Academic literature on the topic 'N- and T-type calcium ion channels'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'N- and T-type calcium ion channels.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "N- and T-type calcium ion channels"

1

Smith, Carolyn L., Salsabil Abdallah, Yuen Yan Wong, Phuong Le, Alicia N. Harracksingh, Liana Artinian, Arianna N. Tamvacakis, Vincent Rehder, Thomas S. Reese, and Adriano Senatore. "Evolutionary insights into T-type Ca2+ channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue." Journal of General Physiology 149, no. 4 (March 22, 2017): 483–510. http://dx.doi.org/10.1085/jgp.201611683.

Full text
Abstract:
Four-domain voltage-gated Ca2+ (Cav) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Cav channels, Cav1 (L-type), Cav2 (P/Q-, N- and R-type) and Cav3 (T-type), Cav3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Cav3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from Trichoplax adhaerens (TCav3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCav3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCav3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Cav3 family. We also characterize the channel’s cation permeation properties and find that its pore is less selective for Ca2+ over Na+ compared with the human homologue Cav3.1, yet it exhibits a similar potent block of inward Na+ current by low external Ca2+ concentrations (i.e., the Ca2+ block effect). A comparison of the permeability features of TCav3 with other cloned channels suggests that Ca2+ block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca2+ block and higher Ca2+ selectivity. TCav3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Cav3 channel structure–function properties, ion selectivity, and cellular physiology.
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Marianne R., Alexandra B. Nelson, and Sascha du Lac. "Regulation of Firing Response Gain by Calcium-Dependent Mechanisms in Vestibular Nucleus Neurons." Journal of Neurophysiology 87, no. 4 (April 1, 2002): 2031–42. http://dx.doi.org/10.1152/jn.00821.2001.

Full text
Abstract:
Behavioral reflexes can be modified by experience via mechanisms that are largely unknown. Within the circuitry for the vestibuloocular reflex (VOR), neurons in the medial vestibular nucleus (MVN) show adaptive changes in firing rate responses that are correlated with VOR gain (the ratio of evoked eye velocity to input head velocity). Although changes in synaptic strength are typically assumed to underlie gain changes in the VOR, modulation of intrinsic ion channels that dictate firing could also play a role. Little is known, however, about how ion channel function or regulation contributes to firing responses in MVN neurons. This study examined contributions of calcium-dependent currents to firing responses in MVN neurons recorded with whole cell patch electrodes in rodent brain stem slices. Firing responses were remarkably linear over a wide range of firing rates and showed modest spike frequency adaptation. Firing response gain, the ratio of evoked firing rate to input current, was reduced by increasing extracellular calcium and increased either by lowering extracellular calcium or with antagonists to SK- and BK-type calcium-dependent potassium channels and N- and T-type calcium channels. Blockade of SK channels occluded gain increases via N-type calcium channels, while blocking BK channels occluded gain increases via presumed T-type calcium channels, indicating specific coupling of potassium channels and their calcium sources. Selective inhibition of Ca2+/calmodulin-dependent kinase II and broad-spectrum inhibition of phosphatases modulated gain via BK-dependent pathways, indicating that firing responses are tightly regulated. Modulation of firing response gain by phosphorylation provides an attractive mechanism for adaptive control of VOR gain.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Weihua, Changqing Xu, Guangdong Yang, Lingyun Wu, and Rui Wang. "Interaction of H2S with Calcium Permeable Channels and Transporters." Oxidative Medicine and Cellular Longevity 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/323269.

Full text
Abstract:
A growing amount of evidence has suggested that hydrogen sulfide (H2S), as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC), T-type calcium channels (TTCC), sodium/calcium exchangers (NCX), transient receptor potential (TRP) channels,β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR) in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
4

Polo-Parada, Luis, and Stephen J. Korn. "Block of N-type Calcium Channels in Chick Sensory Neurons by External Sodium." Journal of General Physiology 109, no. 6 (June 1, 1997): 693–702. http://dx.doi.org/10.1085/jgp.109.6.693.

