Dissertations / Theses on the topic 'Myosin mechanics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Myosin mechanics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ökten, Zeynep. "Single molecule mechanics and the myosin family of molecular motors." [S.l.] : [s.n.], 2006. http://www.diss.fu-berlin.de/2006/6/index.html.
Full textPertici, Irene. "The power output of a myosin II-based nanomachine mimicking the striated muscle." Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1041106.
Full textErzberger, Anna. "Actomyosin mechanics at the cell level." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-197642.
Full textBates, Genevieve. "Molecular mechanics of diaphragmatic myosin from a mouse model of Duchenne muscular dystrophy." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97145.
Full textLa dystrophie musculaire de Duchenne (DMD) est une maladie génétique caracterisée par un manque de dystrophine dans la membrane des cellules musculaires, les rendant susceptibles au dommage mécanique. La mort survient suite à l'insuffisance des muscles cardiaques ou respiratoires. Notre hypothèse est que des altérations au niveau des protéines contractiles jouent un rôle dans la faiblesse musculaire de la DMD. Dans cette étude, nous avons mesuré le stress généré par des faisceaux musculaires, la composition des isoformes de la chaîne lourde de myosine (MHC), la vélocité (υmax) de propulsion de l'actine par la myosine, et la force relative de la myosine de diaphragme de souris control et mdx (C57Bl/10). Nous avons observé que le stress est statistiquement plus petit pour la souris mdx (0.23±0.11; moyenne±SE) que pour le control (0.69±0.01), mais que la composition de MHC n'est pas statistiquement différente (type I: p=0.423, type IIa/IIx: p=0.804, type IIb: p=0.401). υmax de la myosine mdx (1.24µm/s±0.07) n'est pas statistiquement différente du control (1.37µm/s±0.12; p=0.353). La force relative n'est pas statistiquement différente entre la myosine control et mdx (p=0.932). Donc des altérations de la fonction moléculaire de la myosine ne contribuent pas à la faiblesse du diaphragme de la souris mdx.
Iliffe, Cathryn Ann. "The kinetics and mechanics of myosin and subfragment-1 from insect flight muscle." Thesis, University of York, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251800.
Full textLéguillette, Renaud. "Expression of smooth muscle myosin heavy chain isoforms in asthma and their molecular mechanics." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103169.
Full textI then quantified the expression of SM-B and several other contractile protein genes in endobronchial biopsies from normal and asthmatic subjects. SM-B, myosin light chain kinase (MLCK), which is responsible for myosin activation, and transgelin, a ubiquitously expressed actin binding protein but whose function is unknown, were overexpressed in the asthmatic biopsies. The increased SM-B expression and myosin activation, due to the increased MLCK expression, both contribute to the increased rate of shortening of the asthmatic airway SM. In addition, I showed that beyond its enzymatic effects, MLCK mechanically enhances numax. The binding of SM22 to actin, however, did not alter numax.
Finally, I addressed the mechanisms behind the unique capacity of SM to maintain force at low energy cost, namely the latch-state. This property is mostly observed in SM-A containing, tonic muscle. Using a laser trap, I measured the binding force of unphosphorylated (non-active) SM-A and SM-B myosin isoforms and found that they can both attach to actin and maintain force. I also measured numax at different MgADP concentrations and found that SM-A has a greater affinity for MgADP. Because MgADP must be released before myosin can detach from actin, these results suggest that the SMA isoform remains attached longer to actin, allowing it to get into the latch-state. These findings explain the greater propensity of tonic muscle to get into the latch-state.
Patel, Sejal. "Myosin regulatory light chain phosphorylation and its role in active mechanics and force generation of the heart." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p1462361.
Full textTitle from first page of PDF file (viewed May 4, 2009). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 43-48).
Düttmann, Markus [Verfasser], and Alexander S. [Akademischer Betreuer] Mikhailov. "Elastic Network Models of Proteins - Uncovering the Internal Mechanics of Actin and Myosin / Markus Düttmann. Betreuer: Alexander S. Mikhailov." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2012. http://d-nb.info/1028912919/34.
Full textPontén, Eva. "Tendon transfer mechanics and donor muscle properties : implications in surgical correction of upper limb muscle imbalance." Doctoral thesis, Umeå universitet, Institutionen för integrativ medicinsk biologi (IMB), 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167.
Full textStreppa, Laura. "Characterizing mechanical properties of living C2C12 myoblasts with single cell indentation experiments : application to Duchenne muscular dystrophy." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN008/document.
Full textThis interdisciplinary thesis was dedicated to the atomic force microscopy (AFM) characterization of the mechanical properties of myoblasts (murine and human) and myotubes (murine). We reported that the mechanical properties of these cells were modified when their actin cytoskeleton (CSK) dynamics was inhibited or altered. Recording single AFM force indentation curves, we showed that adherent layers of myoblasts and myotubes introduced on the AFM cantilever an extra hydrodynamic drag as compared to a solid wall. This phenomenon was dependent on the cantilever scan speed and not negligible even at low scan velocities (1μm/s). We observed that the mechanical properties of the muscle precursor cells became non-linear (plastic behaviour) for large local deformations (>1μm) and that they varied depending on the state, type and environment of the cells. Combining AFM experiments, viscoelastic modeling and multi-scale analyzing methods based on the wavelet transform, we illustrated the variability of the mechanical responses of these cells (from viscoelastic to viscoplastic). Through AFM force indentation curves analysis, morpho-structural imaging (DIC, fluorescence microscopy) and pharmacological treatments, we enlightened the important role of active (ATP-dependent) processes in myoblast mechanics, focusing especially on those related to the molecular motors (myosin II) coupled to the actin filaments. In particular, we showed that the perinuclear actin stress fibers could exhibit some abrupt remodelling events (ruptures), which are characteristic of the ability of these cells to tense their CSK. Finally, we showed that this approach can be generalized to some human clinical cases, namely primary human myoblasts from healthy donors and patients affected by Duchenne muscular dystrophy, paving the way for broader studies on different cell types and diseases
Batters, Christopher. "Single molecule mechanical studies of acto-myosin." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414015.
Full textJackson, Andrew Paul. "The mechanism of the scallop myosin ATPase." Thesis, University of Leicester, 1988. http://hdl.handle.net/2381/35258.
Full textBlanc, Florian. "Exploring chemo-mechanical transduction in the myosin molecular motor through computer simulations." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF066/document.
Full textLife relies on free energy conversions performed by molecular machines. Among them, myosin couples the hydrolysis of ATP to force production on actin through a swing of a « lever-arm ». Completing the cycle requires a regeneration step, the recovery stroke, in which the motor returns to its armed configuration and hydrolyzes ATP. Understanding this chemo-mechanical coupling is critical to unravel the functioning principles of molecular motors. In this thesis, we tackle the problem using molecular simulations. Capitalizing on a new crystal structure of myosin VI, we propose an original mechanism for the recovery stroke in which the re-priming of the lever arm is driven by thermal fluctuations and precedes the closure of the active site, unlike previously accepted models
Vasquez, Claudia G. (Claudia Gabriela). "Mechanisms of myosin regulation and function during tissue folding." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101504.
Full textCataloged from PDF version of thesis. "September 2015."
Includes bibliographical references.
Throughout organismal development, precise three-dimensional organization of tissues is required for proper tissue function. These three-dimensional forms are generated by coordinated cell shape changes that induce global tissue shape changes, such as the transformation of an epithelial sheet into a tube. A model for this transformation occurs early in Drosophila development where approximately 1,000 cells on the ventral side of the embryo constrict their apical sides. Apical constriction drives the formation of a furrow that invaginates, forming a tube, and consequently, a new cell layer in the embryo. Constriction of ventral cells is driven by cycles of assembly and disassembly of actin-myosin networks at the cell apex, called pulses. Pulsatile myosin leads to phases of cellular contraction and cell shape stabilization that result in step-wise apical constriction. While many of the key components of the pathway have been identified, how pulsatile myosin is regulated was previously not well understood. The results presented in this thesis identify mechanisms of regulation of these myosin pulses. First, we demonstrated that cycles of phosphorylation and dephosphorylation of the myosin regulatory light chain are required for myosin pulsing and step-wise apical constriction. Uncoupling myosin from its upstream regulators resulted in loss of pulsatile myosin behavior and continuous, instead of incremental, apical constriction. A consequence of persistent, non-pulsatile myosin is a loss of myosin network integrity as the tissue invaginated. Thus, pulsatile myosin requires tight coordination between its activator and inactivator to generate cycles of myosin assembly, coupled to cellular constriction, and myosin disassembly, associated with cell shape stabilization. Second, we demonstrated that myosin motor activity is required for efficient apical constriction and for effective generation of tissue tension. This work defines essential molecular mechanisms that are required for proper cellular constriction and tissue invagination.
by Claudia G. Vasquez.
Ph. D.
Schwarzl, Sonja M. "Understanding the ATP hydrolysis mechanism in myosin using computer simulation techniques." [S.l. : s.n.], 2005. http://nbn-resolving.de/urn:nbn:de:bsz:16-opus-63890.
Full textAus: S.M. Schwarzl, Understanding the ATP hydrolysis mechanism in myosin using computer simulation techniques, Mensch und Buch Verlag Berlin 2006, ISBN 3-86664-044-7.
Barbier, Lucie. "Study of cellular mechanisms allowing dendritic cell migration in restricted spaces." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL028.
Full textUpon infection, mature dendritic cells (mDCs) migrate from peripheral tissue to lymph nodes and initiate the adaptive immune response. This fast and tightly regulated process imposes a series of physical constraints and is tuned by different microenvironmental factors, such as the physical properties of the tissue. Mechanistically, mDCs migration relies on actomyosin flow and contractility, which are dependent on non‐muscular Myosin IIA activity. However, the specific mechanoresponse that allows mDCs to adapt their migration machinery to irregular 3D landscapes has not been fully characterized. In this work, we combined a series of approaches, from micro‐fabricated devices to ex vivo skin models, to dissect the cytoskeleton rearrangements used by mDCs to overcome the physical barriers imposed by the tissue. We have shown mDCs are able to maintain a constant speed while migrating at different levels of confinement. This reveals the extreme capacity of mDCs to adapt their migration machinery in response to changes in the geometry of their microenvironment. At the cellular level, confinement in microchannels induces a fast and specific actomyosin remodelling in mDCs. This reveals a complete actomyosin rearrangement triggered by confinement, which is essential for mDCs migratory plasticity that allows these cells to move in intricate 3D geometries. The full understanding of how mDCs and other leukocytes adapt their motility to specific tissue structures will provide better knowledge on how cell migration is controlled in confined spaces and new insight to finely tune their migration to promote or prevent immune responses
Burns, Ronald Ian Scott. "Kinetic investigation of the mechanism underlying muscle contraction in myofibrils using T.I.R.F. microscopy." Thesis, King's College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313991.
Full textQin, Xiang. "Controlling mechanism of basal myosin oscillation in epithelial cells during Drosophila tissue elongation." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30006.
Full textTissue morphogenesis in multicellular organisms is very important in both development and human disease. Tissue morphogenesis is driven by bio-mechanic force that is normally generated by molecular motors such as myosin and transmitted via cytoskeleton and adhesion structures within and between cells. Myosin contractility, often as an oscillatory pattern, has been studied mainly in apical but less in basal domains of epithelial cells during development. Basal myosin oscillation is important in control of tissue elongation during Drosophila oogenesis. Although a signal cascade (Rho1-ROCK-myosin-MBS) has been known to regulate myosin activity, the detailed controlling mechanism is unclear. My project is aimed to address two questions: first, what is the upstream factor of this signal cascade? Second, how does this signal cascade create and maintain basal myosin oscillation? For this first question, I am interested in the effect of cell-cell and cell-matrix adhesion in control of this signal cascade governing basal myosin oscillation. Cell-matrix adhesion (Integrin and Talin), but not cell-cell adhesion (E-cadherin), is positively correlated with the intensity and Dorsal-ventral (DV) axis polarity of basal myosin oscillation, indicating that cell-matrix adhesion might be the upstream control of Rho1-myosin signal cascade. Cell-matrix adhesion positively regulates the Rho1 activity near junction and governs the pulsed ROCK and myosin signals within basal-medial domain, thus strongly controlling tissue elongation. Differently, cell-cell adhesion indirectly affects the ROCK and myosin pulses through controlling the subcellular distribution of ROCK and actomyosin network. Inhibition of cell-cell adhesion results in the redistribution of cell-matrix adhesion and F-actin filaments leading to different position of myosin loading, which plays minor effect on tissue elongation. For the second question, I unraveled that basal myosin oscillation is barely dependent on actomyosin cortical tension: inhibition of myosin loading to F-actin filament seems not to affect basal pulsatile myosin flows, while it strongly blocks the periodic cycle of cell contraction and relaxation at basal surface, thus indicating that oscillation is mainly from biochemical reaction rather than cortical tension. This observation highlighted that biochemical reaction is the main control of oscillation occurrence. During basal myosin oscillation, Rho1 proteins and Rho1 activity are mainly distributed and enriched at and near basal junction and the major control of basal myosin oscillation is the flow movement of oscillatory ROCK signals from basal junction to medio-basal cortex. This ROCK flow movement is initiated from the transient interaction of ROCK with active Rho1 at and near basal junction, thus leading to the opening and activation of ROCK kinase capability. During the membrane-medial flow movement, ROCK kinase activity mediates the accumulation and thus the amplification of ROCK signals; this positive signal amplification turns on the phosphorylation of myosin regulatory light chain (MRLC), which governs the dynamic redistribution of MBS. Finally, enriched MBS signals shut off both ROCK and myosin signals. In both study, an optogenetic tool named as LARIAT was built up in vivo to confirm the various status of basal myosin oscillation. Altogether, these results demonstrated two different controls of basal actomyosin signals by cell-matrix adhesion and cell-cell adhesion, and further demonstrated the underlying mechanism of basal myosin oscillation at the biochemical levels
Tyreman, Matthew James Allanson. "Single molecule mechanical studies on the head and neck regions of myosin II." Thesis, University of York, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411476.
Full textSladewski, Thomas Edward. "Molecular Mechanisms Of Mrna Transport By A Class V Myosin And Cytoplasmic Dynein." ScholarWorks @ UVM, 2017. http://scholarworks.uvm.edu/graddis/689.
Full textShanely, R. Andrew. "Protein synthesis and myosin heavy chain mRNA in the rat diaphragm during mechanical ventilation." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE0000607.
Full textAslam, Muhammad. "Effect of cAMP-PKA signaling mechanism on barrier function of cultured endothelial cells : role of myosin light chain phosphatase /." Giessen : VVB Laufersweiler, 2007. http://d-nb.info/987804200/04.
Full textKhoury, Ziad. "Application of dynamic oscillatory rheology and Fourier transform infrared spectroscopy in the study of the mechanism of myosin gelation." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80301.
Full textBabcock, Joseph M. (Joseph Michel). "Effects of cross-link and myosin motor concentrations on active muscle gel contraction time and extent." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112565.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 26).
The cytoskeleton is a crucial network of actin filaments that gives the cell its shape, assists in organelle organization, and allows for cell movement. Active muscle gels are a class of materials that that mimic the functionality of the cytoskeleton. Utilizing myosin II motor proteins to initiate contraction events in actin networks, active muscle gels have the unique potential of acting as microscopic actuators. Two challenges currently faced by active muscle gels are their slow contraction time and weak contraction forces. This thesis seeks to achieve contraction events in a lab setting and observe how contraction speed and extent varies with the concentration of myosin motors and alpha-actinin crosslinks.
by Joseph M. Babcock.
S.B.
Fischer, Andy J. "Muscarinic mechanisms in myopia and ocular growth." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0018/NQ38467.pdf.
Full textLindqvist, Johan. "Cellular and Molecular Mechanisms Underlying Congenital Myopathy-related Weakness." Doctoral thesis, Uppsala universitet, Klinisk neurofysiologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-219460.
Full textArboleda-Estudillo, Yoana. "Mechanical cell properties in germ layer progenitor migration during zebrafish gastrulation." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-27725.
Full textNorman, Holly. "Cellular and Molecular Mechanisms Underlying Acute Quadriplegic Myopathy : Studies in Experimental Animal Models and Intensive Care Unit Patients." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7133.
Full textCaruel, Matthieu. "Mechanics of Fast Force Recovery in striated muscles." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00668301.
Full textIp, Kelvin. "Mechanical integrity of myosin thick filaments of airway smooth muscle in vitro: effects of phosphoryation of the regulatory light chain." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/4131.
Full textArboleda-Estudillo, Yoana. "Mechanical cell properties in germ layer progenitor migration during zebrafish gastrulation." Doctoral thesis, Max-Planck-Institut für Molekulare Zellbiologie und Genetik, 2009. https://tud.qucosa.de/id/qucosa%3A25271.
Full textMiyake, Masahiro. "Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia." Kyoto University, 2015. http://hdl.handle.net/2433/202669.
Full textAranjuez, George Gil Fajardo. "Cellular Mechanisms that Promote the Collective Migratory Behavior of Drosophila Border Cells." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1436369488.
Full textSankara, Narayana Gautham Hari Narayana. "Role of non-muscle myosin-II isoforms in adherens junction biogenesis and collective migration." Thesis, Université de Paris (2019-....), 2019. https://theses.md.univ-paris-diderot.fr/SANKARA_NARAYANA_Gautham_Hari_Naryana_va.pdf.
Full textAdherens junction formation and remodeling is essential for many biological processes like embryo compaction, tissue morphogenesis and wound healing. It is now well described that non-muscle myosin II (NMII) acts as a mechanical support and force-generator for E-cadherin junctions during collective migration and morphogenesis. However, the contribution of NMII during early steps of junction formation remains obscure, probably because of the technical difficulty to catch such a transient event. In this work, we investigate the role of non-muscle myosin II isoforms (NMIIA and NMIIB) during adherens junction biogenesis in MDCK cells, using an in vitro reductionist approach. This system, based on chemically switchable micropatterns allows a spatio-temporal control of adherens junction formation. Our observations on MDCK cells show that the cells form irreversible E-cadherin based contacts, junction elongation is accompanied by the repolarization of actin cytoskeleton and nucleus-centrosome axis. Using isoform-specific ShRNA for NMIIA and IIB, we show that they have distinct contributions to junction formation and dynamics. NMIIA and NMIIB differentially regulate biogenesis of AJ through association with distinct actin networks. Analysis of junction dynamics, actin organization, and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and integrity of AJ
Li, Mingxin. "Celluar and Molecular Mechanisms Underlying Regulation of Skeletal Muscle Contraction in Health and Disease." Doctoral thesis, Uppsala universitet, Klinisk neurofysiologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-123005.
Full textAare, Sudhakar Reddy. "Intensive Care Unit Muscle Wasting : Skeletal Muscle Phenotype and Underlying Molecular Mechanisms." Doctoral thesis, Uppsala universitet, Klinisk neurofysiologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-180374.
Full textSeitz, Laurent B. "Mechanisms affecting post-activation potentiation following voluntary isokinetic knee extension." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2014. https://ro.ecu.edu.au/theses/1557.
Full textMouton, Jacoba Martina. "The role of novel protein-protein interactions in the function and mechanism of the sarcomeric protein, myosin binding protein H (MyBPH)." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86751.
Full textENGLISH ABSTRACT: Left ventricular hypertrophy (LVH) is a major risk factor for cardiovascular morbidity and mortality, and is a feature of common diseases, such as hypertension and diabetes. It is therefore vital to understand the underlying mechanisms influencing its development. However, investigating the mechanisms underlying LVH in such complex disorders can be challenging. For this reason, many researchers have focused their attention on the autosomal dominant cardiac muscle disorder, hypertrophic cardiomyopathy (HCM), since it is considered a model disease in which to study the causal molecular factors underlying isolated cardiac hypertrophy. HCM is a heterogeneous disease that manifests with various phenotypes and clinical symptoms, even in families with the same genetic defects, suggesting that additional factors contribute to the disease phenotype. Despite the identification of several HCM-causing genes, the genetic factors that modify the extent of hypertrophy in HCM patients remain relatively unknown. The gene encoding the sarcomeric protein, cardiac myosin binding protein C, cMyBPC (MyBPC3) is one of the most frequently implicated genes in HCM. Identification of proteins that interact with cMyBPC has led to improved insights into the function of this protein and its role in cardiac hypertrophy. However, very little is known about another member of the myosin binding protein family, myosin binding protein H (MyBPH). Given the sequence homology and similarity in structure between cMyBPC and MyBPH, we propose that MyBPH, like cMyBPC, may play a critical role in the structure and functionality of the cardiac sarcomere and could therefore be involved in HCM pathogenesis. The present study aimed to identify MyBPH-interacting proteins by using yeast two-hybrid (Y2H) analysis and to verify these interactions using three-dimensional (3D) co-localisation and co-immunoprecipitation (Co-IP) analyses. We further hypothesized that both MyBPH and cMyBPC may be involved in autophagy. To test this hypothesis, both MyBPH and cMyBPC were analysed for co-localisation with a marker for autophagy, LC3b-II. The role of MyBPH and cMyBPC in cardiac cell contractility were analysed by measuring the planar cell surface area of differentiated H9c2 rat cardiomyocytes in response to β-adrenergic stress after individual and concurrent siRNA-mediated knockdown of MyBPH and cMyBPC. In the present study we employed a family-based genetic association analysis approach to investigate the contribution of genes encoding the novel MyBPH-interacting proteins in modifying the hypertrophy phenotype. This study investigated the hypertrophy modifying effects of 38 SNPs and haplotypes in four candidate HCM modifier genes, in 388 individuals from 27 HCM families, in which three unique South African HCM-causing founder mutations segregate. Yeast two-hybrid analysis identified three putative MyBPH-interacting proteins namely, cardiac β-myosin heavy chain (MYH7), cardiac α-actin (ACTC1) and the SUMO-conjugating enzyme UBC9 (UBC9). These interactions were verified using both 3D co-localisation and Co-IP analyses. Furthermore, MyBPH and cMyBPC were implicated in autophagy, since both these proteins were being recruited to the membrane of autophagosomes. In addition, a cardiac contractility assay demonstrated that the concurrent siRNA-mediated knockdown of MyBPH and cMyBPC resulted in a significant reduction in cardiomyocyte contractility, compared to individual protein and control knockdowns under conditions of β-adrenergic stress. These results indicated that MyBPH could compensate for cMyBPC, and vice versa, further confirming that both these proteins are required for efficient sarcomere contraction. Results from genetic association analyses found a number of SNPs and haplotypes that had a significant effect on HCM hypertrophy. Single SNP and haplotype analyses identified SNPs and haplotypes within genes encoding MyBPH, MYH7, ACTC1 and UBC9, which contribute to the extent of hypertrophy in HCM. In addition, we found that several variants and haplotypes had markedly different statistical significant effects in the presence of each of the three HCM founder mutations. The results of this study ascribe novel functions to MyBPH. Cardiac MyBPC and MyBPH play a critical role in sarcomere contraction and have been implicated in autophagy. This has further implications for understanding the patho-etiology of HCM-causing mutations in the gene encoding MyBPH and its interacting proteins. This is to our knowledge the first genetic association analysis to investigate the modifying effect of interactors of MyBPH, as indication of the risk for developing LVH in the context of HCM. Our findings suggest that the hypertrophic phenotype of HCM is modulated by the compound effect of a number of variants and haplotypes in MyBPH, and genes encoding protein interactors of MyBPH. These results provide a basis for future studies to investigate the risk profile of hypertrophy development in the context of HCM, which could consequently lead to improved risk stratification and patient management.
AFRIKAANSE OPSOMMING: Linker ventrikulêre hipertrofie (LVH) is 'n primêre risikofaktor vir kardiovaskulêre morbiditeit en mortaliteit asook 'n kenmerk van algemene siektes soos hipertensie en diabetes. Daarom is dit van kardinale belang om te verstaan wat die onderliggende meganismes is wat die ontwikkeling van LVH beïnvloed. Die ondersoek na die onderliggende meganismes wat lei tot LVH in sulke komplekse siektes is ‟n uitdaging. Om hierdie rede fokus baie navorsers hul aandag op die autosomaal dominante hartspier siekte, hipertrofiese kardiomiopatie (HKM), wat beskou word as 'n model siekte om die molekulêre oorsake onderliggend tot geïsoleerde kardiovaskulêre hipertrofie te ondersoek. HKM is 'n heterogene siekte wat manifesteer met verskeie fenotipes en kliniese simptome, selfs in families met dieselfde genetiese defekte, wat impliseer dat addisionele faktore bydra tot die modifisering van die siekte fenotipe. Ten spyte van die identifisering van verskeie HKM-versoorsakende gene, bly die genetiese faktore wat die mate van hipertrofie in HKM pasiente modifiseer relatief onbekend. Die geen wat kodeer vir die sarkomeriese proteïen, kardiale miosien-bindingsproteïen C (kMyBPC) is die algemeenste betrokke in HKM. Die identifisering van proteïene wat bind met kMyBPC het gelei tot verbeterde insigte tot die funksie van hierdie proteïen en die rol wat hierdie proteïen in hipertrofie speel. Ten spyte hiervan, is daar baie min inligting beskikbaar oor 'n ander lid van die miosien-bindingsproteïen families, miosien-bindingsproteïen H (MyBPH). Gegewe die ooreenstemming tussen die DNA basispaar-volgorde en struktuur tussen hierdie twee proteïene, stel ons voor dat MyBPH, net soos kMyBPC, 'n kritiese rol in die struktuur en funksie van die kardiale sarkomeer speel en kan daarom betrokke wees in die patogenese van HKM. Die huidige studie het beoog om proteïene wat met MyBPH bind te identifiseer deur die gebruik van gis-twee-hibried (G2H) kardiale biblioteek sifting en om hierdie interaksies te verifieer met behulp van drie-dimensionele (3D) ko-lokalisering en ko-immunopresipitasie eksperimente. Ons het verder gehipotiseer dat beide MyBPH and kMyBPC betrokke kan wees in outofagie. Om hierdie hipotese te toets is beide MyBPH en kMyBPC geanaliseer vir ko-lokalisering met 'n merker vir outofagie, LC3b-II. Verder het ons beplan om die rol van MyBPH en kMyBPC in kardiale spiersel-sametrekking te ondersoek deur die oppervlak van gedifferensieerde H9c2 rot kardiomiosiete in reaksie op β-adrenergiese stres te meet, na individuele en gesamentlike siRNA-bemiddelde uitklopping van MyBPH en kMyBPC. In hierdie studie het ons 'n familie-gebaseerde genetiese assosiasie analise benadering gevolg om vas te stel of MyBPH en gene wat kodeer vir die geverifieerde bindingsgenote van MyBPH bydra tot die modifisering van die hipertrofiese fenotipe. Die doel van hierdie studie was om die hipertrofiese effek van 38 enkel nukleotied polimorfismes (SNPs) en haplotipes in vier kandidaat HKM modifiserende gene in 388 individue van 27 HCM families te toets, waarin drie unieke Suid-Afrikaanse HKM-stigters mutasies segregeer. G2H analise het drie verneemde MyBPH bindingsgenote geidentifiseer, naamlik miosien (MYH7), alfa kardiale aktien (ACTC1) en die SUMO-konjugerende ensiem UBC9 (UBC9). Hierdie interaksies is geverifieer deur middel van 3D ko-lokalisering en ko-immunopresipitasie analises. Verder is bewys dat MyBPH en kMyBPC betrokke is in outofagie, siende dat beide proteïene gewerf is tot die membraan van die outofagosoom. 'n Kardiale sametrekkings eksperiment het gevind dat die gesamentlike siRNA-bemiddelde uitklopping van MyBPH en kMyBPC 'n merkwaardige vermindering in die kardiomiosiet sametrekking veroorsaak het in reaksie op β-adrenergiese stres kondisies, in vergelyking met die individuele proteïen en kontrole uitkloppings eksperimente. Hierdie resultate bevestig dat MyBPH vir kMyBPC kan instaan en ook andersom, wat verder bevestig dat beide proteïene benodig word vir effektiewe sarkomeer sametrekking. Resultate van die genetiese assosiasie studie het gevind dat 'n aantal SNPs en haplotipes 'n beduidende effek of HKM hipertrofie het. Enkel SNP en haplotipe analises in gene wat kodeer vir MyBPH, MYH7, ACTC1 en UBC9 het SNPs en haplotipes geidentifiseer wat bydra tot die omvang van hipertrofie in HKM. Verder het ons gevind dat sekere SNPs en haplotipes kenmerkend verskillende statisties beduidende effekte in die teenwoordigheid van elk van die drie HKM-stigter mutasies gehad het. Die resultate van hierdie studie skryf twee nuwe funksies aan MyBPH toe. Kardiale MyBPC en MyBPH speel 'n kritiese rol in sarkomeer sametrekking en is betrokke in outofagie. Hierdie resultate het verdere implikasies vir die verstaan van die pato-etiologie van die HKM-veroorsakende mutasies in die MyBPH, MYH7, ACTC1 en UBC9 gene. So vêr dit ons kennis strek is dit die eerste genetiese assosiasie studie wat die modifiserende effek van bindingsgenote van MyBPH ondersoek as risiko aanduiding vir die ontwikkeling van LVH in die konteks van HKM. Ons bevindinge bewys dat die hipertrofiese fenotipe van HKM gemoduleer word deur die komplekse effekte van SNPs en haplotipes in die MyBPH geen en gene wat MyBPH proteïen-bindingsgenote enkodeer. Hierdie resultate verskaf dus 'n basis vir toekomstige studies om die risiko profiel van hipertrofie ontwikkeling met betrekking tot HKM te ondersoek, wat gevolglik kan bydra tot die verbeterde risiko stratifikasie en pasiënte bestuur.
Shelton, Setareh Lillian. "Characterization of mechanisms regulating scleral extracellular matrix remodeling to promote myopia development." Oklahoma City : [s.n.], 2009.
Find full textHolmes, Craig. "Myopia, retirement planning and commitment." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:980da095-60ab-47b5-a4e2-3962085d56ca.
Full textkomariza, Seyed Omid. "ANALYSIS AND MODELING OF THE ROLES OF ACTIN-MYOSIN INTERACTIONS IN BLADDER SMOOTH MUSCLE BIOMECHANICS." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3651.
Full textLlano-Diez, Monica. "Mechanisms Underlying Intensive Care Unit Muscle Wasting : Intervention Strategies in an Experimental Animal Model and in Intensive Care Unit Patients." Doctoral thesis, Uppsala universitet, Klinisk neurofysiologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-173466.
Full textAslam, Muhammad [Verfasser]. "Effect of cAMP-PKA signaling mechanism on barrier function of cultured endothelial cells : role of myosin light chain phosphatase / vorgelegt von Muhammad Aslam." Giessen : VVB Laufersweiler, 2007. http://d-nb.info/988757508/34.
Full textPENNESTRI, MATTEO. "The Mechanism of Myosin Light Chain IQ-motif interaction and its role in the regulation of vesicle traffic in cytokinesis: a structural study." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/439.
Full textCalmodulin, regulatory, and essential myosin light chain are evolutionary conserved proteins that, by binding to IQ motifs of target proteins, regulate essential intracellular processes among which are efficiency of secretory vesicles release at synapsis, intracellular signaling, and regulation of cell division. The yeast Saccharomyces cerevisiae calmodulin Cmd1 and the essential myosin light chain Mlc1p share the ability to interact with the class V myosin Myo2p and Myo4 and the class II myosin Myo1p. These myosins are required for vesicle, organelle, and mRNA transport, spindle orientation, and cytokinesis. We have used the budding yeast model system to study how calmodulin and essential myosin light chain selectively regulate class V myosin function. NMR structural analysis of uncomplexed Mlc1p and interaction studies with the first three IQ motifs of Myo2p show that the structural similarities between Mlc1p and the other members of the EF-hand superfamily of calmodulin-like proteins are mainly restricted to the C-lobe of these proteins. The N-lobe of Mlc1p presents a significantly compact and stable structure that is maintained both in the free and complexed states. The Mlc1p N-lobe interacts with the IQ motif in a manner that is regulated both by the IQ motifs sequence as well as by light chain structural features. These characteristic allows a distinctive interaction of Mlc1p with the first IQ motif of Myo2p when compared with calmodulin. This finding gives us a novel view of how calmodulin and essential light chain, through a differential binding to IQ1 of class V myosin motor, regulate this activity during vegetative growth and cytokinesis.
Sheshka, Raman. "Le rôle mécanique de " power stroke " dans la contraction musculaire." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00784006.
Full textKreutziger, Kareen L. "Investigating the molecular mechanisms of cooperative tension generation in skeletal and cardiac muscle by altering acto-myosin interactions and engineering troponin C calcium binding kinetics /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8060.
Full textWelz, Tobias [Verfasser], and Eugen [Akademischer Betreuer] Kerkhoff. "Mechanisms of force generation for vesicle transport processes: identification and characterisation of the Spir actin nucleator - myosin V motor protein complex / Tobias Welz ; Betreuer: Eugen Kerkhoff." Regensburg : Universitätsbibliothek Regensburg, 2018. http://d-nb.info/1155359461/34.
Full textMcKillop, Daniel F. A. "Studies on the mechanism of regulation of the interaction of actin and myosin subfragment 1 in solution and on the pressure sensitivity of the actomyosin subfragment 1 ATPase." Thesis, University of Bristol, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303879.
Full textFrey, Margo Tilley. "Development of a Substrate with Photo-Modulatable Rigidity for Probing Spatial and Temporal Responses of Cells to Mechanical Signals: A Dissertation." Digital WPI, 2008. https://digitalcommons.wpi.edu/etd-dissertations/337.
Full textRayer, Mégane. "Mécanisme de génération de forces par les cellules apoptotiques lors de la morphogenèse de la drosophile." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30169.
Full textEach animal species acquires a specific shape during development. The generation of mechanical forces is one of the strategies used by cells to sculpt organs. During animal development, the mechanical forces generated in the plane of adherens junctions are important for epithelium remodeling. These planar forces have been extensively studied over the last years. This is particularly the case during apical constriction of mesodermal cells during drosophila embryo gastrulation. The reduction of the cell's apex is considered a fundamental process to trigger invagination of this tissue. However, recently, it has been shown that forces can also be generated along the cell apico-basal axis. The team in which I did my thesis has shown that these forces are important for the formation of folds during drosophila leg development. In this process, before their disappearance, cells form an apico-basal myosin structure, called "myosin cable". The force created by the contraction of the cable is transmitted to the cell's neighbors, inducing cell shape changes progressively resulting in fold formation. However, the mechanisms required for apico-basal force generation remained unknown. The goal of my thesis was to study in detail how the cells destined to die could generate an effective force. We made the hypothesis that the myosin cable should be anchored at the apical and basal cell poles in order to promote a resistance to the cable contraction, and to allow force transmission to the neighbors. Therefore, my aim was to identify these anchoring points thanks to imaging and genetics technics. First, I had identified apical anchor point. Indeed, apoptotic cells reduce their apex but maintain their adherens junctions. The apical extremity of the myosin cable colocalizes to this adhesion structure. Secondly, I searched for the basal anchor point of myosin cable. Surprisingly, I observed that the nucleus of apoptotic cells is systematically relocated on the basal cell half and that the myosin cable contacts it. I tested whether the nucleus plays a role in myosin cable anchorage by perturbing its basal localization. The loss of function of Klarsicht, a LINC complex protein, prevents the cell to deform its neighbors, showing that, in this context the force is strongly or totally abolished. Finally, I have shown that the apoptotic nucleus itself is anchored to the basal side in order to promote a resistance during cable contraction. Indeed, I studied nuclei mobility and showed that apoptotic nuclei are less mobile than non-apoptotic nuclei. I also showed that F-actin and Talin, a basal adhesion component, are required for apoptotic nucleus stability. Furthermore, I have observed that, during cable contraction, the nucleus moves back apically and that it deforms locally. Finally, laser ablation experiments of the myosin cable show an apical recoil of apical surface and a basal recoil of the nucleus. Thus, the force generated by the apoptotic cells is transmitted in the apico-basal axis thanks to the link between apical adherence, cable and nucleus. My work highlights a new mechanism of force generation. This new mechanism of apico-basal force could be conserved in other cell types in additional invagination processes during morphogenesis. My results also show that the nucleus plays a new role, beyond the protection of the genome, by participating actively in force generation