To see the other types of publications on this topic, follow the link: Na0.5Bi0.5TiO3-BaTiO3-K0.5Na0.5NbO3.

Journal articles on the topic 'Na0.5Bi0.5TiO3-BaTiO3-K0.5Na0.5NbO3'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Na0.5Bi0.5TiO3-BaTiO3-K0.5Na0.5NbO3.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fu, Fang, Jiwei Zhai, Zhengkui Xu, Wangfeng Bai, and Xi Yao. "Electric properties of high strain textured Na0.5Bi0.5TiO3–BaTiO3–K0.5Na0.5NbO3 thick films." Solid State Sciences 13, no. 5 (May 2011): 934–37. http://dx.doi.org/10.1016/j.solidstatesciences.2011.02.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Plutenko, Tatiana, and Oleg I. V'yunov. "Effect of Reoxidation Temperature on Electrophysical Properties of High-TC Barium Titanate-Based PTCR Ceramics." Solid State Phenomena 200 (April 2013): 311–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.200.311.

Full text
Abstract:
Ceramic samples of (1 x)BaTiO3–xNa0.5Bi0.5TiO3 system were prepared by sintering in reducing atmosphere of N2/H2 and were subsequently reoxidized in air. The influence of reoxidation temperature firing on the PTCR effect of (1 x)BaTiO3–xNa0.5Bi0.5TiO3 ceramics was investigated. The effect of Na0.5Bi0.5TiO3 concentration on resistivity and microstructure of the reoxidized samples was investigated by means of complex impedance spectroscopy and scanning electron microscopy. It has been found that the grain size decreases with the increase in Na0.5Bi0.5TiO3 content. The values of minimum ρmin and maximum ρmax resistivities of the samples were observed to increase with the increase in reoxidation temperature in the 600 – 1000°C temperature range. It was shown that with increasing in reoxidation temperature of (1-x)BaTiO3-xNa0.5Bi0.5TiO3 solid solutions, potential barrier at grain boundaries increases.
APA, Harvard, Vancouver, ISO, and other styles
3

GOMAH-PETTRY, J. R., P. MARCHET, A. SIMON, R. MÜHLL, M. MAGLIONE, and J. P. MERCURIO. "Dielectric Properties of Na0.5Bi0.5TiO3 – BaTiO3 Ceramics." Integrated Ferroelectrics 61, no. 1 (August 2004): 155–58. http://dx.doi.org/10.1080/10584580490459080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schmitt, Ljubomira Ana, Manuel Hinterstein, Hans-Joachim Kleebe, and Hartmut Fuess. "Comparative study of two lead-free piezoceramics using diffraction techniques." Journal of Applied Crystallography 43, no. 4 (May 22, 2010): 805–10. http://dx.doi.org/10.1107/s0021889810015980.

Full text
Abstract:
A comparative study of two distinct lead-free piezoceramics, (Bi0.5Na0.5TiO3)0.92–(BaTiO3)0.06–(K0.5Na0.5NbO3)0.02and (Bi0.5Na0.5TiO3)0.94–(BaTiO3)0.05–(K0.5Na0.5NbO3)0.01, termed 92-06-02 and 94-05-01, respectively, is presented. The samples were investigated by complementary diffraction techniques, namely X-ray, neutron and electron diffraction. Transmission electron microscopy (TEM) and powder diffraction experiments clearly revealed the presence of both rhombohedral and tetragonal phases in space groupsR3candP4bm, respectively. Superlattice reflections observed in the diffraction patterns were used to identify the two phases. It was found that sample 92-06-02, with a high proportion of the nonpolar tetragonal phase, shows a grainy contrast, whereas specimen 94-05-01 features domain-like contrast, related to a higher rhombohedral phase fraction. The combination of local scale analysesviaTEM with X-ray and neutron diffraction provides the experimental basis for further structural investigations.
APA, Harvard, Vancouver, ISO, and other styles
5

