To see the other types of publications on this topic, follow the link: Mutagenesi sito specifica.

Journal articles on the topic 'Mutagenesi sito specifica'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mutagenesi sito specifica.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cupples, C. G., M. Cabrera, C. Cruz, and J. H. Miller. "A set of lacZ mutations in Escherichia coli that allow rapid detection of specific frameshift mutations." Genetics 125, no. 2 (June 1, 1990): 275–80. http://dx.doi.org/10.1093/genetics/125.2.275.

Full text
Abstract:
Abstract We have used site-directed mutagenesis to alter bases in lacZ near the region encoding essential residues in the active site of beta-galactosidase. The altered sequences generate runs of six or seven identical base pairs which create a frameshift, resulting in a Lac- phenotype. Reversion to Lac+ in each strain can occur only by a specific frameshift at these sequences. Monotonous runs of A's (or of T's on the opposite strand) and G's (or C's) have been constructed, as has an alternating -C-G- sequence. These specific frameshift indicator strains complement a set of six previously described strains which detect each of the base substitutions. We have examined a variety of mutagens and mutators for their ability to cause reversion to Lac+. Surprisingly, frameshifts are well stimulated at many of these runs by ethyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine and 2-amino-purine, mutagens not widely known to induce frameshifts. A comparison of ethyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine and 2-aminopurine frameshift specificity with that found with a mutH strain suggests that these mutagens partially or fully saturate or inactivate the methylation-directed mismatch repair system and allow replication errors leading to frameshifts to escape repair. This results in a form of indirect mutagenesis, which can be detected at certain sites.
APA, Harvard, Vancouver, ISO, and other styles
2

KURAMITSU, Seiki, and Hiroyuki KAGAMIYAMA. "Site-specific mutagenesis of aspartate aminotransferase." Seibutsu Butsuri 28, no. 1 (1988): 7–11. http://dx.doi.org/10.2142/biophys.28.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baldrich, Marcus, and Werner Goebel. "Rapid and efficient site-specific mutagenesis." "Protein Engineering, Design and Selection" 3, no. 6 (1990): 563. http://dx.doi.org/10.1093/protein/3.6.563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Inouye, Satoshi, Yili Guo, Nicholas Ling, and Shunichi Shimasaki. "Site-specific mutagenesis of human follistatin." Biochemical and Biophysical Research Communications 179, no. 1 (August 1991): 352–58. http://dx.doi.org/10.1016/0006-291x(91)91377-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SOYFER, VALERY N. "Genetic Engineering and Site-Specific Mutagenesis." Annals of the New York Academy of Sciences 452, no. 1 (October 1985): 305–11. http://dx.doi.org/10.1111/j.1749-6632.1985.tb30017.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sambrook, Joseph, and David W. Russell. "Site-specific Mutagenesis by Overlap Extension." Cold Spring Harbor Protocols 2006, no. 1 (June 2006): pdb.prot3468. http://dx.doi.org/10.1101/pdb.prot3468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Foss, K., and William H. McClain. "Rapid site-specific mutagenesis in plasmids." Gene 59, no. 2-3 (January 1987): 285–90. http://dx.doi.org/10.1016/0378-1119(87)90336-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fujii, J., K. Maruyama, M. Tada, and D. H. MacLennan. "Expression and Site-specific Mutagenesis of Phospholamban." Journal of Biological Chemistry 264, no. 22 (August 1989): 12950–55. http://dx.doi.org/10.1016/s0021-9258(18)51579-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Caffrey, Michael S., and Michael A. Cusanovich. "Site-specific mutagenesis studies of cytochromes c." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1187, no. 3 (September 1994): 277–88. http://dx.doi.org/10.1016/0005-2728(94)90001-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Anthony-Cahill, Spencer J., Michael C. Griffith, Christopher J. Noren, Daniel J. Suich, and Peter G. Schultz. "Site-specific mutagenesis with unnatural amino acids." Trends in Biochemical Sciences 14, no. 10 (October 1989): 400–403. http://dx.doi.org/10.1016/0968-0004(89)90287-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mitchell, Nancy, and Gerhard Stöhrer. "Mutagenesis originating in site-specific DNA damage." Journal of Molecular Biology 191, no. 2 (September 1986): 177–80. http://dx.doi.org/10.1016/0022-2836(86)90254-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Luisetti, Maurizio, and James Travis. "Bioengineering: α1-Proteinase Inhibitor Site-Specific Mutagenesis." Chest 110, no. 6 (December 1996): 278S—283S. http://dx.doi.org/10.1378/chest.110.6_supplement.278s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

MATTINGLY, JOSEPH R., and MARINO MARTINEZ-CARRION. "Site-Specific Mutagenesis in the Active Site of Aspartate Aminotransferase." Annals of the New York Academy of Sciences 585, no. 1 Vitamin B6 (May 1990): 526–28. http://dx.doi.org/10.1111/j.1749-6632.1990.tb28095.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Char, Si Nian, Erica Unger-Wallace, Bronwyn Frame, Sarah A. Briggs, Marcy Main, Martin H. Spalding, Erik Vollbrecht, Kan Wang, and Bing Yang. "Heritable site-specific mutagenesis using TALENs in maize." Plant Biotechnology Journal 13, no. 7 (February 3, 2015): 1002–10. http://dx.doi.org/10.1111/pbi.12344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Larder, Brendan A., Dorothy J. M. Purifoy, Kenneth L. Powell, and Graham Darby. "Site-specific mutagenesis of AIDS virus reverse transcriptase." Nature 327, no. 6124 (June 1987): 716–17. http://dx.doi.org/10.1038/327716a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gupta, P. K., D. L. Johnson, T. M. Reid, M. S. Lee, L. J. Romano, and C. M. King. "Mutagenesis by single site-specific arylamine-DNA adducts." Journal of Biological Chemistry 264, no. 33 (November 1989): 20120–30. http://dx.doi.org/10.1016/s0021-9258(19)47227-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Banga, S. S., and J. B. Boyd. "Oligonucleotide-directed site-specific mutagenesis in Drosophila melanogaster." Proceedings of the National Academy of Sciences 89, no. 5 (March 1, 1992): 1735–39. http://dx.doi.org/10.1073/pnas.89.5.1735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jenkins, Frank J., and Bernard Roizman. "Site-specific mutagenesis of large DNA viral genomes." BioEssays 5, no. 6 (December 1986): 244–47. http://dx.doi.org/10.1002/bies.950050603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Imai, Takeshi, Pierre Chambon, and Daniel Metzger. "Inducible site-specific somatic mutagenesis in mouse hepatocytes." genesis 26, no. 2 (February 2000): 147–48. http://dx.doi.org/10.1002/(sici)1526-968x(200002)26:2<147::aid-gene15>3.0.co;2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Jin-Tann, Ruth J. Mayer, Carol A. Fierke, and Stephen J. Benkovic. "Site-specific mutagenesis of dihydrofolate reductase fromEscherichia coli." Journal of Cellular Biochemistry 29, no. 2 (1985): 73–82. http://dx.doi.org/10.1002/jcb.240290203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Duran, Harry L., and Altaf A. Wani. "Site-specific gap-misrepair mutagenesis by O4-ethylthymine." Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 908, no. 1 (January 1987): 60–69. http://dx.doi.org/10.1016/0167-4781(87)90022-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kunkel, T. A. "Rapid and efficient site-specific mutagenesis without phenotypic selection." Proceedings of the National Academy of Sciences 82, no. 2 (January 1, 1985): 488–92. http://dx.doi.org/10.1073/pnas.82.2.488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

CHANG, GWONG-JEN J., BARBARA J. B. JOHNSON, and DENNIS W. TRENT. "Site-Specific Oligonucleotide-Directed Mutagenesis Using T4 DNA Polymerase." DNA 7, no. 3 (April 1988): 211–17. http://dx.doi.org/10.1089/dna.1988.7.211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Carvalho, T. G., S. Thiberge, H. Sakamoto, and R. Menard. "Conditional mutagenesis using site-specific recombination in Plasmodium berghei." Proceedings of the National Academy of Sciences 101, no. 41 (October 1, 2004): 14931–36. http://dx.doi.org/10.1073/pnas.0404416101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Tsuji, F. I., S. Inouye, T. Goto, and Y. Sakaki. "Site-specific mutagenesis of the calcium-binding photoprotein aequorin." Proceedings of the National Academy of Sciences 83, no. 21 (November 1, 1986): 8107–11. http://dx.doi.org/10.1073/pnas.83.21.8107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Oda, Kimimitsu, Yoshio Misumi, Miwa Sohda, Noboru Takami, Yoshiyuki Sakaki, and Yukio Ikehara. "Selective processing of proalbumin determined by site-specific mutagenesis." Biochemical and Biophysical Research Communications 175, no. 2 (March 1991): 690–96. http://dx.doi.org/10.1016/0006-291x(91)91621-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Page, John E., Chengyi Liang, Jane M. Sayer, Donald M. Jerina, and Anthony Dipple. "Site-Specific Mutagenesis with Benzo[a]Pyrene-Deoxyribonucleoside Adducts." Polycyclic Aromatic Compounds 16, no. 1-4 (June 2000): 99–108. http://dx.doi.org/10.1080/10406639908020577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Owens, Robert A., Rosemarie W. Hammond, Richard C. Gardner, Michael C. Kiefer, Susan M. Thompson, and Dean E. Cress. "Site-specific mutagenesis of potato spindle tuber viroid cDNA:." Plant Molecular Biology 6, no. 3 (1986): 179–92. http://dx.doi.org/10.1007/bf00021487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Miyazaki, Chie, Yoshitaka Iba, Yukio Yamada, Haruo Takahashi, Jun-ichi Sawada, and Yoshikazu Kurosawa. "Changes in the specificity of antibodies by site-specific mutagenesis followed by random mutagenesis." Protein Engineering, Design and Selection 12, no. 5 (May 1999): 407–15. http://dx.doi.org/10.1093/protein/12.5.407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Petrenko, V. A., S. M. Kipriyanov, A. N. Boldyrev, and P. I. Pozdnyakov. "Mutagenesis directed by phosphotriester analogues of oligonucleotides: A way to site-specific mutagenesis in vivo." FEBS Letters 238, no. 1 (September 26, 1988): 109–12. http://dx.doi.org/10.1016/0014-5793(88)80236-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chen, I. T., and L. A. Chasin. "Direct selection for mutations affecting specific splice sites in a hamster dihydrofolate reductase minigene." Molecular and Cellular Biology 13, no. 1 (January 1993): 289–300. http://dx.doi.org/10.1128/mcb.13.1.289-300.1993.

Full text
Abstract:
A Chinese hamster cell line containing an extra exon 2 (50 bp) inserted into a single intron of a dihydrofolate reductase (dhfr) minigene was constructed. The extra exon 2 was efficiently spliced into the RNA, resulting in an mRNA that is incapable of coding for the DHFR enzyme. Mutations that decreased splicing of this extra exon 2 caused it to be skipped and so produced normal dhfr mRNA. In contrast to the parental cell line, the splicing mutants display a DHFR-positive growth phenotype. Splicing mutants were isolated from this cell line after treatment with four different mutagens (racemic benzo[c]phenanthrene diol epoxide, ethyl methanesulfonate, ethyl nitrosourea, and UV irradiation). By polymerase chain reaction amplification and direct DNA sequencing, we determined the base changes in 66 mutants. Each of the mutagens generated highly specific base changes. All mutations were single-base substitutions and comprised 24 different changes distributed over 16 positions. Most of the mutations were within the consensus sequences at the exon 2 splice donor, acceptor, and branch sites. The RNA splicing patterns in the mutants were analyzed by quantitative reverse transcription-polymerase chain reaction. The recruitment of cryptic sites was rarely seen; simple exon skipping was the predominant mutant phenotype. The wide variety of mutations that produced exon skipping suggests that this phenotype is the typical consequence of splice site damage and supports the exon definition model of splice site selection. A few mutations were located outside the consensus sequences, in the exon or between the branch point and the polypyrimidine tract, identifying additional positions that play a role in splice site definition. That most of these 66 mutations fell within consensus sequences in this near-saturation mutagenesis suggests that splicing signals beyond the consensus may consist of robust RNA structures.
APA, Harvard, Vancouver, ISO, and other styles
32

Chen, I. T., and L. A. Chasin. "Direct selection for mutations affecting specific splice sites in a hamster dihydrofolate reductase minigene." Molecular and Cellular Biology 13, no. 1 (January 1993): 289–300. http://dx.doi.org/10.1128/mcb.13.1.289.

