Academic literature on the topic 'N-dimethylaminoethyl methacrylate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'N-dimethylaminoethyl methacrylate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "N-dimethylaminoethyl methacrylate"

1

Li, Zibiao, Pei Lin Chee, Cally Owh, Rajamani Lakshminarayanan, and Xian Jun Loh. "Safe and efficient membrane permeabilizing polymers based on PLLA for antibacterial applications." RSC Advances 6, no. 34 (2016): 28947–55. http://dx.doi.org/10.1039/c6ra04531f.

Full text
Abstract:
Highly active antibacterial poly(N,N-dimethylaminoethyl methacrylate)-block-poly(l-lactic acid)-block-poly(N,N-dimethylaminoethyl methacrylate) conjugated with poly(ethylene glycol) (D-PLLA-D@PEG) copolymers were synthesized.
APA, Harvard, Vancouver, ISO, and other styles
2

Ševčík, Stanislav, and Martin Přádný. "Quaternary salts of N,N-dimethylaminoethyl esters of pivalic and 2-methyl-3-methoxypropionic acid and their hydrolysis." Collection of Czechoslovak Chemical Communications 51, no. 1 (1986): 206–14. http://dx.doi.org/10.1135/cccc19860206.

Full text
Abstract:
The synthesis and kinetics of quaternization of model compounds of poly(N,N-dimethylaminoethyl methacrylate) in water-alcoholic solutions brought about by methyl iodide and the alkaline hydrolysis of products in water have been investigated. N,N-Dimethylaminoethyl pivalate was selected as a model of the structural unit of the reported polymer; N,N-dimethylaminoethyl-2-methyl-3-methoxypropionate was the model of the terminal unit of the anionically prepared polymer.
APA, Harvard, Vancouver, ISO, and other styles
3

Appold, Michael, Cristina Mari, Christina Lederle, Johannes Elbert, Claudia Schmidt, Ingo Ott, Bernd Stühn, Gilles Gasser, and Markus Gallei. "Multi-stimuli responsive block copolymers as a smart release platform for a polypyridyl ruthenium complex." Polymer Chemistry 8, no. 5 (2017): 890–900. http://dx.doi.org/10.1039/c6py02026g.

Full text
Abstract:
An efficient protocol for the preparation of poly(N,N-dimethylaminoethyl methacrylate)(PDMAEMA)-based multi-stimuli responsive block copolymers (BCPs) with poly(methyl methacrylate) (PMMA)viaanionic polymerization protocols is presented.
APA, Harvard, Vancouver, ISO, and other styles
4

Kupczak, Maria, Anna Mielańczyk, and Dorota Neugebauer. "The Influence of Polymer Composition on the Hydrolytic and Enzymatic Degradation of Polyesters and Their Block Copolymers with PDMAEMA." Materials 14, no. 13 (June 29, 2021): 3636. http://dx.doi.org/10.3390/ma14133636.

Full text
Abstract:
Well-defined, semi-degradable polyester/polymethacrylate block copolymers, based on ε-caprolactone (CL), d,l-lactide (DLLA), glycolide (GA) and N,N′-dimethylaminoethyl methacrylate (DMAEMA), were synthesized by ring-opening polymerization (ROP) and atom transfer radical polymerization. Comprehensive degradation studies of poly(ε-caprolactone)-block-poly(N,N′-dimethylaminoethyl methacrylate) (PCL-b-PDMAEMA) on hydrolytic degradation and enzymatic degradation were performed, and those results were compared with the corresponding aliphatic polyester (PCL). The solution pH did not affect the hydrolytic degradation rate of PCL (a 3% Mn loss after six weeks). The presence of a PDMAEMA component in the copolymer chain increased the hydrolysis rates and depended on the solution pH, as PCL-b-PDMAEMA degraded faster in an acidic environment (36% Mn loss determined) than in a slightly alkaline environment (27% Mn loss). Enzymatic degradation of PCL-b-PDMAEMA, poly(d,l-lactide)-block-poly(N,N′-dimethylaminoethyl methacrylate) (PLA-b-PDMAEMA) and poly(lactide-co-glycolide-co-ε-caprolactone)-block-poly(N,N′-dimethylaminoethyl methacrylate) (PLGC-b-PDMAEMA) and the corresponding aliphatic polyesters (PCL, PLA and PLGC) was performed by Novozyme 435. In enzymatic degradation, PLGC degraded almost completely after eleven days. For polyester-b-PDMAEMA copolymers, enzymatic degradation primarily involved the ester bonds in PDMAEMA side chains, and the rate of polyester degradation decreased with the increase in the chain length of PDMAEMA. Amphiphilic copolymers might be used for biomaterials with long-term or midterm applications such as nanoscale drug delivery systems with tunable degradation kinetics.
APA, Harvard, Vancouver, ISO, and other styles
5

Cao, Jun, Lifen Zhang, Xiangqiang Pan, Zhenping Cheng, and Xiulin Zhu. "RAFT Copolymerization of Glycidyl Methacrylate andN,N-Dimethylaminoethyl Methacrylate." Chinese Journal of Chemistry 30, no. 9 (September 2012): 2138–44. http://dx.doi.org/10.1002/cjoc.201200625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Šoljić, Ivana, Ante Jukić, and Zvonimir Janović. "Terpolymerization kinetics of N,N -dimethylaminoethyl methacrylate/alkyl methacrylate/styrene systems." Polymer Engineering & Science 50, no. 3 (November 30, 2009): 577–84. http://dx.doi.org/10.1002/pen.21573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stawski, Dawid, and Aleksandra Nowak. "Thermal properties of poly(N,N-dimethylaminoethyl methacrylate)." PLOS ONE 14, no. 6 (June 5, 2019): e0217441. http://dx.doi.org/10.1371/journal.pone.0217441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sideridou-Karayannidou, I., and G. Seretoudi. "Copolymers of N-vinylcarbazole and N,N-dimethylaminoethyl methacrylate." Journal of Applied Polymer Science 64, no. 9 (May 31, 1997): 1815–24. http://dx.doi.org/10.1002/(sici)1097-4628(19970531)64:9<1815::aid-app18>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Mingyuan, Guangqin Luo, Lihua Kang, and Bin Dai. "Novel catalyst by immobilizing a phosphotungstic acid on polymer brushes and its application in oxidative desulfurization." RSC Adv. 4, no. 32 (2014): 16769–76. http://dx.doi.org/10.1039/c4ra01367k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seretoudi, Georgia, and Irini Sideridou. "Benzil/N,N-Dimethylaminoethyl Methacrylate System as Photoinitiator for Methyl Methacrylate Polymerization." Journal of Macromolecular Science, Part A 32, no. 6 (June 1995): 1183–95. http://dx.doi.org/10.1080/10601329508011034.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "N-dimethylaminoethyl methacrylate"

1

Despres, Typhaine. "Synthesis of hyperbranched polymers with multiple reactive terminal groups by RAFT-SCVP." Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1022.

Full text
Abstract:
Ce projet vise à élaborer des polymères hyper-ramifiés (HBP) cationiques porteurs de multiples groupements terminaux fonctionnels afin de développer le multi-ciblage cellulaire de nouveaux vecteurs de gènes thérapeutiques. Ces HBP sont prometteurs pour traiter les troubles vasculaires et prévenir les maladies cardio-vasculaires associées à un dysfonctionnement endothélial chez les patients diabétiques. Les HBP, présentant de grands volumes intérieurs et un nombre élevé de groupes terminaux en périphérie, sont le plus souvent limités à un seul type de groupement terminal. La stratégie choisie pour lever ce verrou scientifique repose sur la combinaison de la polymérisation par auto-condensation de monomères vinyliques (SCVP) et de la polymérisation par transfert de chaîne par addition-fragmentation réversible (RAFT) suivie de la chimie de l’azlactone pour ancrer une grande variété de fonctions réactives chimiosélectives à la périphérie des HBP. Cette stratégie a été appliquée à la synthèse d’HBP neutres cationisables et porteurs du groupement thiocarbonylthio par RAFT-SCVP du méthacrylate de 2-N,N-diméthylaminoéthyle (DMAEMA) et du 2-(méthacryloyloxy)éthyl 4-cyano-4-(((propylthio)carbonothioyl)thio) pentanoate (R-transmer). Plusieurs HBP ont été synthétisés en faisant varier le rapport molaire DMAEMA/R-transmer, produisant ainsi une gamme d’HBP possédant des masses molaires moyennes en nombre allant de 8 300 à 45 800 g.mol-1, des dispersités supérieures à 1,59 et des degrés de branchement variés compris entre 0,05 et 0,.30. Ces HBP ont ensuite été modifiés chimiquement par cationisation des unités DMAEMA afin de proposer des entités capables de complexer l’ARN interférent anti-PTP1B, protéine d’intérêt dans le traitement du dysfonctionnement endothélial. Les HBP neutres ont également été fonctionnalisés par un dérivé de poly(éthylène glycol) et la modification des motifs terminaux thiocarbonylthio a permis d’ancrer successivement différents groupements réactifs via une séquence d’aminolyse, de thiol-ène et de réaction d’aminolyse azlactone-amine de type click, pour obtenir en périphérie des fonctions amines réactives pour la conjugaison avec des peptides de ciblage. Ainsi, des HBP originaux, neutres, PEGylés ou non, fonctionnalisés par des amines ont été obtenus. Ces composés finaux, ainsi que certains intermédiaires de synthèse, seront soumis à des tests biologiques réalisés en collaboration avec le laboratoire MINT à Angers afin d’évaluer leur cytotoxicité, leur capacité à complexer l’ARN et leur efficacité de transfection, in vitro et in vivo
This project aims at the synthesis of cationic hyperbranched polymers (HBP) with multiple functional end-groups to enable multi-targeting of cells with novel therapeutic gene vectors. These HBP hold potential for treating diabetes-associated vascular disorders and preventing cardiovascular diseases associated with endothelium dysfunction. HBP, characterized by their large interior volumes and a high number of terminal end-groups in periphery, are limited to a single type of terminal group. To overcome this limitation, the proposed strategy is based on the combination of self-condensing vinyl polymerization (SCVP) and reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by the azlactone chemistry to anchor a high diversity of chemoselective reactive functions on the HBP periphery. This approach was applied to the synthesis of neutral, cationizable HBP with thiocarbonylthio groups using RAFT-SCVP of 2-N,N-dimethylaminoethyl methacrylate (DMAEMA) and 2-(methacryloyloxy)ethyl 4-cyano-4-(((propylthio)carbonothioyl)thio)pentanoate (R-transmer). By varying the DMAEMA/R-transmer molar ratio, a range of HBP with number-average molecular weight from 8 300 to 45 800 g.mol-1, dispersity above 1.59, and degree of branching between 0.05 and 0.30 has been synthesized. These HBP were further modified by cationization of the DMAEMA units to provide moieties able of electrostatic complexation with siRNA anti-PTP1B, a protein implicated in the endothelial dysfunction. The neutral HBP were also functionalized with a derivative of poly(ethylene glycol) and the thiocarbonylthio terminal groups were modified to anchor various reactive groups through a sequence of aminolysis, thiol-ene and azlactone-amine click reaction, in order to target reactive amines functions at the periphery able to conjugate with targeting peptides. Thus, new neutral, PEGylated and non-PEGylated, HBP displaying reactive amines functions were prepared. These final compounds, as well as some synthesis intermediates, will be submit to in vitro and in vivo biological tests in collaboration with the MINT laboratory in Angers, in order to evaluate their cytotoxicity, siRNA complexation and transfection efficiencies
APA, Harvard, Vancouver, ISO, and other styles
2

Du, Runhong. "Studies on Poly(N,N-dimethylaminoethyl methacrylate) Composite Membranes for Gas Separation and Pervaporation." Thesis, 2008. http://hdl.handle.net/10012/3741.

Full text
Abstract:
Membrane-based acid gas (e.g., CO2) separation, gas dehydration and humidification, as well as solvent dehydration are important to the energy and process industries. Fixed carrier facilitated transport membranes can enhance the permeation without compromising the selectivity. The development of suitable fixed carrier membranes for CO2 and water permeation, and understanding of the transport mechanism were the main objectives of this thesis. Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) composite membranes were developed using microporous polysulfone (PSF) or polyacrylonitrile (PAN) substrates. The PDMAEMA layer was crosslinked with p-xylylene dichloride via quaternization reaction. Fourier transform infrared, scanning electron microscopy, adsorption tests, and contact angle measurements were conducted to analyze the chemical and morphological structure of the membrane. It was shown that the polymer could be formed into thin dense layer on the substrates, while the quaternary and tertiary amino groups in the side chains of PDMAEMA offered a high polarity and hydrophilicity. The solid-liquid interfacial crosslinking of PDMAEMA led to an asymmetric crosslinked network structure, which helped minimize the resistance of the membrane to the mass transport. The interfacially formed membranes were applied to CO2/N2 separation, dehydration of CH4, gas humidification and ethylene glycol dehydration. The membranes showed good permselectivity to CO2 and water. For example, a CO2 permeance of 85 GPU and a CO2/N2 ideal separation factor of 50 were obtained with a PDMAEMA/PSF membrane at 23oC and 0.41 MPa of CO2 feed pressure. At 25oC, the permeance of water vapor through a PDMAEMA/PAN membrane was 5350 GPU and the water vapor/methane selectivity was 4735 when methane was completely saturated with water vapor. On the other hand, the relative humidity of outlet gas was up to 100 % when the membrane was used as a hydrator at 45oC and at a carrier gas flow rate of 1000 sccm. For used for dehydration of ethylene glycol at 30oC, the PDMAEMA/PSF membrane showed a permeation flux of ~1 mol/(m2.h) and a permeate concentration of 99.7 mol% water at 1 mol% water in feed. This work shows that the quaternary and tertiary amino groups can be used as carriers for CO2 transport through the membrane based on the weak acid-base interaction. In the presence of water, water molecules in the membrane tend to form a water "path" or water "bridge" which also help contribute to the mass transport though the membrane. In addition, CO2 molecules can be hydrated to HCO3-, which reaction can be catalyzed by the amino groups, the hydrated CO2 molecules can transport through the water path as well as the amino groups in the membrane. On the other hand, for processes involving water (either vapor or liquid) permeation, the amino groups in the membrane are also helpful because of the hydrogen bonding effects.
APA, Harvard, Vancouver, ISO, and other styles
3

Deshmukh, Smeet, Lev Bromberg, and T. Alan Hatton. "Synthesis and Properties of Novel Cationic, Temperature-Sensitive Block-Copolymers." 2003. http://hdl.handle.net/1721.1/3952.

Full text
Abstract:
Facile, one-step synthesis of self-assembling, cationic block copolymers of poly(2-N-(dimethylaminoethyl) methacrylate) (pDMAEMA) and PEO-PPO-PEO (Pluronic®) is developed. The copolymers are obtained via free-radical polymerization of DMAEMA initiated by Pluronic-radicals generated by cerium (IV). The copolymers possess surface activity, are polycationic at pH<7.1, and self-assemble into micelle-like aggregates when neutralized. Potential applications of the novel copolymers for DNA transfection in gene therapy are discussed.
Singapore-MIT Alliance (SMA)
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "N-dimethylaminoethyl methacrylate"

1

Wohlfarth, Ch. "Vapor-liquid equilibrium data of poly(butyl methacrylate-co-N,N-dimethylaminoethyl methacrylate) in benzene." In Polymer Solutions, 601–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88057-8_121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wohlfarth, Ch. "Vapor-liquid equilibrium data of poly(butyl methacrylate-co-N,N-dimethylaminoethyl methacrylate) in toluene." In Polymer Solutions, 606–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88057-8_122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Fu-Mian, Shuang-Ji Chen, Fu-Sheng Du, Zhi-Qiang Wu, and Zi-Chen Li. "Stimuli-Responsive Behavior ofN,N-Dimethylaminoethyl Methacrylate Polymers and Their Hydrogels." In ACS Symposium Series, 266–76. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-1999-0726.ch018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yuk, S. H., S. H. Cho, H. B. Lee, and M. S. Jhon. "Temperature-Sensitive Polymer System Constructed with Sodium Alginate and Poly(N,N-dimethylaminoethyl methacrylate-co-acrylamide)." In ACS Symposium Series, 14–29. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-1999-0728.ch002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "N-dimethylaminoethyl methacrylate"

1

Zhi, Suo-Hong, Bo Zhang, Yun Wang, Yun-Lian Zhang, Guo-Jun Zhou, Ran Deng, Ling-Shu Wan, and Zhi-Kang Xu. "Composite Nanofiltration Membranes from Polyacrylonitrile and Poly (N, N-Dimethylaminoethyl Methacrylate)-Grafted Silica Nanoparticles." In 2016 International Conference on Mechanics and Materials Science (MMS2016). WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813228177_0111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ghiorghita, Claudiu Augustin, and Ecaterina Stela Dragan. "Polyelectrolyte Multilayer Thin Films Assembled Using Poly(N,N-dimethylaminoethyl methacrylate) and Polysaccharides: Versatile Platforms towards Protein Immobilization, Sorption of Organic Pollutants and Synthesis of Silver Nanoparticles." In The First International Conference on “Green” Polymer Materials 2020. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/cgpm2020-07167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography