Journal articles on the topic 'Na3V2(PO4)2F3'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Na3V2(PO4)2F3.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Jiexin, Congrui Zhang, Yu Han, Xingyu Zhao, Wenjie Liu, and Yi Ding. "A surface-modified Na3V2(PO4)2F3 cathode with high rate capability and cycling stability for sodium ion batteries." RSC Advances 14, no. 20 (2024): 13703–10. http://dx.doi.org/10.1039/d4ra00427b.
Full textNowagiel, Maciej, Anton Hul, Edvardas Kazakevicius, Algimantas Kežionis, Jerzy E. Garbarczyk, and Tomasz K. Pietrzak. "Optimization of Electrical Properties of Nanocrystallized Na3M2(PO4)2F3 NASICON-like Glasses (M = V, Ti, Fe)." Coatings 13, no. 3 (February 21, 2023): 482. http://dx.doi.org/10.3390/coatings13030482.
Full textYu, Xiaobo, Tianyi Lu, Xiaokai Li, Jiawei Qi, Luchen Yuan, Zu Man, and Haitao Zhuo. "Realizing outstanding electrochemical performance with Na3V2(PO4)2F3 modified with an ionic liquid for sodium-ion batteries." RSC Advances 12, no. 22 (2022): 14007–17. http://dx.doi.org/10.1039/d2ra01292h.
Full textLi, Long, Jing Zhao, Hongyang Zhao, Yuanyuan Qin, Xiaolong Zhu, Hu Wu, Zhongxiao Song, and Shujiang Ding. "Structure, composition and electrochemical performance analysis of fluorophosphates from different synthetic methods: is really Na3V2(PO4)2F3 synthesized?" Journal of Materials Chemistry A 10, no. 16 (2022): 8877–86. http://dx.doi.org/10.1039/d2ta00565d.
Full textGuo, Rongting, Wei Li, Mingjun Lu, Yiju Lv, Huiting Ai, Dan Sun, Zheng Liu, and Guo-Cheng Han. "Na3V2(PO4)2F3@bagasse carbon as cathode material for lithium/sodium hybrid ion battery." Physical Chemistry Chemical Physics 24, no. 9 (2022): 5638–45. http://dx.doi.org/10.1039/d1cp05011g.
Full textLin, Zhi. "Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x." Crystals 14, no. 1 (December 28, 2023): 43. http://dx.doi.org/10.3390/cryst14010043.
Full textOlchowka, Jacob, Long H. B. Nguyen, Thibault Broux, Paula Sanz Camacho, Emmanuel Petit, François Fauth, Dany Carlier, Christian Masquelier, and Laurence Croguennec. "Aluminum substitution for vanadium in the Na3V2(PO4)2F3 and Na3V2(PO4)2FO2 type materials." Chemical Communications 55, no. 78 (2019): 11719–22. http://dx.doi.org/10.1039/c9cc05137f.
Full textBroux, Thibault, Benoît Fleutot, Rénald David, Annelise Brüll, Philippe Veber, François Fauth, Matthieu Courty, Laurence Croguennec, and Christian Masquelier. "Temperature Dependence of Structural and Transport Properties for Na3V2(PO4)2F3 and Na3V2(PO4)2F2.5O0.5." Chemistry of Materials 30, no. 2 (January 5, 2018): 358–65. http://dx.doi.org/10.1021/acs.chemmater.7b03529.
Full textBianchini, M., N. Brisset, F. Fauth, F. Weill, E. Elkaim, E. Suard, C. Masquelier, and L. Croguennec. "Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study." Chemistry of Materials 26, no. 14 (June 30, 2014): 4238–47. http://dx.doi.org/10.1021/cm501644g.
Full textYang, Ze, Guolong Li, Jingying Sun, Lixin Xie, Yan Jiang, Yunhui Huang, and Shuo Chen. "High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries." Energy Storage Materials 25 (March 2020): 724–30. http://dx.doi.org/10.1016/j.ensm.2019.09.014.
Full textBianchini, M., F. Lalère, H. B. L. Nguyen, F. Fauth, R. David, E. Suard, L. Croguennec, and C. Masquelier. "Ag3V2(PO4)2F3, a new compound obtained by Ag+/Na+ ion exchange into the Na3V2(PO4)2F3 framework." Journal of Materials Chemistry A 6, no. 22 (2018): 10340–47. http://dx.doi.org/10.1039/c8ta01095a.
Full textBianchini, M., F. Fauth, N. Brisset, F. Weill, E. Suard, C. Masquelier, and L. Croguennec. "Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction." Chemistry of Materials 27, no. 8 (April 7, 2015): 3009–20. http://dx.doi.org/10.1021/acs.chemmater.5b00361.
Full textLi, Wei, Xiaoyun Jing, Kai Jiang, and Dihua Wang. "Observation of Structural Decomposition of Na3V2(PO4)3 and Na3V2(PO4)2F3 as Cathodes for Aqueous Zn-Ion Batteries." ACS Applied Energy Materials 4, no. 3 (February 11, 2021): 2797–807. http://dx.doi.org/10.1021/acsaem.1c00067.
Full textGOVER, R., A. BRYAN, P. BURNS, and J. BARKER. "The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3." Solid State Ionics 177, no. 17-18 (July 2006): 1495–500. http://dx.doi.org/10.1016/j.ssi.2006.07.028.
Full textXun, Jiahong, Yu Zhang, and Huayun Xu. "One step synthesis of vesicular Na3V2(PO4)2F3 and network of Na3V2(PO4)2F3@graphene nanosheets with improved electrochemical performance as cathode material for sodium ion battery." Inorganic Chemistry Communications 115 (May 2020): 107884. http://dx.doi.org/10.1016/j.inoche.2020.107884.
Full textJames Abraham, Jeffin, Buzaina Moossa, Hanan Abdurehman Tariq, Ramazan Kahraman, Siham Al-Qaradawi, and R. A. Shakoor. "Electrochemical Performance of Na3V2(PO4)2F3 Electrode Material in a Symmetric Cell." International Journal of Molecular Sciences 22, no. 21 (November 7, 2021): 12045. http://dx.doi.org/10.3390/ijms222112045.
Full textKosova, Nina, Daria Rezepova, and Nicolas Montroussier. "Effect of La3+ Modification on the Electrochemical Performance of Na3V2(PO4)2F3." Batteries 4, no. 3 (July 9, 2018): 32. http://dx.doi.org/10.3390/batteries4030032.
Full textSong, Weixin, Xiaobo Ji, Jun Chen, Zhengping Wu, Yirong Zhu, Kefen Ye, Hongshuai Hou, Mingjun Jing, and Craig E. Banks. "Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries." Physical Chemistry Chemical Physics 17, no. 1 (2015): 159–65. http://dx.doi.org/10.1039/c4cp04649h.
Full textPianta, Nicolò, Davide Locatelli, and Riccardo Ruffo. "Cycling properties of Na3V2(PO4)2F3 as positive material for sodium-ion batteries." Ionics 27, no. 5 (April 2, 2021): 1853–60. http://dx.doi.org/10.1007/s11581-021-04015-y.
Full textSamarin, Aleksandr Sh, Alexey V. Ivanov, and Stanislav S. Fedotov. "Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review." Clean Technologies 5, no. 3 (July 6, 2023): 881–900. http://dx.doi.org/10.3390/cleantechnol5030044.
Full textSemykina, Daria O., Maria A. Kirsanova, Yury M. Volfkovich, Valentin E. Sosenkin, and Nina V. Kosova. "Porosity, microstructure and electrochemistry of Na3V2(PO4)2F3/C prepared by mechanical activation." Journal of Solid State Chemistry 297 (May 2021): 122041. http://dx.doi.org/10.1016/j.jssc.2021.122041.
Full textLi, Wei, Kangli Wang, Shijie Cheng, and Kai Jiang. "A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode." Energy Storage Materials 15 (November 2018): 14–21. http://dx.doi.org/10.1016/j.ensm.2018.03.003.
Full textWang, Jie, Qiming Liu, Shiyue Cao, Huijuan Zhu, and Yilin Wang. "Boosting sodium-ion battery performance with binary metal-doped Na3V2(PO4)2F3 cathodes." Journal of Colloid and Interface Science 665 (July 2024): 1043–53. http://dx.doi.org/10.1016/j.jcis.2024.04.003.
Full textHu, Fangdong, and Xiaolei Jiang. "Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries." Inorganic Chemistry Communications 129 (July 2021): 108653. http://dx.doi.org/10.1016/j.inoche.2021.108653.
Full textVali, R., P. Moller, and A. Janes. "Synthesis and Characterization of Na3V2(PO4)2F3 Based Cathode Material for Sodium Ion Batteries." ECS Transactions 69, no. 39 (December 28, 2015): 27–36. http://dx.doi.org/10.1149/06939.0027ecst.
Full textZhu, Lin, Hong Wang, Dan Sun, Yougen Tang, and Haiyan Wang. "A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes." Journal of Materials Chemistry A 8, no. 41 (2020): 21387–407. http://dx.doi.org/10.1039/d0ta07872g.
Full textPark, Min Je, and Arumugam Manthiram. "Unveiling the Charge Storage Mechanism in Nonaqueous and Aqueous Zn/Na3V2(PO4)2F3 Batteries." ACS Applied Energy Materials 3, no. 5 (April 14, 2020): 5015–23. http://dx.doi.org/10.1021/acsaem.0c00505.
Full textPeng, Manhua, Xiayan Wang, and Guangsheng Guo. "Synthesis of nano-Na3V2(PO4)2F3 cathodes with excess Na+ intercalation for enhanced capacity." Applied Materials Today 19 (June 2020): 100554. http://dx.doi.org/10.1016/j.apmt.2020.100554.
Full textSu, Renyuan, Weikai Zhu, Kang Liang, Peng Wei, Jianbin Li, Wenjun Liu, and Yurong Ren. "Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode." Molecules 28, no. 3 (February 1, 2023): 1409. http://dx.doi.org/10.3390/molecules28031409.
Full textGeng, Jiguo, Feng Li, Shengqian Ma, Jing Xiao, and Manling Sui. "First Principle Study of Na3V2(PO4)2F3 for Na Batteries Application and Experimental Investigation." International Journal of Electrochemical Science 11, no. 5 (May 2016): 3815–23. http://dx.doi.org/10.1016/s1452-3981(23)17439-6.
Full textNguyen, Long H. B., Thibault Broux, Paula Sanz Camacho, Dominique Denux, Lydie Bourgeois, Stéphanie Belin, Antonella Iadecola, et al. "Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution." Energy Storage Materials 20 (July 2019): 324–34. http://dx.doi.org/10.1016/j.ensm.2019.04.010.
Full textCheng, Jun, Yanjun Chen, Shiqi Sun, Zeyi Tian, Yaoyao Linghu, Zhen Tian, Chao Wang, Zhenfeng He, and Li Guo. "Na3V2(PO4)3/C·Na3V2(PO4)2F3/C@rGO blended cathode material with elevated energy density for sodium ion batteries." Ceramics International 47, no. 13 (July 2021): 18065–74. http://dx.doi.org/10.1016/j.ceramint.2021.03.122.
Full textLi, Feng, Yifei Zhao, Lishuang Xia, Zhendong Yang, Jinping Wei, and Zhen Zhou. "Well-dispersed Na3V2(PO4)2F3@rGO with improved kinetics for high-power sodium-ion batteries." Journal of Materials Chemistry A 8, no. 25 (2020): 12391–97. http://dx.doi.org/10.1039/d0ta00130a.
Full textShakoor, R. A., Dong-Hwa Seo, Hyungsub Kim, Young-Uk Park, Jongsoon Kim, Sung-Wook Kim, Hyeokjo Gwon, Seongsu Lee, and Kisuk Kang. "A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries." Journal of Materials Chemistry 22, no. 38 (2012): 20535. http://dx.doi.org/10.1039/c2jm33862a.
Full textCriado, A., P. Lavela, G. Ortiz, J. L. Tirado, C. Pérez-Vicente, N. Bahrou, and Z. Edfouf. "Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries." Electrochimica Acta 332 (February 2020): 135502. http://dx.doi.org/10.1016/j.electacta.2019.135502.
Full textLiu, Zigeng, Yan-Yan Hu, Matthew T. Dunstan, Hua Huo, Xiaogang Hao, Huan Zou, Guiming Zhong, Yong Yang, and Clare P. Grey. "Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)2F3." Chemistry of Materials 26, no. 8 (April 11, 2014): 2513–21. http://dx.doi.org/10.1021/cm403728w.
Full textZhu, Lin, Qi Zhang, Dan Sun, Qi Wang, Nana Weng, Yougen Tang, and Haiyan Wang. "Engineering the crystal orientation of Na3V2(PO4)2F3@rGO microcuboids for advanced sodium-ion batteries." Materials Chemistry Frontiers 4, no. 10 (2020): 2932–42. http://dx.doi.org/10.1039/d0qm00364f.
Full textHu, Yu, Peiyu Chen, Fanfan Liu, Xiaolong Cheng, Yu Shao, Peng Lu, Hui Zhang, Shikuo Li, Fangzhi Huang, and Yu Jiang. "Dual-anion ether electrolyte enables stable high-voltage Na3V2(PO4)2F3 cathode under wide temperatures." Journal of Power Sources 602 (May 2024): 234405. http://dx.doi.org/10.1016/j.jpowsour.2024.234405.
Full textPuspitasari, Diah Agustina, Jagabandhu Patra, I.-Ming Hung, Dominic Bresser, Tai-Chou Lee, and Jeng-Kuei Chang. "Optimizing the Mg Doping Concentration of Na3V2–xMgx(PO4)2F3/C for Enhanced Sodiation/Desodiation Properties." ACS Sustainable Chemistry & Engineering 9, no. 20 (May 11, 2021): 6962–71. http://dx.doi.org/10.1021/acssuschemeng.1c00418.
Full textZhu, Pengfei, Wenjie Peng, Huajun Guo, Xinhai Li, Zhixing Wang, Ding Wang, Jianguo Duan, Jiexi Wang, and Guochun Yan. "Toward high-performance sodium storage cathode: Construction and purification of carbon-coated Na3V2(PO4)2F3 materials." Journal of Power Sources 546 (October 2022): 231986. http://dx.doi.org/10.1016/j.jpowsour.2022.231986.
Full textKosova, Nina V., Daria O. Rezepova, Sergey A. Petrov, and Arseny B. Slobodyuk. "Electrochemical and Chemical Na+/Li+Ion Exchange in Na-Based Cathode Materials: Na1.56Fe1.22P2O7and Na3V2(PO4)2F3." Journal of The Electrochemical Society 164, no. 1 (December 7, 2016): A6192—A6200. http://dx.doi.org/10.1149/2.0301701jes.
Full textYi, Hongming, Le Lin, Moxiang Ling, Zhiqiang Lv, Rui Li, Qiang Fu, Huamin Zhang, Qiong Zheng, and Xianfeng Li. "Scalable and Economic Synthesis of High-Performance Na3V2(PO4)2F3 by a Solvothermal–Ball-Milling Method." ACS Energy Letters 4, no. 7 (June 11, 2019): 1565–71. http://dx.doi.org/10.1021/acsenergylett.9b00748.
Full textLiu, Shuang, Liubin Wang, Jian Liu, Meng Zhou, Qingshun Nian, Yazhi Feng, Zhanliang Tao, and Lianyi Shao. "Na3V2(PO4)2F3–SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries." Journal of Materials Chemistry A 7, no. 1 (2019): 248–56. http://dx.doi.org/10.1039/c8ta09194c.
Full textGuo, Biao, Wenyu Diao, Tingting Yuan, Yuan Liu, Qi Yuan, Guannan Li, and Jingang Yang. "Enhanced electrochemical performance of Na3V2(PO4)2F3 for Na-ion batteries with nanostructure and carbon coating." Journal of Materials Science: Materials in Electronics 29, no. 19 (July 23, 2018): 16325–29. http://dx.doi.org/10.1007/s10854-018-9722-8.
Full textZhang, Yusheng, Youzuo Hu, Tingting Feng, Ziqiang Xu, and Mengqiang Wu. "Mg-doped Na3V2-xMgx(PO4)2F3@C sodium ion cathodes with enhanced stability and rate capability." Journal of Power Sources 602 (May 2024): 234337. http://dx.doi.org/10.1016/j.jpowsour.2024.234337.
Full textHwang, Jinkwang, Ikuma Aoyagi, Masaya Takiyama, Kazuhiko Matsumoto, and Rika Hagiwara. "Inhibition of Aluminum Corrosion with the Addition of the Tris(pentafluoroethyl)trifluorophosphate Anion to a Sulfonylamide-Based Ionic Liquid for Sodium-Ion Batteries." Journal of The Electrochemical Society 169, no. 8 (August 1, 2022): 080522. http://dx.doi.org/10.1149/1945-7111/ac8a1f.
Full textZhu, Weikai, Kang Liang, and Yurong Ren. "Modification of the morphology of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries by polyvinylpyrrolidone." Ceramics International 47, no. 12 (June 2021): 17192–201. http://dx.doi.org/10.1016/j.ceramint.2021.03.030.
Full textNongkynrih, Jeffry, Abhinanda Sengupta, Brindaban Modak, Sagar Mitra, A. K. Tyagi, and Dimple P. Dutta. "Enhanced electrochemical properties of W-doped Na3V2(PO4)2F3@C as cathode material in sodium ion batteries." Electrochimica Acta 415 (May 2022): 140256. http://dx.doi.org/10.1016/j.electacta.2022.140256.
Full textWang, Mingxue, Xiaobing Huang, Haiyan Wang, Tao Zhou, Huasheng Xie, and Yurong Ren. "Synthesis and electrochemical performances of Na3V2(PO4)2F3/C composites as cathode materials for sodium ion batteries." RSC Advances 9, no. 53 (2019): 30628–36. http://dx.doi.org/10.1039/c9ra05089b.
Full textYan, Guochun, Romain Dugas, and Jean-Marie Tarascon. "The Na3V2(PO4)2F3/Carbon Na-Ion Battery: Its Performance Understanding as Deduced from Differential Voltage Analysis." Journal of The Electrochemical Society 165, no. 2 (2018): A220—A227. http://dx.doi.org/10.1149/2.0831802jes.
Full text