Full text
Abstract:
L-type Ca2+ channels select for Ca2+ over sodium Na+ by an affinity-based mechanism. The prevailing model of Ca2+ channel permeation describes a multi-ion pore that requires pore occupancy by at least two Ca2+ ions to generate a Ca2+ current. At [Ca2+] < 1 μM, Ca2+ channels conduct Na+. Due to the high affinity of the intrapore binding sites for Ca2+ relative to Na+, addition of μM concentrations of Ca2+ block Na+ conductance through the channel. There is little information, however, about the potential for interaction between Na+ and Ca2+ for the second binding site in a Ca2+ channel already occupied by one Ca2+. The two simplest possibilities, (a) that Na+ and Ca2+ compete for the second binding site or (b) that full time occupancy by one Ca2+ excludes Na+ from the pore altogether, would imply considerably different mechanisms of channel permeation. We are studying permeation mechanisms in N-type Ca2+ channels. Similar to L-type Ca2+ channels, N-type channels conduct Na+ well in the absence of external Ca2+. Addition of 10 μM Ca2+ inhibited Na+ conductance by 95%, and addition of 1 mM Mg2+ inhibited Na+ conductance by 80%. At divalent ion concentrations of 2 mM, 120 mM Na+ blocked both Ca2+ and Ba2+ currents. With 2 mM Ba2+, the IC50 for block of Ba2+ currents by Na+ was 119 mM. External Li+ also blocked Ba2+ currents in a concentration-dependent manner, with an IC50 of 97 mM. Na+ block of Ba2+ currents was dependent on [Ba2+]; increasing [Ba2+] progressively reduced block with an IC50 of 2 mM. External Na+ had no effect on voltage-dependent activation or inactivation of the channel. These data suggest that at physiological concentrations, Na+ and Ca2+ compete for occupancy in a pore already occupied by a single Ca2+. Occupancy of the pore by Na+ reduced Ca2+ channel conductance, such that in physiological solutions, Ca2+ channel currents are between 50 and 70% of maximal.
APA, Harvard, Vancouver, ISO, and other styles
5

Kuo, Chung-Chin, and Bruce P. Bean. "G-protein modulation of ion permeation through N-type calcium channels." Nature 365, no. 6443 (September 1993): 258–62. http://dx.doi.org/10.1038/365258a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Doughty, Stephen W., Frank E. Blaney, and W. Graham Richards. "Models of ion pores in N-type voltage-gated calcium channels." Journal of Molecular Graphics 13, no. 6 (December 1995): 342–48. http://dx.doi.org/10.1016/0263-7855(95)00074-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Othman and Hamurtekin. "A New Pain Killer from the Nature: N-Type Calcium Channels Blockers." Proceedings 40, no. 1 (February 8, 2020): 47. http://dx.doi.org/10.3390/proceedings2019040047.

Full text
Abstract:
N-type calcium channels (Neuronal-type Calcium channel, Cav2.2) is a member of high voltage activated calcium channels. There are two native small peptides for N-type calcium channels (NTCC) directly which are derived from cone snail, ω-conotoxin-GVIA isolated from Conus geographus and ω-conotoxin-MVIIA (SNX-111, Ziconotide, PrialtTM), from Conus magus which both directly block the α1-ion conducting pore. NTCCs, have been shown to play a key role in nociceptive transmission due to their strategic location, presynaptically in afferent C & Aᵹ fiber terminals and postsynaptically in descending neuron. NTCCs, which are highly expressed at the pre-synaptic terminals of nociceptive neurons in dorsal horn of the spinal cord regulate release of the key pro-nociceptive neurotransmitters such as glutamate, substance P, neurokinin A, and CGRP. There have been many preclinical studies demonstrating the effect of different NTCC blockers in various acute, inflammatory and neuropathic animal pain models. In 2004 ziconotide has been approved in US and Europe to be used in clinical practice. Furthermore, many clinical trials have been performed in more than 1000 patients studying the efficacy and safety of ziconotide. IT administrated of ziconotide showed significant decrease in pain scores in patients with malignant and nonmalignant pain which are practically in neuropathic pain characteristic and resistant to IT opioids.
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, Howard. "Hydrogen Sulfide’s Involvement in Modulating Nociception." September 2009 5;12, no. 5;9 (September 14, 2009): 901–10. http://dx.doi.org/10.36076/ppj.2009/12/901.

Full text
Abstract:
Hydrogen sulfide (H2S) is a malodorous gas which functions as an endogenous gasotransmitter in humans. It is becoming appreciated that H2S may be involved in a wide variety of processes including nociceptive processes. The molecular mechanisms responsible for many of the activities of H2S remain uncertain, however, H2S increases cAMP levels in neuronal and glial cell lines and primary neuron cultures with hyperpolarization. H2S may be involved in multiple signaling pathways and produce various effects on ion channels (e.g. T-type calcium channel currents, ATP-sensitive K+ (KATP) channels) which may inhibit or promote nociception. It is also conceivable that H2S may affect the n-methyl-d aspartate (NMDA) receptor complex and/or TRPA1 ion channels which may modulate nociceptive processes. It appears that H2S may regulate key neuronal functions, including the induction of hippocampal long-term potentiation, a synaptic model of learning and memory thought to involve the NMDA receptor as well as the release of corticotrophinreleasing hormone from the hypothalamus. It seems that the primary role of H2S in nociceptive processes is the activation of T-type calcium channels leading to facilitation of pronociceptive processes. A secondary contribution to the facilitation of pronociceptive processes may come from H2S-induced activation. It would appear that much like other gasotransmitters (e.g. nitric oxide), endogenous H2S may be involved in multiple physiologic processes and its effects remain complex, difficult to predict, and may vary depending on the specific environment/circumstances/location where it is generated. A greater understanding of the clinically significant human physiology of H2S and hydrogen sulfide’s effects on modulating nociceptive processes may potentially lead to novel targets for improving analgesia. Key words: Pain, nociception, hydrogen sulfide, calcium channels, analgesia, potassium channels
APA, Harvard, Vancouver, ISO, and other styles
9

Ebersbacher, Charles, Ameet Chimote, Silvana Obici, and Laura Conforti. "Leptin upregulates CRAC channel expression in T lymphocytes (IRC2P.444)." Journal of Immunology 192, no. 1_Supplement (May 1, 2014): 58.1. http://dx.doi.org/10.4049/jimmunol.192.supp.58.1.

Full text
Abstract:
Abstract Obesity is a major health problem associated with systemic diseases whose pathogenesis has been linked to inflammation, but the underlying mechanisms are poorly understood. Leptin, an adipokine secreted by adipose tissue, is known to augment the antigen-dependent release of pro-inflammatory cytokines by T lymphocytes. Cytokine production is tightly regulated by cytoplasmic Ca2+ (Cac ) which is under the control of ion channels (Kv1.3, KCa3.1, calcium release activated Ca2+channel [CRAC, formed by Orai1 and Stim1]). We tested the hypothesis that ion channels contribute to the pro-inflammatory effects of leptin. CD3+ T cells isolated from healthy human donors were treated with 100-250 ng/ml leptin and ion channels’ gene expression was measured by RT-qPCR. Leptin induced a dose- and time-dependent increase in Orai1 expression up to 1.53 ± 0.21 (100 ng/ml) and 2.04 ± 0.40 folds (250 ng/ml, n=3) at 12 h. There was no significant difference in Stim1, Kv1.3 and KCa3.1 expression. CRAC channels are important for activation-mediated Ca2+ influx in T cells. Thus, we investigated whether Orai1 regulation by leptin affects Cac using a protocol that bypasses the T cell receptor and allows assessment of ion channel-dependent changes in Cac. Incubation with leptin-depleted serum reduced Ca2+ fluxes, while addition of 250 ng/ml of leptin to the leptin-free serum augmented Ca2+ fluxes. These findings suggest that leptin may promote hyperactivity of T cells via upregulation of ion channels.
APA, Harvard, Vancouver, ISO, and other styles
10

Kerschbaum, Hubert H., and Michael D. Cahalan. "Monovalent Permeability, Rectification, and Ionic Block of Store-operated Calcium Channels in Jurkat T Lymphocytes." Journal of General Physiology 111, no. 4 (April 1, 1998): 521–37. http://dx.doi.org/10.1085/jgp.111.4.521.

Full text
Abstract:
We used whole-cell recording to characterize ion permeation, rectification, and block of monovalent current through calcium release-activated calcium (CRAC) channels in Jurkat T lymphocytes. Under physiological conditions, CRAC channels exhibit a high degree of selectivity for Ca2+, but can be induced to carry a slowly declining Na+ current when external divalent ions are reduced to micromolar levels. Using a series of organic cations as probes of varying size, we measured reversal potentials and calculated permeability ratios relative to Na+, PX/PNa, in order to estimate the diameter of the conducting pore. Ammonium (NH4+) exhibited the highest relative permeability (PNH4/PNa = 1.37). The largest permeant ion, tetramethylammonium with a diameter of 0.55 nm, had PTMA/PNa of 0.09. N-methyl-d-glucamine (0.50 × 0.64 × 1.20 nm) was not measurably permeant. In addition to carrying monovalent current, NH4+ reduced the slow decline of monovalent current (“inactivation”) upon lowering [Ca2+]o. This kinetic effect of extracellular NH4+ can be accounted for by an increase in intracellular pH (pHi), since raising intracellular pH above 8 reduced the extent of inactivation. In addition, decreasing pHi reduced monovalent and divalent current amplitudes through CRAC channels with a pKa of 6.8. In several channel types, Mg2+ has been shown to produce rectification by a voltage-dependent block mechanism. Mg2+ removal from the pipette solution permitted large outward monovalent currents to flow through CRAC channels while also increasing the channel's relative Cs+ conductance and eliminating the inactivation of monovalent current. Boltzmann fits indicate that intracellular Mg2+ contributes to inward rectification by blocking in a voltage-dependent manner, with a zδ product of 1.88. Ca2+ block from the outside was also found to be voltage dependent with zδ of 1.62. These experiments indicate that the CRAC channel, like voltage-gated Ca2+ channels, achieves selectivity for Ca2+ by selective binding in a large pore with current–voltage characteristics shaped by internal Mg2+.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "N- and T-type calcium ion channels"

1

Macabuag, N. "Trafficking of N-type voltage-gated calcium ion channels and their regulation by alternative splicing." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1472878/.

Full text
Abstract:
N-type voltage-gated calcium (CaV2.2) channels are expressed predominantly in the central and peripheral nervous systems and play a crucial role in neurotransmitter release. Expression of these channels at the plasma membrane and in the membrane of presynaptic terminals is key for their function, however, how they are trafficked from the subcellular organelles is still poorly understood. In this study, trafficking of mutually-exclusive alternative splice variants of CaV2.2, containing either exon 37a or 37b at the proximal C-terminus and its mechanisms were examined. CaV2.2 with exon 37a (selectively expressed in nociceptors) reveals a significantly greater intracellular trafficking to the axons and plasma membrane of DRG neurons than CaV2.2 with exon 37b. Further examination of the amino acid sequence in exon 37 uncovers that the canonical binding motifs for adaptor protein 1 (AP-1), YxxΦ and [DE]xxxL[LI], present only in exon 37a are accountable for mediating the enhanced channel trafficking from the trans-Golgi network to the plasma membrane. Finally, the dopamine-2 receptor (D2R) and its agonist-induced activation, reveal differential effects on trafficking of these CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b but not exon 37a, and activation by the D2R-selective agonist quinpirole reversed the effect of the D2R. Disrupting the interaction between adaptor proteins and YxxΦ or [DE]xxxL[LI] in CaV2.2 perturbed these effects, suggesting that the interaction of adaptor proteins with CaV2.2 channels may also be key underlying mechanisms for differential trafficking of CaV2.2 splice variants, mediated by D2R. This study thus reveals key mechanisms involved in the trafficking of N-type calcium channels.
APA, Harvard, Vancouver, ISO, and other styles
2

Tully, Keith. "Channel Specific Calcium Dynamics in PC12 Cells: A Dissertation." eScholarship@UMMS, 2004. https://escholarship.umassmed.edu/gsbs_diss/102.

Full text
Abstract:
Calcium ions (Ca2+) are involved in almost all neuronal functions, providing the link between electrical signals and cellular activity. This work examines the mechanisms by which a neuron can regulate the movement and sequestration of Ca2+ through specific channels such that this ubiquitous ion can encode specific functions. My initial focus was using intracellular calcium ([Ca2+]i) imaging techniques to study the influence of the inhibition of specific voltage gated calcium channels (VGCC) by ethanol on a depolarization induced rise in [Ca2+]i in neurohypophysial nerve terminals. This research took an unexpected turn when I observed an elevation of [Ca2+]i during perfusion with ethanol containing solutions. Control experiments showed this to be an artifactual result not directly attributable to ethanol. It was necessary to track down the source of this artifact in order to proceed with future ethanol experiments. The source of the artifact turned out to be a contaminant leaching from I.V. drip chambers. Due to potential health implications stemming from the use of these drip chambers in a clinical setting as well as potential artifactual results in the ethanol field where these chambers are commonly used, I choose to investigate this phenomenon more rigorously. The agent responsible for this effect was shown to be di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer that has been shown to be carcinogenic in rats and mice. The extraction of this contaminant from the I.V. drip chamber, as measured by spectrophotometry, was time-dependent, and was markedly accelerated by the presence of ethanol in the solution. DEHP added to saline solution caused a rise in [Ca2+]i similar to that elicited by the contaminant containing solution. The rise in calcium required transmembrane flux through membrane channels. Blood levels of DEHP in clinical settings have been shown to exceed the levels which we found to alter [Ca2+]i. This suggests that acute alterations in intracellular calcium should be considered in addition to long-term effects when determining the safety of phthalate-containing plastics. As part of a collaboration between Steven Treistman and Robert Messing's laboratory at UCSF, I participated in a study of how ethanol regulates N-type calcium channels which are known to be inhibited acutely, and upregulated in the chronic presence of ethanol. Specific mRNA splice variants encoding N-type channels were investigated using ribonuclease protection assays and real-time PCR. Three pairs of N-type specific α-subunit Cav2.2 splice variants were examined, with exposure to ethanol observed to increase expression of one alternative splice form in a linker that lacks six bases encoding the amino acids glutamate and threonine (ΔET). Whole cell electrophysiological recordings that I carried out demonstrated a faster rate of channel activation and a shift in the voltage dependence of activation to more negative potentials after chronic alcohol exposure, consistent with increased expression of ΔET variants. These results demonstrate that chronic ethanol exposure not only increases the abundance of N-type calcium channels, but also increases the expression of a Cav2.2 splice variant with kinetics predicted to support a larger and faster rising intracellular calcium signal. This is the first demonstration that ethanol can up-regulate ion channel function through expression of a specific mRNA splice variant, defining a new mechanism underlying the development of drug addiction. Depolarizing a neuron opens voltage gated Ca2+ channels (VGCC), leading to an influx of Ca2+ ions into the cytoplasm, where Ca2+ sensitive signaling cascades are stimulated. How does the ubiquitous calcium ion selectively modulate a large array of neuronal functions? Concurrent electrophysiology and ratiometric calcium imaging were used to measure transmembrane Ca2+ current and the resulting rise and decay of [Ca2+]i, showing that equal amounts of Ca2+ entering through N-type and L-type voltage gated Ca2+ channels result in significantly different [Ca2+]i temporal profiles. When the contribution of N-type channels was reduced, a faster [Ca2+]i decay was observed. Conversely, when the contribution of L-type channels was reduced, [Ca2+]i decay was slower. Potentiating L-type current or inactivating N-type channels both resulted in a more rapid decay of [Ca2+]i. Channel-specific differences in [Ca2+]i decay rates were abolished by depleting intracellular Ca2+ stores suggesting the involvement of Ca2+-induced Ca2+ release (CICR). I was able to conclude that Ca2+ entering through N-type, but not L-type channels, is amplified by ryanodine receptor mediated CICR. Channel-specific activation of CICR generates a unique intracellular Ca2+ signal depending on the route of entry, potentially encoding the selective activation of a subset of Ca2+ -sensitive processes within the neuron.
APA, Harvard, Vancouver, ISO, and other styles
3

Chan, Allen. "Mechanisms of Presynaptic CaV2.2 (N-type) Modulation." Thesis, 2008. http://hdl.handle.net/1807/19479.

Full text
Abstract:
Neurotransmitter release at presynaptic terminals is a complex process involving calcium ion influx through voltage-gated calcium channels (CaV). In addition to their role as entry points through which calcium influx may occur, CaV are now understood to be fundamental components of a common release-site complex that is highly adapted for modulation. Consistent with this model, I investigated mechanisms of modulating a presynaptic calcium channel, CaV2.2, via a heterotrimeric G-protein pathway. Using the patch-clamp technique, I demonstrated in chick dorsal root ganglion (DRG) neurons that the slow kinetics of G-protein inhibition of CaV2.2 via GTPgammaS were limited by the rate of GDP dissociation from the G-protein nucleotide binding site. In addition, I investigated the role of G-protein regulation of CaV2.2 currents evoked by action potential-like stimuli. Here, I characterized an inhibited current that was advanced in time with respect to uninhibited controls. These currents exhibited a shorter latency to current activation and faster deactivation. These findings may have important physiological ramifications on signal transduction and timing. In addition to G-protein regulation, presynaptic CaV2.2 have been demonstrated to exhibit a resistance to voltage-dependent inactivation (VDI), a property thought to be important in determining channel availability and synaptic excitability. I demonstrated a role for dynamic palmitoylation in conferring resistance to VDI in presynaptic terminals of the chick ciliary ganglion. Using tunicamycin, an inhibitor of palmitoylation, I induced a hyperpolarizing shift in the steady-state-inactivation (SSI) profile of presynaptic CaV2.2. Finally, I examined the role of a CaV interacting protein, Munc18, as a potential regulator of CaV. I probed for alterations in CaV2.2 function in DRG neurons that had been transfected with Munc18 or Munc18 siRNA. Despite the intimate interaction between Munc18 and CaV2.2, no major effects on the fundamental characteristics of CaV2.2 function were observed. However, a hyperpolarizing shift in the inactivation profile of CaV2.2 was determined in DRG neurons in which Munc18 was knocked down. It is not clear if this was a direct consequence of Munc18 perturbation.
APA, Harvard, Vancouver, ISO, and other styles
4

Guan, Wendy. "Domain II (S5-P) region in Lymnaea T-type calcium channels and its role in determining biophysical properties, ion selectivity and drug sensitivity." Thesis, 2014. http://hdl.handle.net/10012/8507.

Full text
Abstract:
Invertebrate T-type calcium channels cloned from the great pond snail, Lymnaea Stagnalis (LCav3) possess highly sodium permeant ion channel currents by means of alternative splicing of exon 12. Exon 12 is located on the extracellular turret and the descending helix between segments 5 and segments 6, upstream of the ion selectivity filter in Domain II. Highly-sodium permeant T-type channels are generated without altering the selectivity filter locus, the primary regulatory domain known to govern ion selectivity for calcium and sodium channels. Comparisons of exon 12 sequences between invertebrates and vertebrate T-type channels reveals a conserved pattern of cysteine residues. Calcium-selective mammalian T-type channels possess a single cysteine in exon 12 in comparison to invertebrate T-type channels with either a tri- or penta- cysteine framework. Cysteine residues in exon 12 were substituted with a neutral amino acid, alanine in LCav3 channels harbouring exon 12a and 12b to mimic the turret structure of vertebrate T-type channels. The results generated T-type channels that were even more sodium-permeable than the native T-type channels in snails. Furthermore, permeant divalent ions similar in structure to calcium (eg. barium) were unable to sufficiently block the monovalent ion current of channels lacking cysteines in Domain II, suggesting that the pore is highly sodium permeant, and has weak affinity and block by permeant divalent ions other than calcium. Besides ion selectivity, the cysteine mutated T-type channels were 10 to 100 fold more sensitive to inhibition by nickel and zinc, respectively. The cysteine mutation data highly suggests that the cysteines form an extracellular structure that regulates ion selectivity and shields T-type channels from block by nickel and zinc. In addition, we replaced exon 12 from the sodium permeant snail T-type channel with exon 12 from human Cav3.2 channels. The snail T-type channel with exon 12 from human T-type channels produced a T-type channel that was modestly sodium permeable, but did not confer the high calcium permeability of Cav3.2 channels. These findings suggest that the cysteine containing extracellular domains in exon 12 are not sufficient to generate calcium selective channels similar to human Cav3.2 and likely work in concert with other extracellular domains to regulate the calcium or sodium selectivity of T-type channels.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "N- and T-type calcium ion channels"

1

Nilius, B. "T-Type Calcium Channels in Cardiac Muscle: News in Kinetics and Modulation." In Intracellular Regulation of Ion Channels, 181–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84628-1_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kötter, Rolf, Dirk Schirok, and Karl Zilles. "Dopamine-Mediated Dephosphorylation of N/P-Type Calcium Channels in Striatal Neurons: A Quantitative Model." In Information Processing in Cells and Tissues, 95–106. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5345-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ikeda, Stephen R., and Kathleen Dunlap. "6 Voltage-dependent modulation of N-type calcium channels: Role of G protein subunits." In Ion Channel Regulation, 131–51. Elsevier, 1999. http://dx.doi.org/10.1016/s1040-7952(99)80008-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

LIPSCOMBE, DIANE, SATHAPANA KONGSAMUT, and RICHARD W. TSIEN. "α-Adrenergic inhibition of N-type calcium channels and neurotransmitter release in sympathetic neurones." In Progress in Cell Research, 33–48. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-444-81125-7.50011-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Margaret S. "Recent Progress in the Discovery and Development of N-Type Calcium Channel Modulators for the Treatment of Pain." In Progress in Medicinal Chemistry, 147–86. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-444-63380-4.00004-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "N- and T-type calcium ion channels"

1

Epel, Bernard L., Roger N. Beachy, A. Katz, G. Kotlinzky, M. Erlanger, A. Yahalom, M. Erlanger, and J. Szecsi. Isolation and Characterization of Plasmodesmata Components by Association with Tobacco Mosaic Virus Movement Proteins Fused with the Green Fluorescent Protein from Aequorea victoria. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573996.bard.

Full text
Abstract:
The coordination and regulation of growth and development in multicellular organisms is dependent, in part, on the controlled short and long-distance transport of signaling molecule: In plants, symplastic communication is provided by trans-wall co-axial membranous tunnels termed plasmodesmata (Pd). Plant viruses spread cell-to-cell by altering Pd. This movement scenario necessitates a targeting mechanism that delivers the virus to a Pd and a transport mechanism to move the virion or viral nucleic acid through the Pd channel. The identity of host proteins with which MP interacts, the mechanism of the targeting of the MP to the Pd and biochemical information on how Pd are alter are questions which have been dealt with during this BARD project. The research objectives of the two labs were to continue their biochemical, cellular and molecular studies of Pd composition and function by employing infectious modified clones of TMV in which MP is fused with GFP. We examined Pd composition, and studied the intra- and intercellular targeting mechanism of MP during the infection cycle. Most of the goals we set for ourselves were met. The Israeli PI and collaborators (Oparka et al., 1999) demonstrated that Pd permeability is under developmental control, that Pd in sink tissues indiscriminately traffic proteins of sizes of up to 50 kDa and that during the sink to source transition there is a substantial decrease in Pd permeability. It was shown that companion cells in source phloem tissue export proteins which traffic in phloem and which unload in sink tissue and move cell to cell. The TAU group employing MP:GFP as a fluorescence probe for optimized the procedure for Pd isolation. At least two proteins kinases found to be associated with Pd isolated from source leaves of N. benthamiana, one being a calcium dependent protein kinase. A number of proteins were microsequenced and identified. Polyclonal antibodies were generated against proteins in a purified Pd fraction. A T-7 phage display library was created and used to "biopan" for Pd genes using these antibodies. Selected isolates are being sequenced. The TAU group also examined whether the subcellular targeting of MP:GFP was dependent on processes that occurred only in the presence of the virus or whether targeting was a property indigenous to MP. Mutant non-functional movement proteins were also employed to study partial reactions. Subcellular targeting and movement were shown to be properties indigenous to MP and that these processes do not require other viral elements. The data also suggest post-translational modification of MP is required before the MP can move cell to cell. The USA group monitored the development of the infection and local movement of TMV in N. benthamiana, using viral constructs expressing GFP either fused to the MP of TMV or expressing GFP as a free protein. The fusion protein and/or the free GFP were expressed from either the movement protein subgenomic promoter or from the subgenomic promoter of the coat protein. Observations supported the hypothesis that expression from the cp sgp is regulated differently than expression from the mp sgp (Szecsi et al., 1999). Using immunocytochemistry and electron microscopy, it was determined that paired wall-appressed bodies behind the leading edge of the fluorescent ring induced by TMV-(mp)-MP:GFP contain MP:GFP and the viral replicase. These data suggest that viral spread may be a consequence of the replication process. Observation point out that expression of proteins from the mp sgp is temporary regulated, and degradation of the proteins occurs rapidly or more slowly, depending on protein stability. It is suggested that the MP contains an external degradation signal that contributes to rapid degradation of the protein even if expressed from the constitutive cp sgp. Experiments conducted to determine whether the degradation of GFP and MP:GFP was regulated at the protein or RNA level, indicated that regulation was at the protein level. RNA accumulation in infected protoplast was not always in correlation with protein accumulation, indicating that other mechanisms together with RNA production determine the final intensity and stability of the fluorescent proteins.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography