Academic literature on the topic 'Na3(VO)2(PO4)2F'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Na3(VO)2(PO4)2F.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Na3(VO)2(PO4)2F"
Lin, Zhi. "Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x." Crystals 14, no. 1 (December 28, 2023): 43. http://dx.doi.org/10.3390/cryst14010043.
Full textNguyen, Long H. B., Thibault Broux, Paula Sanz Camacho, Dominique Denux, Lydie Bourgeois, Stéphanie Belin, Antonella Iadecola, et al. "Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution." Energy Storage Materials 20 (July 2019): 324–34. http://dx.doi.org/10.1016/j.ensm.2019.04.010.
Full textYin, Yameng, Cunyuan Pei, Fangyu Xiong, Yi Pan, Xiaoming Xu, Bo Wen, and Qinyou An. "Porous yolk-shell structured Na3(VO)2(PO4)2F microspheres with enhanced Na-ion storage properties." Journal of Materials Science & Technology 83 (August 2021): 83–89. http://dx.doi.org/10.1016/j.jmst.2020.11.075.
Full textSerras, Paula, Verónica Palomares, Pierre Kubiak, Luis Lezama, and Teófilo Rojo. "Enhanced electrochemical performance of vanadyl (IV) Na3(VO)2(PO4)2F by ex-situ carbon coating." Electrochemistry Communications 34 (September 2013): 344–47. http://dx.doi.org/10.1016/j.elecom.2013.07.010.
Full textXing, Siyang, Yujuan Cheng, Fei Yu, and Jie Ma. "Na3(VO)2(PO4)2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity." Journal of Colloid and Interface Science 598 (September 2021): 511–18. http://dx.doi.org/10.1016/j.jcis.2021.04.051.
Full textNguyen, Long H. B., Jacob Olchowka, Stéphanie Belin, Paula Sanz Camacho, Mathieu Duttine, Antonella Iadecola, François Fauth, Dany Carlier, Christian Masquelier, and Laurence Croguennec. "Monitoring the Crystal Structure and the Electrochemical Properties of Na3(VO)2(PO4)2F through Fe3+ Substitution." ACS Applied Materials & Interfaces 11, no. 42 (September 27, 2019): 38808–18. http://dx.doi.org/10.1021/acsami.9b14249.
Full textDeng, Gang, Dongliang Chao, Yuwei Guo, Zhen Chen, Huanhuan Wang, Serguei V. Savilov, Jianyi Lin, and Ze Xiang Shen. "Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery." Energy Storage Materials 5 (October 2016): 198–204. http://dx.doi.org/10.1016/j.ensm.2016.07.007.
Full textBi, Xueli, Yaqi Peng, Shanshan Liu, Ye Liu, Xin Yang, Kai Feng, and Jianjiang Hu. "Na3(VO)2(PO4)2F coated carbon nanotubes: A cathode material with high-specific capacity for aqueous zinc-ion batteries." Electrochimica Acta 475 (January 2024): 143657. http://dx.doi.org/10.1016/j.electacta.2023.143657.
Full textHu, Qiao, Guangming Han, Jiaying Liao, and Jianfeng Yao. "Boosting sodium-ion battery performance using Na3(VO)2(PO4)2F microrods self-embedded in a 3D conductive interpenetrated framework." Journal of Alloys and Compounds 988 (June 2024): 174261. http://dx.doi.org/10.1016/j.jallcom.2024.174261.
Full textYang, Xiaoqiang, Meijing Wang, Xingde Xiang, Song Liu, and Chunxia Chen. "An open-system synthesis approach to achieve high-rate Na3(VO)2(PO4)2F/C microcubes cathode for sodium-ion batteries." Journal of Electroanalytical Chemistry 956 (March 2024): 118088. http://dx.doi.org/10.1016/j.jelechem.2024.118088.
Full textDissertations / Theses on the topic "Na3(VO)2(PO4)2F"
Fang, Runhe. "Effect of composition and morphology on the electrochemical performance of Na3V2(PO4)2F3/Na3V2(PO4)2FO2." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS001.pdf.
Full textIn the sodium ion battery system, the positive electrode plays an important role. Although weaker than layered oxide materials in some aspects, such as electrical conductivity, polyanionic materials have become one of the two main categories of positive electrode materials with their excellent electrochemical stability and high operating voltage. Na3V2(PO4)2F3-yOy (0≤y≤2) family is especially the most outstanding in terms of electrochemical performance. However, the electrochemical performance is limited because of the rather poor electronic conductivity induced by the isolated vanadium bi-octahedra units within the structure. There have been many studies to improve the electrochemical properties of Na3V2(PO4)2F3-yOy by means of carbon coating and special morphology etc. However, unconscious improvements in multiple aspects can lead to neglected further understanding of one specific changed element, due to the ultimately electrochemical performance enhancements. Therefore, this PhD thesis is consistent of well controlling all the varieties and comparing the morphology and composition impact of Na3V2(PO4)2F3-yOy without any carbon coating in order to improve its final electrochemical performance through a more fundamental perspective. Thus, this work is composed of the next parts under the form of deposited articles. In the first chapter, which is a state of the art, the background of the development of batteries and especially the sodium ion batteries will be briefly introduced. The common materials for each different part of the sodium ion battery will be further described. Next, attention will be focused on Na3V2(PO4)2F3-yOy and show the current status of its research in detail in terms of crystal structure and synthesis, etc. Then in the second chapter, a series of slightly tuned synthesis with the same precursors were carried out to obtain the Na3V2(PO4)2F3-yOy particles with different morphologies and similar composition and then investigate the effect of morphologies on energy storage performance. In the subsequent chapter III, from one most performant morphology found in the second chapter, the effect of the oxygen content on transport properties and electrochemical performance within Na3V2(PO4)2F3-yOy (different O2- substitution percent) were investigated, while keeping the morphologies unchanged. In the next chapter IV, the Na3V2(PO4)2FO2 found in chapter III with those synthesized through different methods with the same particle composition but totally different morphologies and surface functionalization were compared to further understand the morphology and surface coating impact on the energy storage capacity. At last, deep eutectic solvent, one kind of ionic liquid, was used as a new synthesis medium to reach a totally new and special morphology does not reported before and a new approach to make a carbon coating. In general, the different morphologies and compositions of Na3V2(PO4)2F3-yOy are obtained separately by controlling and refining a series of synthesis methods. Their influences on the final electrochemistry of the material have also been investigated separately. These studies contribute to the understanding of this material from a fundamental point of view, thus facilitating further optimization
Book chapters on the topic "Na3(VO)2(PO4)2F"
Chao, Dongliang. "Na3(VO)2(PO4)2F Array for Cathode of Na-Ion Battery." In Springer Theses, 75–91. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3080-3_4.
Full text