Jan, Saeed ullah, Aurang Zeb, and Steven J. Milne. "Electrical Properties of Ca-modified Na0.5Bi0.5TiO3–BaTiO3 ceramics." Ceramics International 40, no. 10 (December 2014): 15439–45. http://dx.doi.org/10.1016/j.ceramint.2014.06.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suchanicz, Jan, Irena Jankowska-Sumara, and Tatiana V. Kruzina. "Raman and infrared spectroscopy of Na0.5Bi0.5TiO3 - BaTiO3 ceramics." Journal of Electroceramics 27, no. 2 (July 20, 2011): 45–50. http://dx.doi.org/10.1007/s10832-011-9648-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ge, Wenwei, Chengtao Luo, Qinhui Zhang, Yang Ren, Jiefang Li, Haosu Luo, and D. Viehland. "Evolution of structure in Na0.5Bi0.5TiO3 single crystals with BaTiO3." Applied Physics Letters 105, no. 16 (October 20, 2014): 162913. http://dx.doi.org/10.1063/1.4900547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Foronda, Humberto, Marco Deluca, Elena Aksel, Jennifer S. Forrester, and Jacob L. Jones. "Thermally-induced loss of piezoelectricity in ferroelectric Na0.5Bi0.5TiO3–BaTiO3." Materials Letters 115 (January 2014): 132–35. http://dx.doi.org/10.1016/j.matlet.2013.10.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Weifeng, and Ming Liu. "Research of Lead-free Na0.5Bi0.5TiO3-BaTiO3 System Piezoelectric Ceramics." Journal of Wuhan University of Technology-Mater. Sci. Ed. 38, no. 2 (April 2023): 325–29. http://dx.doi.org/10.1007/s11595-023-2701-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Jiefeng, Minghe Cao, Zhijian Wang, Qi Xu, Lin Zhang, Zhonghua Yao, Hua Hao, and Hanxing Liu. "Enhancement of energy-storage properties of K0.5Na0.5NbO3 modified Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 lead-free ceramics." Journal of Materials Science: Materials in Electronics 27, no. 1 (September 14, 2015): 466–73. http://dx.doi.org/10.1007/s10854-015-3775-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Shan-Tao, Feng Yan, Bin Yang, and Wenwu Cao. "Phase diagram and electrostrictive properties of Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 ceramics." Applied Physics Letters 97, no. 12 (September 20, 2010): 122901. http://dx.doi.org/10.1063/1.3491839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Shan-Tao, Alain Brice Kounga, Emil Aulbach, Helmut Ehrenberg, and Jürgen Rödel. "Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system." Applied Physics Letters 91, no. 11 (September 10, 2007): 112906. http://dx.doi.org/10.1063/1.2783200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Yueming, Wen Chen, Qing Xu, Jing Zhou, and Xingyong Gu. "Piezoelectric and ferroelectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 piezoelectric ceramics." Materials Letters 59, no. 11 (May 2005): 1361–64. http://dx.doi.org/10.1016/j.matlet.2004.12.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ren, Pengrong, Jiale Wang, Yike Wang, Lalitha K. V., and Gaoyang Zhao. "Origin of enhanced depolarization temperature in quenched Na0.5Bi0.5TiO3-BaTiO3 ceramics." Journal of the European Ceramic Society 40, no. 8 (July 2020): 2964–69. http://dx.doi.org/10.1016/j.jeurceramsoc.2020.02.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Han, Yemei, Lingxia Li, Fang Wang, Yujie Yuan, Yinping Miao, Jinshi Zhao, and Kailiang Zhang. "Electric-field switch of magnetization in BaTiO3–Na0.5Bi0.5TiO3–NiFe2O4 composite." Journal of Materials Science: Materials in Electronics 26, no. 11 (July 21, 2015): 8261–66. http://dx.doi.org/10.1007/s10854-015-3489-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Velchuri, Radha, B. Vijaya Kumar, V. Rama Devi, G. Prasad, and M. Vithal. "Solid state metathesis synthesis of BaTiO3, PbTiO3, K0.5Bi0.5TiO3 and Na0.5Bi0.5TiO3." Ceramics International 36, no. 4 (May 2010): 1485–89. http://dx.doi.org/10.1016/j.ceramint.2009.12.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sun, Yue, Hanxing Liu, Hua Hao, Shujun Zhang, Liling Guo, and Zhiyong Yu. "Effect of Na0.5Bi0.5TiO3 on dielectric properties of BaTiO3 based ceramics." Ceramics International 38 (January 2012): S41—S44. http://dx.doi.org/10.1016/j.ceramint.2011.04.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Haji Jumali, Mohammad Hafizuddin, Siti Mariam Mohamad, Rozidawati Awang, Muhammad Yahaya, Mohd Riduan M. Said, and Muhammad Mat Salleh. "Effect of Annealing Temperatures on Formation of Na0.5Bi0.5TiO3 and (Na0.5Bi0.5)0.96Ba0.04TiO3 Ceramics Prepared via Sol Gel Method." Advanced Materials Research 501 (April 2012): 76–80. http://dx.doi.org/10.4028/www.scientific.net/amr.501.76.

Full text
Abstract:
The effect of annealing temperatures on the formation of pure perovskite Na0.5Bi0.5TiO3 (NBT) based ceramics prepared by sol gel method has been investigated. The NBT sol was prepared using NaCH3COO, C6H9BiO6 and Ti(C4H9)4 with 2-methoxyethanol and glacial acetic acid were used as solvents. The BaTiO3 sol was synthesized using C4H6BaO4 and Ti(C4H9)4 with acetic acid and ethanolamine were used as solvents. The (Na0.5Bi0.5)0.96Ba0.04TiO3 (NBBT) sol was prepared by mixing appropriate amount of NBT and BaTiO3 sols. Then NBT and NBBT sols were dried at 200oC for 24 h, ground and subsequently annealed at temperatures ranging from 440oC – 640oC for 5 min. Formation of NBT and NBBT ceramics was examined using XRD technique. X-ray diffractograms reveal that the NBT ceramic with rhombohedral structure starts to form at 540oC and complete crystallization is achieved at 620oC. Addition of 4vol% of BaTiO3 sols drastically reduces the crystallization temperature of NBBT ceramic to 460oC and a pure single phase ceramic is achieved at 520oC. Despite retaining the same rhombohedral structure, the NBBT exhibits lattice parameters expansion indicating a successful Ba substitution which is also confirms by the absence of BaTiO3 peaks in the diffractograms. Both ceramics exhibit great thermal stability with additional increment in annealing temperatures.
APA, Harvard, Vancouver, ISO, and other styles
19

Maurya, Deepam, Valeri Petkov, Ashok Kumar, and Shashank Priya. "Nanostructured lead-free ferroelectric Na0.5Bi0.5TiO3–BaTiO3 whiskers: synthesis mechanism and structure." Dalton Transactions 41, no. 18 (2012): 5643. http://dx.doi.org/10.1039/c2dt00045h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhao, Wei, Jing Ya, Ying Xin, Lie E, Dan Zhao, and Heping Zhou. "Fabrication of Na0.5Bi0.5TiO3-BaTiO3-Textured Ceramics Templated by Plate-Like Na0.5Bi0.5TiO3Particles." Journal of the American Ceramic Society 92, no. 7 (July 2009): 1607–9. http://dx.doi.org/10.1111/j.1551-2916.2009.03043.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Yueming, Wen Chen, Qing Xu, Jing Zhou, Xingyong Gu, and Siqin Fang. "Electromechanical and dielectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 lead-free ceramics." Materials Chemistry and Physics 94, no. 2-3 (December 2005): 328–32. http://dx.doi.org/10.1016/j.matchemphys.2005.05.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sun, Yue, Hanxing Liu, Hua Hao, Lin Zhang, and Shujun Zhang. "The role of Co in the BaTiO3–Na0.5Bi0.5TiO3 based X9R ceramics." Ceramics International 41, no. 1 (January 2015): 931–39. http://dx.doi.org/10.1016/j.ceramint.2014.08.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Prado, A., J. Camargo, P. Öchsner, L. Ramajo, and M. Castro. "Synthesis and characterization of Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 ceramics for energy storage applications." Journal of Electroceramics 44, no. 3-4 (June 2020): 248–55. http://dx.doi.org/10.1007/s10832-020-00216-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ge, Wenwei, Hu Cao, Christopher DeVreugd, Jiefang Li, Dwight Viehland, Qinhui Zhang, and Haosu Luo. "Influence of BaTiO3 Content on the Structure and Properties of Na0.5Bi0.5TiO3 Crystals." Journal of the American Ceramic Society 94, no. 9 (March 17, 2011): 3084–87. http://dx.doi.org/10.1111/j.1551-2916.2011.04433.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, Qinhui, Yaoyao Zhang, Feifei Wang, Yaojin Wang, Di Lin, Xiangyong Zhao, Haosu Luo, Wenwei Ge, and D. Viehland. "Enhanced piezoelectric and ferroelectric properties in Mn-doped Na0.5Bi0.5TiO3–BaTiO3 single crystals." Applied Physics Letters 95, no. 10 (September 7, 2009): 102904. http://dx.doi.org/10.1063/1.3222942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

He, Chongjun, Xiujie Yi, Tong Wu, Jiming Wang, Kongjun Zhu, and Youwen Liu. "Wavelength dependence of refractive index in lead-free Na0.5Bi0.5TiO3–BaTiO3 single crystals." Optical Materials 36, no. 12 (October 2014): 2023–25. http://dx.doi.org/10.1016/j.optmat.2013.12.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pradhan, Dillip K., Hari Sankar Mohanty, Tapabrata Dam, Hitesh Borkar, K. K. Mishra, Ashok Kumar, Shrabanee Sen, and Balaram Sahoo. "Crystal structure and ferroelectric properties of (1−x)Na0.5Bi0.5TiO3−x BaTiO3 ceramics." Acta Crystallographica Section A Foundations and Advances 73, a2 (December 1, 2017): C376. http://dx.doi.org/10.1107/s2053273317091975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gao, Feng, Li-Hong Cheng, Rong-Zi Hong, Jia-Ji Liu, Yong-Hong Yao, and Chang-Sheng Tian. "Fabrication and dielectric properties of textured Na0.5Bi0.5TiO3-BaTiO3 ceramics by RTGG method." Journal of Materials Science: Materials in Electronics 19, no. 12 (January 12, 2008): 1228–32. http://dx.doi.org/10.1007/s10854-007-9547-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mohanty, Hari Sankar, Ashok Kumar, Balaram Sahoo, Pawan Kumar Kurliya, and Dillip K. Pradhan. "Impedance spectroscopic study on microwave sintered (1 − x) Na0.5Bi0.5TiO3–x BaTiO3 ceramics." Journal of Materials Science: Materials in Electronics 29, no. 8 (February 1, 2018): 6966–77. http://dx.doi.org/10.1007/s10854-018-8683-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lin, Dunmin, K. W. Kwok, and H. L. W. Chan. "Structure, dielectric, and piezoelectric properties of CuO-doped K0.5Na0.5NbO3–BaTiO3 lead-free ceramics." Journal of Applied Physics 102, no. 7 (October 2007): 074113. http://dx.doi.org/10.1063/1.2787164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hribar, Uroš, Matjaž Spreitzer, Tadej Rojac, and Jakob König. "Destabilization of the ferroelectric order in Na0.5Bi0.5TiO3–6 wt% BaTiO3 ceramics through doping." Journal of the European Ceramic Society 42, no. 8 (July 2022): 3446–53. http://dx.doi.org/10.1016/j.jeurceramsoc.2022.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bai, Yang, Guang-Ping Zheng, and San-Qiang Shi. "Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature." Materials Research Bulletin 46, no. 11 (November 2011): 1866–69. http://dx.doi.org/10.1016/j.materresbull.2011.07.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

He, Chongjun, Chenguang Deng, Jiming Wang, Xiaorong Gu, Tong Wu, Kongjun Zhu, and Youwen Liu. "Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3–BaTiO3 single crystals." Physica B: Condensed Matter 483 (February 2016): 44–47. http://dx.doi.org/10.1016/j.physb.2015.12.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sun, Renbing, Qinhui Zhang, Bijun Fang, Jie Jiao, Xiaobing Li, Xiangyong Zhao, Di Lin, Dong Wang, and Haosu Luo. "Dielectric, electromechanical coupling properties of Mn-doped Na0.5Bi0.5TiO3–BaTiO3 lead-free single crystal." Applied Physics A 103, no. 1 (August 17, 2010): 199–205. http://dx.doi.org/10.1007/s00339-010-5994-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Huang, T., P. Zhang, L. P. Xu, C. Chen, J. Z. Zhang, H. S. Luo, and J. H. Chu. "Electronic structures and abnormal phonon behaviors of cobalt-modified Na0.5Bi0.5TiO3-6%BaTiO3 single crystals." AIP Advances 6, no. 10 (October 2016): 105311. http://dx.doi.org/10.1063/1.4966910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ge, Wenwei, Hong Liu, Xiangyong Zhao, Xiaoming Pan, Tianhou He, Di Lin, Haiqing Xu, and Haosu Luo. "Growth and characterization of Na0.5Bi0.5TiO3–BaTiO3 lead-free piezoelectric crystal by the TSSG method." Journal of Alloys and Compounds 456, no. 1-2 (May 2008): 503–7. http://dx.doi.org/10.1016/j.jallcom.2007.02.120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Su, Shi, Ruzhong Zuo, and Danya Lv. "Densification and texture evolution of Bi4Ti3O12 templated Na0.5Bi0.5TiO3–BaTiO3 ceramics: Effects of excess Bi2O3." Journal of Alloys and Compounds 519 (April 2012): 25–28. http://dx.doi.org/10.1016/j.jallcom.2011.11.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Wen, Yueming Li, Qing Xu, and Jing Zhou. "Electromechanical Properties and Morphotropic Phase Boundary of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-BaTiO3 Lead-free Piezoelectric Ceramics." Journal of Electroceramics 15, no. 3 (December 2005): 229–35. http://dx.doi.org/10.1007/s10832-005-3301-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Devi, Ch Sameera, M. Buchi Suresh, G. S. Kumar, and G. Prasad. "High-temperature complex impedance and modulus spectroscopic studies of doped Na0.5Bi0.5TiO3-BaTiO3 ferroelectric ceramics." Ionics 22, no. 12 (August 1, 2016): 2363–77. http://dx.doi.org/10.1007/s11581-016-1781-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gao, Feng, Rong-zi Hong, Jia-ji Liu, Yong-hong Yao, and Chang-sheng Tian. "Effect of different templates on microstructure of textured Na0.5Bi0.5TiO3–BaTiO3 ceramics with RTGG method." Journal of the European Ceramic Society 28, no. 10 (January 2008): 2063–70. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kuruvila, Krupa Maria, D. Dhayanithi, and N. V. Giridharan. "Investigation of structural and enhanced piezoelectric properties in low lead content Na0.5Bi0.5TiO3-BaTiO3-PbTiO3 system." Journal of Alloys and Compounds 897 (March 2022): 163195. http://dx.doi.org/10.1016/j.jallcom.2021.163195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Maurya, Deepam, Yuan Zhou, Yongke Yan, and Shashank Priya. "Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response." Journal of Materials Chemistry C 1, no. 11 (2013): 2102. http://dx.doi.org/10.1039/c3tc00619k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Li, Lingxia, and Bowen Zhang. "The effect of bimodal model on the ultra-broad temperature stable BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 system." Scripta Materialia 114 (March 2016): 170–74. http://dx.doi.org/10.1016/j.scriptamat.2015.08.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Haiwu, Qinhui Zhang, Xiangyong Zhao, Xiaobing Li, Dong Wang, and Haosu Luo. "Optical dispersion and interband transition in Na0.5Bi0.5TiO3-x%BaTiO3 lead-free relaxor ferroelectric single crystals." Applied Physics Letters 102, no. 20 (May 20, 2013): 202904. http://dx.doi.org/10.1063/1.4807791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Yaojin, Xiangyong Zhao, Jie Jiao, Qinhui Zhang, Wenning Di, Haosu Luo, Chung Ming Leung, and Siu Wing Or. "Lead-free magnetoelectric laminated composite of Mn-doped Na0.5Bi0.5TiO3–BaTiO3 single crystal and Tb0.3Dy0.7Fe1.92 alloy." Journal of Alloys and Compounds 496, no. 1-2 (April 2010): L4—L6. http://dx.doi.org/10.1016/j.jallcom.2010.02.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, Shan-Tao, Alain Brice Kounga, Emil Aulbach, Wook Jo, Torsten Granzow, Helmut Ehrenberg, and Jürgen Rödel. "Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties." Journal of Applied Physics 103, no. 3 (February 2008): 034108. http://dx.doi.org/10.1063/1.2838476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jiang, Chao, Dou Zhang, Kechao Zhou, Haixue Yan, Hangfeng Zhang, and Isaac Abrahams. "Topochemical transformation of two-dimensional single crystalline Na0.5Bi0.5TiO3–BaTiO3 platelets from Na0.5Bi4.5Ti4O15 precursors and their piezoelectricity." Journal of Materials Chemistry A 5, no. 30 (2017): 15780–88. http://dx.doi.org/10.1039/c7ta01591g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ge, Wenwei, Hu Cao, Jiefang Li, D. Viehland, Qinhui Zhang, and Haosu Luo. "Influence of dc-bias on phase stability in Mn-doped Na0.5Bi0.5TiO3-5.6 at. %BaTiO3 single crystals." Applied Physics Letters 95, no. 16 (October 19, 2009): 162903. http://dx.doi.org/10.1063/1.3253412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mishra, Anupam, Dipak Kumar Khatua, Arnab De, and Rajeev Ranjan. "Off-stoichiometry, structural-polar disorder and piezoelectricity enhancement in pre-MPB lead-free Na0.5Bi0.5TiO3-BaTiO3 piezoceramic." Journal of Applied Physics 125, no. 21 (June 7, 2019): 214101. http://dx.doi.org/10.1063/1.5089123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Praharaj, S., D. Rout, S. J. L. Kang, and I. W. Kim. "Large electric field induced strain in a new lead-free ternary Na0.5Bi0.5TiO3-SrTiO3-BaTiO3 solid solution." Materials Letters 184 (December 2016): 197–99. http://dx.doi.org/10.1016/j.matlet.2016.08.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography