotectant (proline and trehalose) contents under stress conditions. These findings suggest that ThNAC4 plays an important physiological role in plant abiotic stress tolerance by increasing ROS scavenging ability and improving osmotic potential.
APA, Harvard, Vancouver, ISO, and other styles
37

Kim, Kang, Kim, An, and Paek. "OsWRKY5 Promotes Rice Leaf Senescence via Senescence-Associated NAC and Abscisic Acid Biosynthesis Pathway." International Journal of Molecular Sciences 20, no. 18 (September 9, 2019): 4437. http://dx.doi.org/10.3390/ijms20184437.

Full text
Abstract:
he onset of leaf senescence is triggered by external cues and internal factors such as phytohormones and signaling pathways involving transcription factors (TFs). Abscisic acid (ABA) strongly induces senescence and endogenous ABA levels are finely tuned by many senescence-associated TFs. Here, we report on the regulatory function of the senescence-induced TF OsWRKY5 TF in rice (Oryza sativa). OsWRKY5 expression was rapidly upregulated in senescing leaves, especially in yellowing sectors initiated by aging or dark treatment. A T-DNA insertion activation-tagged OsWRKY5-overexpressing mutant (termed oswrky5-D) promoted leaf senescence under natural and dark-induced senescence (DIS) conditions. By contrast, a T-DNA insertion oswrky5-knockdown mutant (termed oswrky5) retained leaf greenness during DIS. Reverse-transcription quantitative PCR (RT-qPCR) showed that OsWRKY5 upregulates the expression of genes controlling chlorophyll degradation and leaf senescence. Furthermore, RT-qPCR and yeast one-hybrid analysis demonstrated that OsWRKY5 indirectly upregulates the expression of senescence-associated NAM/ATAF1/2/CUC2 (NAC) genes including OsNAP and OsNAC2. Precocious leaf yellowing in the oswrky5-D mutant might be caused by elevated endogenous ABA concentrations resulting from upregulated expression of ABA biosynthesis genes OsNCED3, OsNCED4, and OsNCED5, indicating that OsWRKY is a positive regulator of ABA biosynthesis during leaf senescence. Furthermore, OsWRKY5 expression was suppressed by ABA treatment. Taken together, OsWRKY5 is a positive regulator of leaf senescence that upregulates senescence-induced NAC, ABA biosynthesis, and chlorophyll degradation genes.
APA, Harvard, Vancouver, ISO, and other styles
38

Wei, Wentao, Huiyuan Wang, Xuqing Liu, Wenjing Kou, Ziqi Liu, Huihui Wang, Yongkang Yang, et al. "Transcriptome Profiling of Stem-Differentiating Xylem in Response to Abiotic Stresses Based on Hybrid Sequencing in Cunninghamia lanceolata." International Journal of Molecular Sciences 23, no. 22 (November 12, 2022): 13986. http://dx.doi.org/10.3390/ijms232213986.

Full text
Abstract:
Cunninghamia lanceolata (C. lanceolata) belongs to Gymnospermae, which are fast-growing and have desirable wood properties. However, C. lanceolata’s stress resistance is little understood. To unravel the physiological and molecular regulation mechanisms under environmental stresses in the typical gymnosperm species of C. lanceolata, three-year-old plants were exposed to simulated drought stress (polyethylene glycol 8000), salicylic acid, and cold treatment at 4 °C for 8 h, 32 h, and 56 h, respectively. Regarding the physiological traits, we observed a decreased protein content and increased peroxidase upon salicylic acid and polyethylene glycol treatment. Superoxide dismutase activity either decreased or increased at first and then returned to normal under the stresses. Regarding the molecular regulation, we used both nanopore direct RNA sequencing and short-read sequencing to reveal a total of 5646 differentially expressed genes in response to different stresses, of which most had functions in lignin catabolism, pectin catabolism, and xylan metabolism, indicating that the development of stem-differentiating xylem was affected upon stress treatment. Finally, we identified a total of 51 AP2/ERF, 29 NAC, and 37 WRKY transcript factors in C. lanceolata. The expression of most of the NAC TFs increased under cold stress, and the expression of most of the WRKY TFs increased under cold and SA stress. These results revealed the transcriptomics responses in C. lanceolata to short-term stresses under this study’s experimental conditions and provide preliminary clues about stem-differentiating xylem changes associated with different stresses.
APA, Harvard, Vancouver, ISO, and other styles
39

Cao, Zhang, Wang, Li, Guo, Yang, and Guo. "Identification of a Novel Melon Transcription Factor CmNAC60 as a Potential Regulator of Leaf Senescence." Genes 10, no. 8 (July 31, 2019): 584. http://dx.doi.org/10.3390/genes10080584.

Full text
Abstract:
NAC transcription factors (TFs) play important roles in plants’ responses to abiotic stresses and developmental processes, including leaf senescence. Oriental melon (Cucumis melo var. makuwa Makino) is an important vegetable crop in China and eastern Asia countries. However, little is known about the functions of the melon NAC family members. In this study, a phylogenetic tree was constructed to show that CmNAC60 and the senescence regulator AtNAP were in the same cluster, which implied that CmNAC60 might be a NAC related to leaf senescence. The expression analysis of CmNAC60 in different melon organs showed that the expression of CmNAC60 was highest in the male flowers and lowest in the hypocotyl. In addition, the expression level of CmNAC60 in the senescing leaves was significantly higher than in the non-senescing leaves. Similarly, the expression level of CmNAC60 in the dark-treated leaves was significantly higher than in the untreated leaves. Furthermore, the subcellular localization and transcriptional activation assays indicated that CmNAC60 was a nucleus localized NAC transcription factor with a C-terminal transactivation domain. An analysis of the tissue specific expression showed that the promoter of CmNAC60 may contain cis-acting regulatory elements responsive to leaf senescence. CmNAC60 overexpressing lines of Arabidopsis showed a precocious senescence compared with the wild type (WT). Collectively, our results showed that CmNAC60 was associated with leaf senescence, and could be potentially utilized in molecular breeding to improve melon yield or to extend the postharvest shelf life by delaying leaf senescence.
APA, Harvard, Vancouver, ISO, and other styles
40

Klees, Selina, Thomas Martin Lange, Hendrik Bertram, Abirami Rajavel, Johanna-Sophie Schlüter, Kun Lu, Armin Otto Schmitt, and Mehmet Gültas. "In Silico Identification of the Complex Interplay between Regulatory SNPs, Transcription Factors, and Their Related Genes in Brassica napus L. Using Multi-Omics Data." International Journal of Molecular Sciences 22, no. 2 (January 14, 2021): 789. http://dx.doi.org/10.3390/ijms22020789.

Full text
Abstract:
Regulatory SNPs (rSNPs) are a special class of SNPs which have a high potential to affect the phenotype due to their impact on DNA-binding of transcription factors (TFs). Thus, the knowledge about such rSNPs and TFs could provide essential information regarding different genetic programs, such as tissue development or environmental stress responses. In this study, we use a multi-omics approach by combining genomics, transcriptomics, and proteomics data of two different Brassica napus L. cultivars, namely Zhongshuang11 (ZS11) and Zhongyou821 (ZY821), with high and low oil content, respectively, to monitor the regulatory interplay between rSNPs, TFs and their corresponding genes in the tissues flower, leaf, stem, and root. By predicting the effect of rSNPs on TF-binding and by measuring their association with the cultivars, we identified a total of 41,117 rSNPs, of which 1141 are significantly associated with oil content. We revealed several enriched members of the TF families DOF, MYB, NAC, or TCP, which are important for directing transcriptional programs regulating differential expression of genes within the tissues. In this work, we provide the first genome-wide collection of rSNPs for B. napus and their impact on the regulation of gene expression in vegetative and floral tissues, which will be highly valuable for future studies on rSNPs and gene regulation.
APA, Harvard, Vancouver, ISO, and other styles
41

Shang, Xiuhua, Peijian Zhang, Guo Liu, Ni Zhan, and Zhihua Wu. "Comparative transcriptomics analysis of contrasting varieties of Eucalyptus camaldulensis reveals wind resistance genes." PeerJ 10 (February 24, 2022): e12954. http://dx.doi.org/10.7717/peerj.12954.

Full text
Abstract:
Background Wind, an important abiotic stress factor, affects forests in coastal areas, causes tree damage and timber loss. Methods Two genotypes of Eucalyptus camaldulensis-strong wind-resistant CA5 and weak wind-resistant C037 were used for RNA-seq analysis to screen for candidate wind-resistance genes and transcription factors (TFs) by comparing the transcriptome analysis of the two varieties in response to wind stress. Results It showed that 7061 differentially expressed unigenes could be annotated including 4,110 up-regulated unigenes and 2,951 down-regulated unigenes. Gene Ontology (GO) analysis revealed that six cellulose pathways were involved in response to wind stress. The unigenes in phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways were found to be differentially expressed based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Moreover, 37 differentially expressed genes were functionally annotated to be involved in the secondary metabolism of phenylalanine (ko00940). Seventy-eight TFs related to the regulating cellulose and lignin synthesis were expressed differently from the various treatments. The expressions of C3H, POX, MYB, NAC, Gene008307, and Gene011799 were significantly upregulated in CA5. Overall, the main response of Eucalyptus to wind stress was associated with cell wall biosynthesis; key genes of cellulose and lignin biosynthesis pathways and related TFs were involved in the tree response to wind stress.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhu, Yingchun, Gaopeng Yuan, Bowen Gao, Guolin An, Weihua Li, Wenjing Si, Dexi Sun, and Junpu Liu. "Comparative Transcriptome Profiling Provides Insights into Plant Salt Tolerance in Watermelon (Citrullus lanatus)." Life 12, no. 7 (July 12, 2022): 1033. http://dx.doi.org/10.3390/life12071033.

Full text
Abstract:
Salt stress seriously reduced the yield and quality of watermelon and restricted the sustainable development of the watermelon industry. However, the molecular mechanism of watermelon in response to salt stress is still unclear. In this study, 150 mmol·L−1 NaCl was used to deal with the seedlings of salt-tolerant and salt-sensitive watermelon varieties. Physiological characteristics showed that salt stress significantly reduced the biomass of watermelon seedlings and the accumulation of K+ in roots and leaves and significantly increased the content of Na+, Cl−, and malondialdehyde (MDA). Compared with the salt-sensitive variety, the salt-tolerant variety had higher K+ accumulation, lower Cl−, Cl− accumulation, and MDA content in roots and leaves. Then, RNA-seq was performed on roots and leaves in normal culture and under 150 mmol·L−1 NaCl treatment. A total of 21,069 genes were identified by RNA-seq analysis, of which 1412 were genes encoding transcription factors (TFs). In the comparison groups of roots and leaves, 122 and 123 shared differentially expressed genes (DEGs) were obtained, respectively. Gene ontology (GO) annotation and KEGG enrichment results showed that there were many identical GO terms and KEGG pathways in roots and leaves, especially the pathways that related to sugar or energy (ATP or NADP+/NADPH). In addition, some DEGs related to salt tolerance were identified, such as plant hormone indole-3-acetic acid (IAA) and gibberellin (GA) signal transduction pathway-related genes, K+/Na+/Ca2+-related genes, lignin biosynthesis-related genes, etc. At the same time, we also identified some TFs related to salt tolerance, such as AP2-EREBP, bZIP, bHLH, MYB, NAC, OFP, TCP, and WRKY and found that these TFs had high correlation coefficients with salt tolerance-related genes, indicating that they might have a potential regulatory relationship. Interestingly, one TCP TF (Cla97C09G174040) co-exists both in roots and leaves, and it is speculated that it may be regulated by miR319 to improve the salt tolerance of watermelon.
APA, Harvard, Vancouver, ISO, and other styles
43

Canales, Javier, José Verdejo, Gabriela Carrasco-Puga, Francisca M. Castillo, Anita Arenas-M, and Daniel F. Calderini. "Transcriptome Analysis of Seed Weight Plasticity in Brassica napus." International Journal of Molecular Sciences 22, no. 9 (April 24, 2021): 4449. http://dx.doi.org/10.3390/ijms22094449.

Full text
Abstract:
A critical barrier to improving crop yield is the trade-off between seed weight (SW) and seed number (SN), which has been commonly reported in several crops, including Brassica napus. Despite the agronomic relevance of this issue, the molecular factors involved in the interaction between SW and SN are largely unknown in crops. In this work, we performed a detailed transcriptomic analysis of 48 seed samples obtained from two rapeseed spring genotypes subjected to different source–sink (S–S) ratios in order to examine the relationship between SW and SN under different field conditions. A multifactorial analysis of the RNA-seq data was used to identify a group of 1014 genes exclusively regulated by the S–S ratio. We found that a reduction in the S–S ratio during seed filling induces the expression of genes involved in sucrose transport, seed weight, and stress responses. Moreover, we identified five co-expression modules that are positively correlated with SW and negatively correlated with SN. Interestingly, one of these modules was significantly enriched in transcription factors (TFs). Furthermore, our network analysis predicted several NAC TFs as major hubs underlying SW and SN compensation. Taken together, our study provides novel insights into the molecular factors associated with the SW–SN relationship in rapeseed and identifies TFs as potential targets when improving crop yield.
APA, Harvard, Vancouver, ISO, and other styles
44

Khadgi, Archana, and Courtney A. Weber. "RNA-Seq Analysis of Prickled and Prickle-Free Epidermis Provides Insight into the Genetics of Prickle Development in Red Raspberry (Rubus ideaus L.)." Agronomy 10, no. 12 (December 2, 2020): 1904. http://dx.doi.org/10.3390/agronomy10121904.

Full text
Abstract:
Red raspberry (Rubus idaeus L.) is a globally commercialized specialty crop with growing demand worldwide. The presence of prickles on the stems, petioles and undersides of the leaves complicates both the field management and harvesting of raspberries. An RNA sequencing analysis was used to identify differentially expressed genes in the epidermal tissue of prickled “Caroline” and prickle-free “Joan J.” and their segregating progeny. Expression patterns of differentially expressed genes (DEGs) in prickle-free plants revealed the downregulation of some vital development-related transcription factors (TFs), including a MIXTA-like R2R3-MYB family member; MADS-box; APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) and NAM, ATAF1/2 and CUC2 (NAC) in prickle-free epidermis tissue. The downregulation of these TFs was confirmed by qRT-PCR analysis, indicating a key regulatory role in prickle development. This study adds to the understanding of prickle development mechanisms in red raspberries needed for utilizing genetic engineering strategies for developing prickle-free raspberry cultivars and, possibly, other Rubus species, such as blackberry (Rubus sp.) and black raspberry (R. occidentalis L.).
APA, Harvard, Vancouver, ISO, and other styles
45

Javed, Talha, Rubab Shabbir, Ahmad Ali, Irfan Afzal, Uroosa Zaheer, and San-Ji Gao. "Transcription Factors in Plant Stress Responses: Challenges and Potential for Sugarcane Improvement." Plants 9, no. 4 (April 10, 2020): 491. http://dx.doi.org/10.3390/plants9040491.

Full text
Abstract:
Increasing vulnerability of crops to a wide range of abiotic and biotic stresses can have a marked influence on the growth and yield of major crops, especially sugarcane (Saccharum spp.). In response to various stresses, plants have evolved a variety of complex defense systems of signal perception and transduction networks. Transcription factors (TFs) that are activated by different pathways of signal transduction and can directly or indirectly combine with cis-acting elements to modulate the transcription efficiency of target genes, which play key regulators for crop genetic improvement. Over the past decade, significant progresses have been made in deciphering the role of plant TFs as key regulators of environmental responses in particular important cereal crops; however, a limited amount of studies have focused on sugarcane. This review summarizes the potential functions of major TF families, such as WRKY, NAC, MYB and AP2/ERF, in regulating gene expression in the response of plants to abiotic and biotic stresses, which provides important clues for the engineering of stress-tolerant cultivars in sugarcane.
APA, Harvard, Vancouver, ISO, and other styles
46

Bourbousse, Clara, Neeraja Vegesna, and Julie A. Law. "SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis." Proceedings of the National Academy of Sciences 115, no. 52 (December 12, 2018): E12453—E12462. http://dx.doi.org/10.1073/pnas.1810582115.

Full text
Abstract:
To combat DNA damage, organisms mount a DNA damage response (DDR) that results in cell cycle regulation, DNA repair and, in severe cases, cell death. Underscoring the importance of gene regulation in this response, studies in Arabidopsis have demonstrated that all of the aforementioned processes rely on SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a NAC family transcription factor (TF) that has been functionally equated to the mammalian tumor suppressor, p53. However, the expression networks connecting SOG1 to these processes remain largely unknown and, although the DDR spans from minutes to hours, most transcriptomic data correspond to single time-point snapshots. Here, we generated transcriptional models of the DDR from GAMMA (γ)-irradiated wild-type and sog1 seedlings during a 24-hour time course using DREM, the Dynamic Regulatory Events Miner, revealing 11 coexpressed gene groups with distinct biological functions and cis-regulatory features. Within these networks, additional chromatin immunoprecipitation and transcriptomic experiments revealed that SOG1 is the major activator, directly targeting the most strongly up-regulated genes, including TFs, repair factors, and early cell cycle regulators, while three MYB3R TFs are the major repressors, specifically targeting the most strongly down-regulated genes, which mainly correspond to G2/M cell cycle-regulated genes. Together these models reveal the temporal dynamics of the transcriptional events triggered by γ-irradiation and connects these events to TFs and biological processes over a time scale commensurate with key processes coordinated in response to DNA damage, greatly expanding our understanding of the DDR.
APA, Harvard, Vancouver, ISO, and other styles
47

Hoang, Xuan, Nguyen Nguyen, Yen-Nhi Nguyen, Yasuko Watanabe, Lam-Son Tran, and Nguyen Thao. "The Soybean GmNAC019 Transcription Factor Mediates Drought Tolerance in Arabidopsis in an Abscisic Acid-Dependent Manner." International Journal of Molecular Sciences 21, no. 1 (December 31, 2019): 286. http://dx.doi.org/10.3390/ijms21010286.

Full text
Abstract:
Being master regulators of gene expression, transcription factors (TFs) play important roles in determining plant growth, development and reproduction. To date, many TFs have been shown to positively mediate plant responses to environmental stresses. In the current study, the biological functions of a stress-responsive NAC [NAM (No Apical Meristem), ATAF1/2 (Arabidopsis Transcription Activation Factor1/2), CUC2 (Cup-shaped Cotyledon2)]-TF encoding gene isolated from soybean (GmNAC019) in relation to plant drought tolerance and abscisic acid (ABA) responses were investigated. By using a heterologous transgenic system, we revealed that transgenic Arabidopsis plants constitutively expressing the GmNAC019 gene exhibited higher survival rates in a soil-drying assay, which was associated with lower water loss rate in detached leaves, lower cellular hydrogen peroxide content and stronger antioxidant defense under water-stressed conditions. Additionally, the exogenous treatment of transgenic plants with ABA showed their hypersensitivity to this phytohormone, exhibiting lower rates of seed germination and green cotyledons. Taken together, these findings demonstrated that GmNAC019 functions as a positive regulator of ABA-mediated plant response to drought, and thus, it has potential utility for improving plant tolerance through molecular biotechnology.
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Haiping, Fanrong Kong, Tingting Tang, Yalan Luo, Haoran Gao, Jin Xu, Guoming Xing, and Lingzhi Li. "Physiological and Transcriptomic Analyses Revealed That Humic Acids Improve Low-Temperature Stress Tolerance in Zucchini (Cucurbita pepo L.) Seedlings." Plants 12, no. 3 (January 25, 2023): 548. http://dx.doi.org/10.3390/plants12030548.

Full text
Abstract:
Zucchini (Cucurbita pepo L.) is one of the main vegetable crops grown under protected cultivation in northern China. Low-temperature (LT) stress severely inhibits the growth of zucchini seedlings, resulting in reductions in yield and quality. Here, using three kinds of different humic acids, including coal-based humic acid (CHA), fulvic acid (FA), and biochemical humic acid (BHA), we investigated the effects of humic acids against LT stress (5°C) in zucchini seedlings. Treatment with all three kinds of humic acids improves LT stress tolerance by decreasing oxidative damage through increases in antioxidative enzyme activities and the contents of soluble sugar and proline in zucchini seedlings, especially after BHA application. Comparative transcriptomic analysis revealed that a total of 17 differentially expressed genes (DEGs) were commonly induced in the leaves of FA-, CHA-, and BHA-treated zucchini seedlings under LT stress, including calmodulin, ethylene-responsive transcription factors (TFs), peroxidases, and 10 TFs, including two NAC and seven WRKY genes. Altogether, these results indicated that supplementation with humic acids reprograms plant metabolism and modulates the expression of genes involved in ROS scavenging, phytohormone metabolism, or signaling pathways, finally improving LT stress tolerance in zucchini seedlings.
APA, Harvard, Vancouver, ISO, and other styles
49

SAIDI, Abbas, and Zohreh HAJIBARAT. "Computational study of environmental stress-related transcription factor binding sites in the promoter regions of maize auxin response factor (ARF) gene family." Notulae Scientia Biologicae 12, no. 3 (September 29, 2020): 646–57. http://dx.doi.org/10.15835/nsb12310823.

Full text
Abstract:
Auxin response factors (ARF) gene family plays key roles in plant development and act as transcription factors (TFs) in the regulation of gene expression. An extensive bioinformatics analysis including analysis of conserved motifs, chromosomal map, phylogenetic relationships, and expression profiles were performed for the maize ARF gene family. In this study, a set of publicly available 38 ARF maize (Zea mays) nucleotide sequences were downloaded. Using microarray data, a bioinformatics search for identification of TFBs in ARF genes using plant promoter analysis (PlantPAN) was carried out. The 38 maize ARF genes were categorized into three groups (Class I, II, and III). ARF genes have been studied by molecular methods in several different plant species however to better understand the mechanisms of these genes more studies are needed. Gene cluster analysis showed that the same set of genes on the chromosomes were positively correlated with the same number of gene clusters. Several TFBs including AP2/ERF, ERF, WRKY, bZIP, bHLH, GATA, and NAC were identified in the promoter regions. These TFBs are responsible for modulation of several biotic stress-responsive genes. The main aims of the present study were to obtain genomic information for the ZmARF gene family and their expression under abiotic and biotic stresses.
APA, Harvard, Vancouver, ISO, and other styles
50

Baillo, Kimotho, Zhang, and Xu. "Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement." Genes 10, no. 10 (September 30, 2019): 771. http://dx.doi.org/10.3390/genes10100771.

Full text
Abstract:
In field conditions, crops are adversely affected by a wide range of abiotic stresses including drought, cold, salt, and heat, as well as biotic stresses including pests and pathogens. These stresses can have a marked effect on crop yield. The present and future effects of climate change necessitate the improvement of crop stress tolerance. Plants have evolved sophisticated stress response strategies, and genes that encode transcription factors (TFs) that are master regulators of stress-responsive genes are excellent candidates for crop improvement. Related examples in recent studies include TF gene modulation and overexpression approaches in crop species to enhance stress tolerance. However, much remains to be discovered about the diverse plant TFs. Of the >80 TF families, only a few, such as NAC, MYB, WRKY, bZIP, and ERF/DREB, with vital roles in abiotic and biotic stress responses have been intensively studied. Moreover, although significant progress has been made in deciphering the roles of TFs in important cereal crops, fewer TF genes have been elucidated in sorghum. As a model drought-tolerant crop, sorghum research warrants further focus. This review summarizes recent progress on major TF families associated with abiotic and biotic stress tolerance and their potential for crop improvement, particularly in sorghum. Other TF families and non-coding RNAs that regulate gene expression are discussed briefly. Despite the emphasis on sorghum, numerous examples from wheat, rice, maize, and barley are included. Collectively, the aim of this review is to illustrate the potential application of TF genes for stress tolerance improvement and the engineering of resistant crops, with an emphasis on sorghum.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography