Academic literature on the topic 'Mycoherbicide'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mycoherbicide.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mycoherbicide"
Egley, Grant H., and C. Douglas Boyette. "Water-Corn Oil Emulsion Enhances Conidia Germination and Mycoherbicidal Activity ofColletotrichum truncatum." Weed Science 43, no. 2 (June 1995): 312–17. http://dx.doi.org/10.1017/s0043174500081236.
Full textRay, Puja, and Lakshmi Sumitra Vijayachandran. "Evaluation of Indigenous Fungal Pathogens from Horse Purslane (Trianthema portulacastrum) for Their Relative Virulence and Host Range Assessments to Select a Potential Mycoherbicidal Agent." Weed Science 61, no. 4 (December 2013): 580–85. http://dx.doi.org/10.1614/ws-d-12-00076.1.
Full textGeng, R. M., J. P. Zhang, and L. Q. Yu. "Helminthosporium gramineum Rabehn f.sp. echinochloae Conidia for Biological Control of Barnyardgrass." Weed Science 57, no. 5 (October 2009): 554–61. http://dx.doi.org/10.1614/ws-09-036.1.
Full textGressel, Jonathan. "Herbicides as Synergists for Mycoherbicides, and Vice Versa." Weed Science 58, no. 3 (September 2010): 324–28. http://dx.doi.org/10.1614/ws-09-071.1.
Full textSokornova, Sofia, Galina Frolova, Alexey Shavarda, Natalia Pavlova, and Alexander Berestetskiy. "The influence of the carbohydrate levels on viability of Stagonospora cirsii drying mycelium." BIO Web of Conferences 18 (2020): 00028. http://dx.doi.org/10.1051/bioconf/20201800028.
Full textWall, R. E., R. Prasad, and S. F. Shamoun. "The development and potential role of mycoherbicides for forestry." Forestry Chronicle 68, no. 6 (December 1, 1992): 736–41. http://dx.doi.org/10.5558/tfc68736-6.
Full textBourdot, G. W., G. A. Hurrell, and D. J. Saville. "Wounding of Cirsium arvense enhances the efficacy of Sclerotinia sclerotiorum as a mycoherbicide." New Zealand Plant Protection 57 (August 1, 2004): 292–97. http://dx.doi.org/10.30843/nzpp.2004.57.6975.
Full textMaia, Cláudio Belmino, Paulo Alexandre Fernandes Rodrigues de Melo, Robert Weingart Barreto, Luiz Antônio Maffia, O. correto é. Kedma Maria Silva Pinto, Ilka Márcia Ribeiro de Souza Serra, Antonia Alice Costa Rodrigues, Mário Luiz Ribeiro Mesquita, Aline Priscilla Gomes da Silva, and Janaina Marques Mondego. "Potential of Colletotrichum typhae H.C Greene mycoherbicide for bio-control of Southern cattail (Typha domingensis Pers.) plants." February 2020, no. 14(02):2020 (February 20, 2020): 278–85. http://dx.doi.org/10.21475/ajcs.20.14.02.p2170.
Full textUpadhyay, Rajeev K., Doug Kenfield, Gary A. Strobel, and Wilford M. Hess. "Ascochyta cypericola sp.nov. causing leaf blight of purple nutsedge (Cyperus rotundus)." Canadian Journal of Botany 69, no. 4 (April 1, 1991): 797–802. http://dx.doi.org/10.1139/b91-103.
Full textDaigle, Donald J., and Peter J. Cotty. "Stability ofColletotrichum truncatumin culture influences mycoherbicide efficacy." Mycologia 86, no. 3 (May 1994): 397–400. http://dx.doi.org/10.1080/00275514.1994.12026426.
Full textDissertations / Theses on the topic "Mycoherbicide"
Womack, Jonathan G. "Development of a mycoherbicide for bracken control." Thesis, University of Strathclyde, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336477.
Full textAllan, William. "Ascochyta hyalospora : a potential mycoherbicide for control of Chenopodium album." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=64031.
Full textMasangkay, Rhomela Favila. "Alternaria alternata f. sp. sphenocleae, a potential mycoherbicide of gooseweed (Sphenoclea zeylanica gaertner)." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42093.
Full textMasangkay, Rhomela Favila. "Alternaria alternata f. sp. sphenocleae, a potential mycoherbicide of gooseweed, Sphenoclea zeylanica Gaertner." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0022/NQ30335.pdf.
Full textZeeshan, Kashif. "Optimization of the production of Plectosporium alismatis, a potential mycoherbicide against Alismataceous weeds in rice." Brest, 2010. http://www.theses.fr/2010BRES2002.
Full textThe objective of this thesis was to develop an efficient mycoherbicide based on the stable propagules produced by Plectosporium alismatis, a potential mycoherbicide in rice crops. The fungus produced conidia (109 L-1) and chlamydospores (108 L-1) in shake-flasks. Nitrate was required for production of chlamydospores which had a ligher shelf-life (6. 6% germination after 4 months) compared to conidia. The presence of aggregates (containing chlamydospores) ws also observed in nitrate-based medium. These aggregates may increase P. Alismatis resistance against environmental constraints. To overcome the lack of culture reproducibility due to aggregates’ heterogeneous nature, an alternative, the production of homogeneous spherical aggregates (i. E. , pellets) was developed. In a new medium “Aggregate Production Medium (APM)” in which up to 2. 8 x l05 pellets L-1, 6. 5 x l09 conidia L-1 and 9. 6 x 108 chlamydospores L-1 were produced. When maximal number of free propagules (~104 conidia and ~2 x 102 chlamydospores) was not able to infect leaf when dried and exposed to U, only a single pellet was required to induce disease in the same conditions. We conclude that pellets were far more pathogenic and tolerant to desiccation and UV compared to conidia. In shelf-life experiments, diatomite formulation containing free conidia, free chlamydospores and pellets, stored at 4°C survived for a long period (12% germination after 9 months) and remained pathogenic. In conclusion, P. Alismatis can produce pellets in APM, and diatomite formulations based on these pellet-containing cultures could satisfy the requirements for an efficient mycoherbicide
Chin, Alice. "Evaluation of Macrophoma sp. as a potential mycoherbicide for the control of Amaranthus retroflexus L. (redroot pigweed)." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23876.
Full textKotze, Louis Jacobus Daniel. "Risk assessment of the Acacia cyclops dieback pathogen, Pseudolagarobasidium acaciicola, as a mycoherbicide in the South African strandveld and limestone fynbos." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86551.
Full textENGLISH ABSTRACT: Acacia cyclops, an invasive weed in South Africa, was initially imported to stabilize the sand dunes in the southern Cape. The spread of A. cyclops is a major threat to the fragile biodiversity of the strandveld and limestone fynbos vegetation. Acacia cyclops dieback has been observed for some time, although the causative agent, Pseudolagarobasidium acaciicola, has only recently been described. This fungus is nominated for development as a mycoherbicide to control A. cyclops. Although current biological and mechanical control efforts are proving to be partially effective, A. cyclops is still causing major damage to natural ecosystems. The introduction of a mycoherbicide would increase the cost effectiveness of controlling this weed in the long term. The majority of the literature that was reviewed supports the use of mycoherbicides as biocontrol agents, especially when taking into account the decrease in acceptance and availability of chemical control agents. Considering that the Pseudolagarobasidium genus consists of saprobes, opportunistic facultative pathogens and endophytes, P. acaciicola is predicted to have similar biological characteristics. The species is also highly likely to be indigenous, although with a wider distribution range than previously envisaged. Strict precautions should still however be taken to ensure that non-target species will not be threatened. This study consists of a unique risk assessment comprising different sections. A field survey was performed to record disease incidence among indigenous woody plant species around 100 diseased A. cyclops trees. Subsequently, DNA extractions were made from the roots of the diseased indigenous plants and A. cyclops trees to verify the presence of P. acaciicola. Of the 2432 indigenous woody plants observed, 22 (0.9%) were dead or dying, while P. acaciicola was detected in 10 of these (0.4%), representing six species. Pseudolagarobasidium acaciicola was detected in 47% of the A. cyclops trees. Although P. acaciicola could be a weak pathogen in a broad range of indigenous plant species, the extremely low disease incidence is an indication of a low level of risk associated with using P. acaciicola as a mycoherbicide. Additionally, pathogenicity trials on indigenous plant species were conducted to give an indication of host susceptibility. A total of 30 indigenous plant species were wound inoculated at two field sites, and potted plants representing 17 indigenous plant species were wound and soil inoculated in a nursery. The optimum growth temperature for P. acaciicola was determined in order to understand it’s seasonal and landscape preference. Mortality was recorded in five of nine indigenous Fabaceae species, while a single plant each of four other non-Fabaceae species died after inoculation. No plants outside the Fabaceae family died in the field. Only A. cyclops seedlings died following soil inoculation. Longitudinal sections of stem inoculated plants revealed no systemic infection in Fabaceae species that survived inoculation. Infection in susceptible Fabaceae species was generally more extensive than infection in susceptible non-Fabaceae species. The optimum growth rate for P. acaciicola was determined at 35°C, indicating an adaptation to summer conditions. Indigenous Fabaceae species do display greater susceptibility than species from other families, indicating some level of specificity, although susceptible species can not be phylogenetically circumscribed. Aside from being a facultative pathogen on A. cyclops, results from this study suggest that P. acaciicola is primarily a saprophyte and an occasional opportunistic pathogen on some indigenous Fabaceae, possibly only being a weak opportunistic pathogen on some non-Fabaceae species. However, the risk of not effectively managing A. cyclops populations in these threatened vegetation types outweighs the risk associated with using P. acaciicola as a mycoherbicide. Therefore the use of P. acaciicola as a mycoherbicide on A. cyclops would be recommended, provided that sufficient monitoring of treated sites is implemented that primarily focus on the indigenous Fabaceae species. The effective control of A. cyclops could be achieved when P. acaciicola is used to compliment current mechanical, biological and chemical control methods in an integrated management strategy.
AFRIKAANSE OPSOMMING: Acacia cyclops, ook bekend as rooikrans, is ‘n indringerplant in Suid-Afrika wat oorspronklik vanaf Australië ingevoer is om die sandduine in die Kaap te stabiliseer. Die verspreiding van rooikrans bedreig die sensitiewe biodiversiteit van die strandveld en kalksteen fynbos. Rooikrans terugsterwing is al vir ‘n geruime tyd opvallend in die grootste deel van die plant se verspreiding in Suid-Afrika, alhoewel die veroorsakende organisme, Pseudolagarobasidium acaciicola, eers onlangs beskryf is. Hierdie swam is as ‘n geskikte kandidaat vir die ontwikkeling van ‘n biologiese onkruiddoder om rooikrans te beheer, genomineer. Alhoewel die huidige biologiese- en meganiese beheer metodes vir rooikrans gedeeltelik suksesvol is, hou dié indringer steeds ‘n ernstige bedreiging vir die natuurlike ekosisteme in. Die gebruik van ‘n swam-gebaseerde onkruiddoder sal die beheer van rooikrans oor die langtermyn meer koste-effektief maak. Die oorgrote meerderheid van die literatuur wat hersien is, ondersteun die gebruik van swam-gebaseerde onkruiddoders as biologiese beheermiddels, veral as die afname in aanvaarbaarheid en beskikbaarheid van chemiese beheermiddels in ag geneem word. Aangesien die Pseudolagarobasidium genus uit saprofiete, opportunistiese fakultatiewe patogene en endofiete bestaan, word daar voorspel dat P. acaciicola ‘n soortgelyke biologiese karakter sal hê. Dit is hoogs waarskynlik dat hierdie swamspesie inheems is, alhoewel die verspreiding wyer mag wees as wat oorspronklik voorspel is. Streng maatreëls moet egter steeds in plek wees om te verseker dat nie-teiken plantspesies nie bedreig word nie. Hierdie studie bestaan uit ‘n unieke risiko-analise met verkeie onderafdelings. ‘n Veld-opname is uitgevoer om die siekte-voorkoms van die inheemse houtagtige plantspesies rondom ‘n 100 siek rooikrans plante te bepaal. DNA ekstraksies is vervolgens vanuit die wortels van siek inheemse plantspesies en -rooikrans uitgevoer, om uiteindelik die teenwoordigheid van P. acaciicola binne die hout te kon bevestig. Uit ‘n totaal van 2432 inheemse houtagtige plante wat aangeteken is, was 22 (0.9%) siek of dood, terwyl die teenwoordigheid van P. acaciicola in 10 van hierdie plante (0.4%), wat ses spesies teenwoordig, bevestig is. Die teewoordigheid van P. acaciicola is ook in 47% van die rooikrans bevestig. Alhoewel P. acaciicola moontlik ‘n swak opportunistiese patogeen op ‘n verskeidenheid inheemse plantspesies is, dui die lae verhouding van dooie inheemse plante teenoor gesonde plante in die veld op ‘n lae risiko vir die gebruik van P. acaciicola as ‘n biologiese onkruiddoder. Patogenisiteitstoetse is op inheemse plantspesies uitgevoer om ‘n aanduiding van gasheervatbaarheid te verkry. Wond-inokulasies is op ‘n totaal van 30 inheemse plantspesies by twee veldstudie-areas uitgevoer, terwyl wond- en grond-inokulasies op 17 inheemse spesies potplante in die kweekhuis uitgevoer is. Die optimale temperatuur waarby P. acaciicola groei, is bepaal om die swam se seisoenale- en habitatsvoorkeure beter te verstaan. Plante van vyf uit die nege inheemse Fabaceae spesies het doodgegaan, terwyl ‘n enkele plant van vier nie-Fabaceae spesies doodgegaan het. Alle plante buite die Fabaceae familie het oorleef in die veld na inokulasie. Slegs rooikranssaailinge het na grond inokulasie doodgegaan. Lengtedeursnee van die stam en wortels van elke geïnokuleerde plant het bevestig dat daar geen sistemiese infeksie in Fabaceae spesies wat inokulasie oorleef het, plaasgevind het nie. Infeksies in vatbare Fabaceae spesies was oor die algemeen meer ernstig as infeksies in vatbare nie-Fabaceae spesies. Die optimale groei van P. acaciicola het by 35°C plaasgevind, wat aandui op ‘n voorkeur vir somerstoestande. Inheemse Fabaceae spesies het meer vatbaar as vatbare plantspesies van ander families voorgekom. Hierdie verskynsel dui op ‘n sekere vlak van spesifisiteit, alhoewel daar geen duidelike filogenetiese grense vir vatbare spesies bepaal kon word nie. Behalwe vir die feit dat P. acaciicola ‘n fakultatiewe patogeen op rooikrans is, stel resultate van hierdie studie voor dat hierdie swam hoofsaaklik ‘n saprofiet is wat soms ook ‘n opportunisties patogeen op sekere inheemse Fabaceae is en moontlik slegs ‘n swak opportunistiese patogeen op plantspesies buite die Fabaceae familie is. Die swak en oneffektiewe bestuur van rooikrans in hierdie bedreigde plantegroeitipes hou egter ‘n groter bedreiging in as die gebruik van P. acaciicola as ‘n biologiese onkruiddoder. Pseudolagarobasidium acaciicola word daarom aanbeveel vir die beheer van rooikrans, mits voldoende monitering, wat fokus op inheemse Fabaceae spesies, gepaard gaan met die gebruik van hierdie biologiese onkruiddoder. Rooikrans kan effektief beheer word as P. acaciicola ingespan word om huidige meganiese-, biologiese- en chemiese beheermetodes in ‘n geïntegreerde bestuurstrategie te komplimenteer.
Asshleb, Almabrouk A. "The use of the fungus Ascochyta caulina as a biological control agent for the weed Chenopodium album. Evaluation of the bioherbicide formulation efficacy of Ascochyta caulina on different life stages of the weed plant Chenopodium album under laboratory and field conditions comparing Libyan and UK populations." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4431.
Full textLibyan Government
Asshleb, Almabrouk Amer. "The use of the fungus Ascochyta caulina as a biological control agent for the weed Chenopodium album : evaluation of the bioherbicide formulation efficacy of Ascochyta caulina on different life stages of the weed plant Chenopodium album under laboratory and field conditions comparing Libyan and UK populations." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4431.
Full textNdambi, Beninweck Endah [Verfasser], and Georg [Akademischer Betreuer] Cadisch. "Investigating the mode of action of the mycoherbicide component Fusarium oxysporum f.sp. strigae on Striga parasitizing sorghum and its implication for Striga control in Africa / Ndambi Beninweck Endah. Betreuer: Georg Cadisch." Hohenheim : Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim, 2011. http://d-nb.info/1027292674/34.
Full textBooks on the topic "Mycoherbicide"
Feasibility of Using Mycoherbicides for Controlling Illicit Drug Crops. National Academies Press, 2011.
Find full textFeasibility of Using Mycoherbicides for Controlling Illicit Drug Crops. Washington, D.C.: National Academies Press, 2011. http://dx.doi.org/10.17226/13278.
Full textBook chapters on the topic "Mycoherbicide"
Charudattan, R. "The Mycoherbicide Approach with Plant Pathogens." In Microbial Control of Weeds, 24–57. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9680-6_2.
Full textHarvey, I. C. "Sclerotinia Sclerotiorum - Prospects as a Mycoherbicide in Pastures." In ASA, CSSA, and SSSA Books, 621–42. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/1996.pastureforagecroppathol.c35.
Full textAneja, K. R. "Biotechnology for the Production and Enhancement of Mycoherbicide Potential." In From Ethnomycology to Fungal Biotechnology, 91–114. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4815-7_9.
Full textYorinori, Jose T., and Dionisio L. P. Gazziero. "The Control of Milk Weed (Euphorbia Heterophylla) In Soybean with a Mycoherbicide." In Pest Management in Soybean, 332–38. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2870-4_34.
Full textDaigle, D. J., and W. J. Connick. "Formulating Mycoherbicides." In Industrial Applications, 375–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-10378-4_20.
Full textWeidemann, G. J., C. D. Boyette, and G. E. Templeton. "Utilization Criteria for Mycoherbicides." In Biorational Pest Control Agents, 238–51. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0595.ch018.
Full textGressel, J., Z. Amsellem, D. Michaeli, and A. Sharon. "Synergized Mycoherbicides for Resistance Management." In Weed and Crop Resistance to Herbicides, 267–74. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5538-0_29.
Full textBoyette, C. Douglas, and Hamed K. Abbas. "Weed Control with Mycoherbicides and Phytotoxins." In ACS Symposium Series, 280–99. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1995-0582.ch021.
Full textSands, David C., and R. Vincent Miller. "Altering the Host Range of Mycoherbicides by Genetic Manipulation." In ACS Symposium Series, 101–9. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/bk-1993-0524.ch008.
Full textBoyette, C. Douglas, P. Charles Quimby, William J. Connick, Donald J. Daigle, and Floyd E. Fulgham. "Progress in the Production, Formulation, and Application of Mycoherbicides." In Microbial Control of Weeds, 209–22. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-9680-6_12.
Full text