Academic literature on the topic 'Myeloid leukemia'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Myeloid leukemia.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Myeloid leukemia"
Swatler, Julian, Laura Turos-Korgul, Ewa Kozlowska, and Katarzyna Piwocka. "Immunosuppressive Cell Subsets and Factors in Myeloid Leukemias." Cancers 13, no. 6 (March 10, 2021): 1203. http://dx.doi.org/10.3390/cancers13061203.
Full textNamikawa, R., R. Ueda, and S. Kyoizumi. "Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice." Blood 82, no. 8 (October 15, 1993): 2526–36. http://dx.doi.org/10.1182/blood.v82.8.2526.2526.
Full textNamikawa, R., R. Ueda, and S. Kyoizumi. "Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice." Blood 82, no. 8 (October 15, 1993): 2526–36. http://dx.doi.org/10.1182/blood.v82.8.2526.bloodjournal8282526.
Full textAue, Georg, Yang Du, Susan M. Cleveland, Stephen B. Smith, Utpal P. Davé, Delong Liu, Marc A. Weniger, et al. "Sox4 cooperates with PU.1 haploinsufficiency in murine myeloid leukemia." Blood 118, no. 17 (October 27, 2011): 4674–81. http://dx.doi.org/10.1182/blood-2011-04-351528.
Full textShvachko, L. P. "EMT-mechanizm induces the leukemic stemness phenotype in myeloid leukemias." Faktori eksperimental'noi evolucii organizmiv 23 (September 9, 2018): 256–60. http://dx.doi.org/10.7124/feeo.v23.1024.
Full textJamieson, Catriona, Sidd Jaiswal, David Traver, Jason Gotlib, Mark Chao, and Irving L. Weissman. "Increased Expression of CD47 Is a Constant Marker in Mouse and Human Myeloid Leukemias." Blood 106, no. 11 (November 16, 2005): 3260. http://dx.doi.org/10.1182/blood.v106.11.3260.3260.
Full textВойцеховский, Валерий, Valeriy Voytsekhovskiy, Татьяна Заболотских, Tat'yana Zabolotskikh, Алексей Григоренко, Aleksey Grigorenko, Екатерина Филатова, and Ekaterina Filatova. "DAMAGE OF THE BRONCHOPULMONARY SYSTEM IN PATIENTS WITH CHRONIC HEMOBLASTOSIS." Bulletin physiology and pathology of respiration 1, no. 69 (October 5, 2018): 25–35. http://dx.doi.org/10.12737/article_5b975083a62278.59044240.
Full textBento, Marta Leal, Luís Carvalho, Zhewei Chen, Ana Coelho, Cong Tang, and Gonçalo Bernardes. "Acute Myeloid and Lymphoblastic Leukemias: A NPM1 Targeting Strategy." Blood 142, Supplement 1 (November 28, 2023): 7147. http://dx.doi.org/10.1182/blood-2023-172497.
Full textLongo, Giuseppe S. A., Richard Gorlick, William P. Tong, Emine Ercikan, and Joseph R. Bertino. "Disparate Affinities of Antifolates for Folylpolyglutamate Synthetase From Human Leukemia Cells." Blood 90, no. 3 (August 1, 1997): 1241–45. http://dx.doi.org/10.1182/blood.v90.3.1241.
Full textLongo, Giuseppe S. A., Richard Gorlick, William P. Tong, Emine Ercikan, and Joseph R. Bertino. "Disparate Affinities of Antifolates for Folylpolyglutamate Synthetase From Human Leukemia Cells." Blood 90, no. 3 (August 1, 1997): 1241–45. http://dx.doi.org/10.1182/blood.v90.3.1241.1241_1241_1245.
Full textDissertations / Theses on the topic "Myeloid leukemia"
Cheung, Man-sze, and 張敏思. "Characterization of Leukemic stem cells in acute myeloid Leukemia." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40687582.
Full textCheung, Man-sze. "Characterization of Leukemic stem cells in acute myeloid Leukemia." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40687582.
Full textYaseen, Mumtaz. "Proteomics of Acute Myeloid Leukemia:." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-69882.
Full textGunnarsson, Niklas. "Chronic myeloid leukemia and cancer." Doctoral thesis, Umeå universitet, Medicin, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-141144.
Full textVARINELLI, MARCO. "MODELLING CHRONIC MYELOID LEUKEMIA IN ZEBRAFISH." Doctoral thesis, Università degli studi di Brescia, 2021. http://hdl.handle.net/11379/544088.
Full textCornforth, Terri Victoria. "Characterising the cell biology of leukemic stem cells in acute myeloid leukemia." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:654b2176-fd50-427e-86f2-74e928054bef.
Full textZhang, Lu [Verfasser]. "Immunogenicity of leukemia stem cells in acute myeloid leukemia / Lu Zhang." Ulm : Universität Ulm. Medizinische Fakultät, 2012. http://d-nb.info/1020022574/34.
Full textGarcía, Montolío Marc 1991. "The Role of PHF19 in myeloid leukemia." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/667911.
Full textEl complejo de proteínas Polycomb (PcG), es un grupo de reguladores epigenéticos altamente conservados que participan en distintas funciones biológicas como el desarrollo embrionario, la auto renovación de las células madre, la proliferación y están involucradas también en cáncer. La proteína PHD finger 19 (PHF19), es un factor asociado al complejo represor Polycomb 2 (PRC2). PHF19 ha sido propuesta como reguladora de la actividad de PRC2 en células madre embrionarias. También se ha visto que esta sobreexpressada en diferentes canceres y líneas celulares cancerígenas. Nosotros hemos demostrado que la eliminación de PHF19 disminuye la proliferación de las líneas celulares mieloides cancerígenas. Hemos demostrado que la depleción de PHF19 en las células de leucemia crónica mieloide las induce a diferenciarse hacia eritrocitos. Mecánicamente, hemos demostrado que PHF19 regula la proliferación de esta línea celular mediante su interacción con el regulador de ciclo celular p21. Además, hemos observado que MTF2, un homólogo de PHF19, se deposita en aquellos genes donde previamente estaba PHF19. En conjunto, nuestros resultados muestran que PHF19 es un factor transcripcional clave en líneas celulares mieloides y sugieren que la inhibición de PHF19 podría ser una potencial diana para ser explorada para el tratamiento de la leucemia mieloide.
Palle, Josefine. "Optimizing Chemotherapy in Childhood Acute Myeloid Leukemia." Doctoral thesis, Uppsala University, Department of Women's and Children's Health, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9189.
Full textDespite major advances in our understanding of the biology of childhood acute myeloid leukemia (AML) and the development of new cytotoxic drugs, the prognosis of long-term survival is still only 60-65 %.
In the present research, we studied the pharmacokinetics of drugs used in the induction therapy of childhood AML and performed in vitro drug sensitivity testing of leukemic cells from children with AML.
The aims of the studies were to correlate the results of the analysis to biological and clinical parameters and to identify subgroups of AML with specific drug sensitivity profiles in order to better understand why treatment fails in some patients and how therapy may be improved.
Blood samples were analysed to study the pharmacokinetics of doxorubicin (n=41), etoposide (n=45) and 6-thioguanine (n=50). Doxorubicin plasma concentration and total body clearance were correlated to the effect of induction therapy, and doxorubicin plasma concentration was an independent factor for complete remission, both in univariate and multivariate analysis including sex, age, and white blood cell count at diagnosis. For etoposide and 6-thioguanine no correlation was found between pharmacokinetics and clinical effect. Children with Down syndrome (DS) tended to reach higher blood concentrations of etoposide and thioguanine nucleotides, indicating that dose reduction may be reasonable to reach the same drug exposure as in children without DS.
Leukemic cells from 201 children with newly diagnosed AML, 15 of whom had DS, were successfully analysed for in vitro drug sensitivity by the fluorometric microculture cytotoxicity assay (FMCA). We found that samples from children with DS were highly sensitive to most drugs used in AML treatment. In non-DS children, the t(9;11) samples were significantly more sensitive to cytarabine (p=0.03) and doxorubicin (p=0.035) than other samples. The findings might explain the very favorable outcome reported in children with DS and t(9;11)-positive AML. A specific drug resistance profile was found for several other genetic subgroups as well. A detailed study of MLL-rearranged leukemia showed that cellular drug sensitivity is correlated both to partner genes and cell lineage, findings that support the strategy of contemporary protocols to include high-dose cytarabine in the treatment of patients with MLL-rearrangement, both in AML and acute lymphoblastic leukemia (ALL).
Our results indicate that drug resistance and pharmacokinetic studies may yield important information regarding drug response in different sub-groups of childhood AML, helping us to optimize future chemotherapy in childhood AML.
Watson, Alexander Scarth. "Autophagy in hematopoiesis and acute myeloid leukemia." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:2e66c5c3-4774-44d1-8345-d0dc827da16d.
Full textBooks on the topic "Myeloid leukemia"
Harry, Iland, Hertzberg Mark, and Marlton Paula. Myeloid Leukemia. New Jersey: Humana Press, 2005. http://dx.doi.org/10.1385/1597450170.
Full textRöllig, Christoph, and Gert J. Ossenkoppele, eds. Acute Myeloid Leukemia. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8.
Full textHehlmann, Rüdiger, ed. Chronic Myeloid Leukemia. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71913-5.
Full textLi, Shaoguang, and Haojian Zhang, eds. Chronic Myeloid Leukemia. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-4011-0.
Full textHehlmann, Rüdiger, ed. Chronic Myeloid Leukemia. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33198-0.
Full textFortina, Paolo, Eric Londin, Jason Y. Park, and Larry J. Kricka, eds. Acute Myeloid Leukemia. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7142-8.
Full textE, Cortés F. Jorge, and Deininger Michael, eds. Chronic myeloid leukemia. New York: Informa Healthcare, 2007.
Find full textHughes, Timothy P., David M. Ross, and Junia V. Melo. Handbook of Chronic Myeloid Leukemia. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08350-6.
Full textHarry, Iland, Hertzberg Mark, and Marlton Paula, eds. Myeloid leukemia: Methods and protocols. Totowa, N.J: Humana Press, 2006.
Find full textSaglio, Giuseppe, and Carmen Fava. The Treatment of Chronic Myeloid Leukemia. Unitec House, 2 Albert Place, London N3 1QB, UK: Future Medicine Ltd, 2013. http://dx.doi.org/10.2217/9781780842738.
Full textBook chapters on the topic "Myeloid leukemia"
Voso, Maria Teresa, Eleonora De Bellis, and Tiziana Ottone. "Diagnosis and Classification of AML: WHO 2016." In Acute Myeloid Leukemia, 23–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8_2.
Full textKayser, Sabine, and Uwe Platzbecker. "Management of Acute Promyelocytic Leukemia." In Acute Myeloid Leukemia, 177–97. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8_8.
Full textJaramillo, Sonia, and Richard F. Schlenk. "Treatment of Relapsed and Refractory AML: Intensive Approach in Fit Patients." In Acute Myeloid Leukemia, 233–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8_11.
Full textBornhäuser, Martin. "Allogeneic Hematopoietic Cell Transplantation." In Acute Myeloid Leukemia, 255–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8_13.
Full textItzykson, Raphael, Marco Cerrano, and Jordi Esteve. "Prognostic Factors in AML." In Acute Myeloid Leukemia, 127–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8_7.
Full textWierzbowska, Agnieszka, and Magdalena Czemerska. "Clinical Manifestation and Diagnostic Workup." In Acute Myeloid Leukemia, 119–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8_6.
Full textSprute, Rosanne, and Oliver A. Cornely. "Special Clinical Scenarios: Infectious Complications and Prophylaxis." In Acute Myeloid Leukemia, 285–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8_16.
Full textVenditti, Adriano, Peter J. M. Valk, Nigel H. Russell, and Sylvie D. Freeman. "Future Developments: Measurable Residual Disease." In Acute Myeloid Leukemia, 317–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8_18.
Full textBug, Gesine, and Halvard Bonig. "Special Clinical Scenarios: Hyperleukocytosis." In Acute Myeloid Leukemia, 267–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8_14.
Full textEstey, Elihu. "Future Developments: Innovative Trial Design." In Acute Myeloid Leukemia, 349–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72676-8_20.
Full textConference papers on the topic "Myeloid leukemia"
DeMarco, B., M. O. Al-Qadi, S. S. Carson, and S. Ghosh. "Leukemic Pleural Effusion in Acute Myeloid Leukemia." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a4863.
Full textRosenbluth, Michael J., Wilbur A. Lam, and Daniel A. Fletcher. "Contribution of Cell Mechanics to Acute Leukemia." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59881.
Full textAhmed Mustafa, Srwa, and Gullanar M Hadi. "Automated Leukemia Detection using K-means Clustering for Feature Extraction." In 5TH INTERNATIONAL CONFERENCE ON COMMUNICATION ENGINEERING AND COMPUTER SCIENCE (CIC-COCOS'24). Cihan University-Erbil, 2024. http://dx.doi.org/10.24086/cocos2024/paper.1529.
Full textKulkarni, Shrinidhi. "CRISPR Solution to Cure Acute Myeloid Leukemia." In 8th North American Conference on Industrial Engineering and Operations Management. Michigan, USA: IEOM Society International, 2023. http://dx.doi.org/10.46254/na8.20230275.
Full textSultonova, Sherozakhon. "CLINICAL-HEMATOLOGICAL FEATURES OF CHRONIC MYELOID LEUKEMIA." In RICERCHE SCIENTIFICHE E METODI DELLA LORO REALIZZAZIONE: ESPERIENZA MONDIALE E REALTÀ DOMESTICHE, chair Din Mohammad, Khamid Karimov, Kodirjon Boboyev, and Khamida Kazakbayeva. European Scientific Platform, 2021. http://dx.doi.org/10.36074/logos-26.11.2021.v3.22.
Full textVerhagen, Han, Marjon Smit, David de Leeuw, Arjo Rutten, Mei-Ling Tsui, Fedor Denkers, Monique Terwijn, et al. "Abstract 2339: IGFBP7 eradicates leukemic stem and progenitor cells in acute myeloid leukemia." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2339.
Full textShin, J. W., and D. J. Mooney. "Myeloid leukemia subtype-dependent sensitivity to matrix mechanics." In 2014 40th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2014. http://dx.doi.org/10.1109/nebec.2014.6972939.
Full textDai, Aili, Chen Zhao, C. Cameron Yin, Ling Chen, Xiaoping Sun, Sanat Dave, Xiaoyan Huang, Yu H. Zhang, Xin Han, and M. James You. "Abstract 170: Hypermethylation ofDBCCR1gene in acute myeloid leukemia." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-170.
Full textAl-Qadi, M. O., M. Hunsucker, and J. Akulian. "Acute Myeloid Leukemia Arising from Pleural Extramedullary Hematopoiesis." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a6702.
Full textRahman, Rabi’Atul’Adawiyah Abdul, Mohd Yusoff Mashor, Rafikha Aliana Binti A. Raof, Rosline Hassan, Nazahah Binti Mustafa, Siti Nurul Aqmariah Binti Mohd Kanafiah, Khairul Shakir Bin Ab Rahman, and Razan Hayati Zulkeflee. "Feature Targeted Image Enhancement for Acute Myeloid Leukemia." In 2023 International Workshop on Artificial Intelligence and Image Processing (IWAIIP). IEEE, 2023. http://dx.doi.org/10.1109/iwaiip58158.2023.10462885.
Full textReports on the topic "Myeloid leukemia"
Jangid, Ajay, Anurag Mishra, Rachit Raj, Sumit Kumar, Priyanka Munjal, and Neha Pandey. Chronic Myeloid Leukemia (CML) as Surgical Emergency. Science Repository, March 2024. http://dx.doi.org/10.31487/j.ajscr.2024.01.02.
Full textMuller-Sieburg, Christa. Myeloid-Biased Stem Cells as Potential Targets for Chronic Myelogeneous Leukemia. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada447669.
Full textFLORIDA UNIV GAINESVILLE. Dissection of the Pathogenesis of Neurofibromatosis Type 1-Associated myeloid Leukemia. Fort Belvoir, VA: Defense Technical Information Center, October 1998. http://dx.doi.org/10.21236/ada359875.
Full textBrannan, Camilynn I. Dissection of the Pathogenesis of Neurofibromatosis Type 1-Associated Myeloid Leukemia. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada391284.
Full textBrannan, Camilynn I. Dissection of the Pathogenesis of Neurofibromatosis Type 1-Associated Myeloid Leukemia. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada392474.
Full textUntaaveesup, Suvijak, Sasinipa Trithiphen, Kamolchanok Kulchutisin, Tarinee Rungjirajittranon, Sujitra Panyoy, Thanapon Kaokunakorn, Nattawut Leelakanok, and Weerapat Owattanapanich. Genetic Alterations in Extramedullary Leukemia among Acute Myeloid Leukemia Patients: Insights from a Cohort Study and Meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2023. http://dx.doi.org/10.37766/inplasy2023.8.0091.
Full textZhang, Chengcheng. Dissecting the Role of IGFBP-2 in Development of Acute Myeloid Leukemia. Fort Belvoir, VA: Defense Technical Information Center, June 2011. http://dx.doi.org/10.21236/ada555017.
Full textZhang, Dong-Er. Protein ISG15 Modification in the Development and the Treatment of Chronic Myeloid Leukemia. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada482354.
Full textSorror, Mohamed L., Barry E. Storer, and Elihu H. Estey. Comparing Hematopoietic Cell Transplant versus Other Treatments for Adults with Acute Myeloid Leukemia. Patient-Centered Outcomes Research Institute (PCORI), January 2021. http://dx.doi.org/10.25302/01.2021.ce.13047451.
Full textTremblay, Michel. Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of Chronic Myeloid Leukemia. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada462811.
Full text