Journal articles on the topic 'MYC, breast cancer, epigenetic reprogramming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MYC, breast cancer, epigenetic reprogramming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Laurent, Audrey, Thierry Madigou, Maud Bizot, Marion Turpin, Gaëlle Palierne, Elise Mahé, Sarah Guimard, et al. "TET2-mediated epigenetic reprogramming of breast cancer cells impairs lysosome biogenesis." Life Science Alliance 5, no. 7 (March 29, 2022): e202101283. http://dx.doi.org/10.26508/lsa.202101283.
Full textBiałopiotrowicz, Emilia, Monika Noyszewska-Kania, Neli Kachamakova-Trojanowska, Agnieszka Łoboda, Magdalena Cybulska, Aleksandra Grochowska, Michał Kopczyński, et al. "Serine Biosynthesis Pathway Supports MYC–miR-494–EZH2 Feed-Forward Circuit Necessary to Maintain Metabolic and Epigenetic Reprogramming of Burkitt Lymphoma Cells." Cancers 12, no. 3 (March 3, 2020): 580. http://dx.doi.org/10.3390/cancers12030580.
Full textChavdoula, Evangelia, Vollter Anastas, Alessandro La Ferlita, Julian Aldana, Anuvrat Sircar, Michael A. Freitas, Lalit Sehgal, and Philip N. Tsichlis. "Abstract 3019: The epigenetic factor KDM2B alters the serine-glycine synthesis pathway and the one-carbon metabolism (SGOC) in triple-negative breast cancer." Cancer Research 82, no. 12_Supplement (June 15, 2022): 3019. http://dx.doi.org/10.1158/1538-7445.am2022-3019.
Full textFerreira, Alexandra G., Olga Zimmermannova, Ervin Ascic, Ilia Kurochkin, Diego Soto-Cabrera, Ariane Eceiza, Hreinn Benonisson, et al. "Abstract A40: Restoring tumor immunogenicity with dendritic cell reprogramming." Cancer Immunology Research 10, no. 12_Supplement (December 1, 2022): A40. http://dx.doi.org/10.1158/2326-6074.tumimm22-a40.
Full textLacouture, Aurélie, Cynthia Jobin, Alisson Clemenceau, Cindy Weidmann, Line Berthiaume, Dominic Bastien, Isabelle Laverdière, et al. "Abstract P5-02-01: A FACS-free purification method to study estrogen signaling, organoid formation, and metabolic reprogramming in mammary epithelial cells." Cancer Research 82, no. 4_Supplement (February 15, 2022): P5–02–01—P5–02–01. http://dx.doi.org/10.1158/1538-7445.sabcs21-p5-02-01.
Full textLaFlamme, Brooke. "Epigenetic reprogramming in treatment-resistant breast cancer." Nature Genetics 46, no. 5 (April 28, 2014): 423. http://dx.doi.org/10.1038/ng.2977.
Full textBerger, Adeline, Nicholas J. Brady, Rohan Bareja, Brian Robinson, Vincenza Conteduca, Michael A. Augello, Loredana Puca, et al. "N-Myc–mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer." Journal of Clinical Investigation 129, no. 9 (August 19, 2019): 3924–40. http://dx.doi.org/10.1172/jci127961.
Full textSuriyamurthy, Sudha, David Baker, Peter ten Dijke, and Prasanna Vasudevan Iyengar. "Epigenetic Reprogramming of TGF-β Signaling in Breast Cancer." Cancers 11, no. 5 (May 24, 2019): 726. http://dx.doi.org/10.3390/cancers11050726.
Full textPathiraja, T. N., S. R. Nayak, Y. Xi, S. Jiang, J. P. Garee, D. P. Edwards, A. V. Lee, et al. "Epigenetic Reprogramming of HOXC10 in Endocrine-Resistant Breast Cancer." Science Translational Medicine 6, no. 229 (March 26, 2014): 229ra41. http://dx.doi.org/10.1126/scitranslmed.3008326.
Full textSharma, D., B. B. Knight, R. Yacoub, T. Liu, L. Taliaferro-Smith, A. Nagalingam, and R. M. O'Regan. "Using epigenetic reprogramming to target triple-negative breast cancer." Journal of Clinical Oncology 27, no. 15_suppl (May 20, 2009): e14565-e14565. http://dx.doi.org/10.1200/jco.2009.27.15_suppl.e14565.
Full textShen, Liangliang, John M. O’Shea, Mohan R. Kaadige, Stéphanie Cunha, Blake R. Wilde, Adam L. Cohen, Alana L. Welm, and Donald E. Ayer. "Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP." Proceedings of the National Academy of Sciences 112, no. 17 (April 13, 2015): 5425–30. http://dx.doi.org/10.1073/pnas.1501555112.
Full textMaali, Amirhosein, Faezeh Maroufi, Farzin Sadeghi, Amir Atashi, Reza Kouchaki, Mona Moghadami, and Mehdi Azad. "Induced pluripotent stem cell technology: trends in molecular biology, from genetics to epigenetics." Epigenomics 13, no. 8 (April 2021): 631–47. http://dx.doi.org/10.2217/epi-2020-0409.
Full textRahman, Mohammad Mijanur, Andrew C. Brane, and Trygve O. Tollefsbol. "MicroRNAs and Epigenetics Strategies to Reverse Breast Cancer." Cells 8, no. 10 (October 8, 2019): 1214. http://dx.doi.org/10.3390/cells8101214.
Full textMarengo, Barbara, Ombretta Garbarino, Andrea Speciale, Lorenzo Monteleone, Nicola Traverso, and Cinzia Domenicotti. "MYC Expression and Metabolic Redox Changes in Cancer Cells: A Synergy Able to Induce Chemoresistance." Oxidative Medicine and Cellular Longevity 2019 (June 25, 2019): 1–9. http://dx.doi.org/10.1155/2019/7346492.
Full textMoyer, Sydney M., Nina Ilic, Sydney Gang, Taylor E. Arnoff, and William C. Hahn. "Abstract 2361: MYC-driven breast cancer tumorigenesis is dependent on normal mitochondrial function." Cancer Research 82, no. 12_Supplement (June 15, 2022): 2361. http://dx.doi.org/10.1158/1538-7445.am2022-2361.
Full textAyad, Nagi, Robert Suter, David Robbins, and Martine Roussel. "MBRS-02. BET BROMODOMAIN PROTEIN-KINASE INHIBITOR COMBINATIONS FOR THE TREATMENT OF MEDULLOBLASTOMA." Neuro-Oncology 22, Supplement_3 (December 1, 2020): iii399. http://dx.doi.org/10.1093/neuonc/noaa222.523.
Full textDimitrakopoulos, Foteinos-Ioannis, Anastasia Kottorou, and Aspasia Tzezou. "Endocrine resistance and epigenetic reprogramming in estrogen receptor positive breast cancer." Cancer Letters 517 (October 2021): 55–65. http://dx.doi.org/10.1016/j.canlet.2021.05.030.
Full textKatz, Tiffany A., Yi Huang, Nancy E. Davidson, and Rachel C. Jankowitz. "Epigenetic reprogramming in breast cancer: From new targets to new therapies." Annals of Medicine 46, no. 6 (July 24, 2014): 397–408. http://dx.doi.org/10.3109/07853890.2014.923740.
Full textChu, Pei-Yi, Ming-Feng Hou, Ji-Ching Lai, Long-Fong Chen, and Chang-Shen Lin. "Cell Reprogramming in Tumorigenesis and Its Therapeutic Implications for Breast Cancer." International Journal of Molecular Sciences 20, no. 8 (April 12, 2019): 1827. http://dx.doi.org/10.3390/ijms20081827.
Full textBettuzzi, Saverio. "N-Myc-mediated epigenetic reprogramming in advanced prostate cancer: personalized medicine and quality of biological samples." Translational Cancer Research 8, Suppl 6 (December 2019): S639—S641. http://dx.doi.org/10.21037/tcr.2019.10.07.
Full textDittharot, Kanthanadon, Sumana Dakeng, Parichat Suebsakwong, Apichart Suksamrarn, Pimpicha Patmasiriwat, and Moltira Promkan. "Cucurbitacin B Induces Hypermethylation of Oncogenes in Breast Cancer Cells." Planta Medica 85, no. 05 (November 21, 2018): 370–78. http://dx.doi.org/10.1055/a-0791-1591.
Full textFarias, E. F., K. Petrie, B. Leibovitch, J. Murtagh, M. B. Chornet, T. Schenk, A. Zelent, and S. Waxman. "Interference with Sin3 function induces epigenetic reprogramming and differentiation in breast cancer cells." Proceedings of the National Academy of Sciences 107, no. 26 (June 14, 2010): 11811–16. http://dx.doi.org/10.1073/pnas.1006737107.
Full textBecker, Lisa M., Joyce T. O’Connell, Annie P. Vo, Margo P. Cain, Desiree Tampe, Lauren Bizarro, Hikaru Sugimoto, et al. "Epigenetic Reprogramming of Cancer-Associated Fibroblasts Deregulates Glucose Metabolism and Facilitates Progression of Breast Cancer." Cell Reports 31, no. 9 (June 2020): 107701. http://dx.doi.org/10.1016/j.celrep.2020.107701.
Full textGarcía-Chico, Celia, Susana López-Ortiz, Saúl Peñín-Grandes, José Pinto-Fraga, Pedro L. Valenzuela, Enzo Emanuele, Claudia Ceci, et al. "Physical Exercise and the Hallmarks of Breast Cancer: A Narrative Review." Cancers 15, no. 1 (January 3, 2023): 324. http://dx.doi.org/10.3390/cancers15010324.
Full textGanapathi, Shireen S., Nicolas M. Garcia, Veerin R. Sirihorachai, and Elizabeth R. Lawlor. "Abstract A011: Emergence of persister cells following bromodomain inhibition in Ewing sarcoma." Clinical Cancer Research 28, no. 18_Supplement (September 15, 2022): A011. http://dx.doi.org/10.1158/1557-3265.sarcomas22-a011.
Full textLuo, Weibo, and Maowu Luo. "Abstract A009: ZMYND8 is an epigenetic regulator of 27-hydroxycholesterol that promotes tumorigenicity of breast cancer stem cells." Cancer Research 82, no. 23_Supplement_2 (December 1, 2022): A009. http://dx.doi.org/10.1158/1538-7445.cancepi22-a009.
Full textTreviño, Lindsey S., Quan Wang, and Cheryl L. Walker. "Hypothesis: Activation of rapid signaling by environmental estrogens and epigenetic reprogramming in breast cancer." Reproductive Toxicology 54 (July 2015): 136–40. http://dx.doi.org/10.1016/j.reprotox.2014.12.014.
Full textQattan, Amal. "Metabolic Reprogramming of Triple-Negative Breast Cancer: The Role of miRNAs." microRNA Diagnostics and Therapeutics 3, no. 1 (December 20, 2017): 1–8. http://dx.doi.org/10.1515/micrnat-2017-0001.
Full textYuan, Xueying, Michael Soth, Philip Jones, and Jeffrey Rosen. "Abstract B020: Reprogramming epithelial-mesenchymal transition and the immune microenvironment in triple-negative breast cancer with epigenetic drugs." Cancer Research 82, no. 23_Supplement_2 (December 1, 2022): B020. http://dx.doi.org/10.1158/1538-7445.cancepi22-b020.
Full textWu, Si-Yu, Yi Xiao, Jin-Li Wei, Xiao-En Xu, Xi Jin, Xin Hu, Da-Qiang Li, Yi-Zhou Jiang, and Zhi-Ming Shao. "MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer." Journal for ImmunoTherapy of Cancer 9, no. 7 (July 2021): e002528. http://dx.doi.org/10.1136/jitc-2021-002528.
Full textMiftakhova, Regina R., Aigul R. Rakhmatullina, Rimma N. Mingaleeva, Ekaterina E. Garanina, Svetlana F. Khaiboullina, and Albert A. Rizvanov. "The expression of pluripotency genes regulates properties of cancer stem cells in MCF-7 breast cancer model." Journal of Clinical Oncology 35, no. 15_suppl (May 20, 2017): e23018-e23018. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.e23018.
Full textArreal, Leire, Marco Piva, Sonia Fernández, Ajinkya Revandkar, Ariane Schaub- Clerigué, Josep Villanueva, Amaia Zabala-Letona, et al. "Targeting PML in triple negative breast cancer elicits growth suppression and senescence." Cell Death & Differentiation 27, no. 4 (October 1, 2019): 1186–99. http://dx.doi.org/10.1038/s41418-019-0407-5.
Full textZhang, Yang, Bingwei Xu, Junfeng Shi, Jieming Li, Xinlan Lu, Li Xu, Helen Yang, et al. "BRD4 modulates vulnerability of triple-negative breast cancer to targeting of integrin-dependent signaling pathways." Cellular Oncology 43, no. 6 (October 2, 2020): 1049–66. http://dx.doi.org/10.1007/s13402-020-00537-1.
Full textTravaglini, Lorena, Laura Vian, Monia Billi, Francesco Grignani, and Clara Nervi. "Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status." International Journal of Biochemistry & Cell Biology 41, no. 1 (January 2009): 225–34. http://dx.doi.org/10.1016/j.biocel.2008.08.019.
Full textKhaled and Bidet. "New Insights into the Implication of Epigenetic Alterations in the EMT of Triple Negative Breast Cancer." Cancers 11, no. 4 (April 18, 2019): 559. http://dx.doi.org/10.3390/cancers11040559.
Full textTauro, Marilena, Tao Li, and Conor C. Lynch. "Abstract PD3-10: Dual epigenetic/autophagy inhibition as a novel strategy to tackle triple negative breast cancer." Cancer Research 82, no. 4_Supplement (February 15, 2022): PD3–10—PD3–10. http://dx.doi.org/10.1158/1538-7445.sabcs21-pd3-10.
Full textLubecka, Katarzyna, Agnieszka Kaufman-Szymczyk, Barbara Cebula-Obrzut, Piotr Smolewski, Janusz Szemraj, and Krystyna Fabianowska-Majewska. "Novel Clofarabine-Based Combinations with Polyphenols Epigenetically Reactivate Retinoic Acid Receptor Beta, Inhibit Cell Growth, and Induce Apoptosis of Breast Cancer Cells." International Journal of Molecular Sciences 19, no. 12 (December 10, 2018): 3970. http://dx.doi.org/10.3390/ijms19123970.
Full textPerone, Ylenia, and Luca Magnani. "Going off the grid: ERα breast cancer beyond estradiol." Journal of Molecular Endocrinology 57, no. 1 (July 2016): F1—F5. http://dx.doi.org/10.1530/jme-16-0062.
Full textMishra, Prachi, Wei Tang, and Stefan Ambs. "ADHFE1 is a MYC-linked oncogene that induces metabolic reprogramming and cellular de-differentiation in breast cancer." Molecular & Cellular Oncology 5, no. 3 (April 19, 2018): e1432260. http://dx.doi.org/10.1080/23723556.2018.1432260.
Full textBonanomi, Marcella, Noemi Salmistraro, Giulia Fiscon, Federica Conte, Paola Paci, Valentina Bravatà, Giusi Irma Forte, et al. "Transcriptomics and Metabolomics Integration Reveals Redox-Dependent Metabolic Rewiring in Breast Cancer Cells." Cancers 13, no. 20 (October 9, 2021): 5058. http://dx.doi.org/10.3390/cancers13205058.
Full textYang, Li, Jae Young So, Nicolas Skrypek, Anand Merchant, George Nelson, Howard Yang, and Maxwell Lee. "Abstract P1-05-08: Targeting tumor heterogeneity and breast cancer metastasis through the metastatic microenvironment mediated epigenetic reprogramming." Cancer Research 82, no. 4_Supplement (February 15, 2022): P1–05–08—P1–05–08. http://dx.doi.org/10.1158/1538-7445.sabcs21-p1-05-08.
Full textLi, Yihao, Xintao Qiu, Xiaoqing Wang, Hui Liu, Renee Geck Geck, Alok Tewari, Kin-Hoe Chow, et al. "Abstract P4-01-04: FGFR inhibitor mediated dismissal of SWI/SNF complexes from YAP-dependent enhancers induces therapeutic resistance in triple negative breast cancer." Cancer Research 82, no. 4_Supplement (February 15, 2022): P4–01–04—P4–01–04. http://dx.doi.org/10.1158/1538-7445.sabcs21-p4-01-04.
Full textPadayachee, Jananee, and Moganavelli Singh. "Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials." Nanobiomedicine 7 (January 1, 2020): 184954352098319. http://dx.doi.org/10.1177/1849543520983196.
Full textWard, Ashley V., Shawna B. Matthews, Lynsey M. Fettig, Duncan Riley, Jessica Finlay-Schultz, Kiran V. Paul, Matthew Jackman, Peter Kabos, Paul S. MacLean, and Carol A. Sartorius. "Estrogens and Progestins Cooperatively Shift Breast Cancer Cell Metabolism." Cancers 14, no. 7 (March 31, 2022): 1776. http://dx.doi.org/10.3390/cancers14071776.
Full textEduardo, Mariana Bustamante, Gannon Cottone, Seema Khan, and Susan Clare. "Abstract P6-11-03: Lipid-rich environment induces epigenetic reprogramming in non-transformed breast epithelial cells enhancing a mammary cell plasticity." Cancer Research 83, no. 5_Supplement (March 1, 2023): P6–11–03—P6–11–03. http://dx.doi.org/10.1158/1538-7445.sabcs22-p6-11-03.
Full textMatkar, Smita, Paras Sharma, Shubin Gao, Buddha Gurung, Bryson W. Katona, Jennifer Liao, Abdul Bari Muhammad, et al. "An Epigenetic Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via FOXO/c-Myc Axis." Cancer Cell 28, no. 4 (October 2015): 472–85. http://dx.doi.org/10.1016/j.ccell.2015.09.005.
Full textBowers, Laura W., Steven S. Doerstling, Meghana G. Shamsunder, Claire G. Lineberger, Emily L. Rossi, Stephanie A. Montgomery, Michael F. Coleman, et al. "Reversing the Genomic, Epigenetic, and Triple-Negative Breast Cancer–Enhancing Effects of Obesity." Cancer Prevention Research 15, no. 9 (June 13, 2022): 581–94. http://dx.doi.org/10.1158/1940-6207.capr-22-0113.
Full textZimmermannova, Olga, Ilia Kurochkin, Diego S. Cabrera, Ariane E. Tenreiro, Hreinn Benonisson, Alexandra G. Ferreira, Inês Caiado, et al. "Reprogramming Human Cancer Cells into Antigen Presentation." Blood 138, Supplement 1 (November 5, 2021): 1709. http://dx.doi.org/10.1182/blood-2021-152322.
Full textLim, S. M. L., I. Aksoy, K. G. C. Lim, J. Karuppasamy, U. Divakar, F. J. Ma, F. L. Lam, S. J. N. Remulla, and L. W. Stanton. "Re-establishing pluripotency in adult cells derived from breast stromal tissue." Journal of Clinical Oncology 29, no. 27_suppl (September 20, 2011): 227. http://dx.doi.org/10.1200/jco.2011.29.27_suppl.227.
Full textSivanandhan, Dhanalakshmi, Sridharan Rajagopal, Chandru Gajendran, Naveen Sadhu, Mohd Zainuddin, Ramachandraiah Gosu, and Luca Rastelli. "Abstract B029: LSD1-HDAC6 dual inhibitor JBI-802 is an epigenetic modulating agent with a novel mechanism of action that target MYC amplification in multiple neuroendocrine tumor types." Cancer Research 82, no. 23_Supplement_2 (December 1, 2022): B029. http://dx.doi.org/10.1158/1538-7445.cancepi22-b029.
Full text