Full text
Abstract:
A Chinese hamster cell line containing an extra exon 2 (50 bp) inserted into a single intron of a dihydrofolate reductase (dhfr) minigene was constructed. The extra exon 2 was efficiently spliced into the RNA, resulting in an mRNA that is incapable of coding for the DHFR enzyme. Mutations that decreased splicing of this extra exon 2 caused it to be skipped and so produced normal dhfr mRNA. In contrast to the parental cell line, the splicing mutants display a DHFR-positive growth phenotype. Splicing mutants were isolated from this cell line after treatment with four different mutagens (racemic benzo[c]phenanthrene diol epoxide, ethyl methanesulfonate, ethyl nitrosourea, and UV irradiation). By polymerase chain reaction amplification and direct DNA sequencing, we determined the base changes in 66 mutants. Each of the mutagens generated highly specific base changes. All mutations were single-base substitutions and comprised 24 different changes distributed over 16 positions. Most of the mutations were within the consensus sequences at the exon 2 splice donor, acceptor, and branch sites. The RNA splicing patterns in the mutants were analyzed by quantitative reverse transcription-polymerase chain reaction. The recruitment of cryptic sites was rarely seen; simple exon skipping was the predominant mutant phenotype. The wide variety of mutations that produced exon skipping suggests that this phenotype is the typical consequence of splice site damage and supports the exon definition model of splice site selection. A few mutations were located outside the consensus sequences, in the exon or between the branch point and the polypyrimidine tract, identifying additional positions that play a role in splice site definition. That most of these 66 mutations fell within consensus sequences in this near-saturation mutagenesis suggests that splicing signals beyond the consensus may consist of robust RNA structures.
APA, Harvard, Vancouver, ISO, and other styles
33

Li, Ming, Omar S. Akbari, and Bradley J. White. "Highly Efficient Site-Specific Mutagenesis in Malaria Mosquitoes Using CRISPR." G3&#58; Genes|Genomes|Genetics 8, no. 2 (December 12, 2017): 653–58. http://dx.doi.org/10.1534/g3.117.1134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yuan, Lin, and Hak-Jung Kim. "Characterization of Human Cytosolic Thioredoxin Reductase by Site-specific Mutagenesis." Bulletin of the Korean Chemical Society 31, no. 12 (December 20, 2010): 3515–16. http://dx.doi.org/10.5012/bkcs.2010.31.12.3515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Baldwin, Jack E., Stephen L. Martin, and John D. Sutherland. "Site-specific forced misincorporation mutagenesis using modified T7 DNA polymerase." "Protein Engineering, Design and Selection" 4, no. 5 (1991): 579–84. http://dx.doi.org/10.1093/protein/4.5.579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Brocard, J., X. Warot, O. Wendling, N. Messaddeq, J. L. Vonesch, P. Chambon, and D. Metzger. "Spatio-temporally controlled site-specific somatic mutagenesis in the mouse." Proceedings of the National Academy of Sciences 94, no. 26 (December 23, 1997): 14559–63. http://dx.doi.org/10.1073/pnas.94.26.14559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Semler, Bert L., Victoria H. Johnson, Patricia Gillis Dewalt, and Mary Frances Ypma-Wong. "Site-specific mutagenesis of cDNA clones expressing a poliovirus proteinase." Journal of Cellular Biochemistry 33, no. 1 (January 1987): 39–51. http://dx.doi.org/10.1002/jcb.240330105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Pellar, Gregory J., and Patrick J. DiMario. "Deletion and site-specific mutagenesis of nucleolin's carboxy GAR domain." Chromosoma 111, no. 7 (April 2003): 461–69. http://dx.doi.org/10.1007/s00412-003-0231-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hung, Chih-Hung, Ming-Chih Lee, and Jung-Yaw Lin. "Inactivation of Acacia confusa trypsin inhibitor by site-specific mutagenesis." FEBS Letters 353, no. 3 (October 24, 1994): 312–14. http://dx.doi.org/10.1016/0014-5793(94)01066-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhang, Yang, and Evan R. Kantrowitz. "Probing the regulatory site of Escherichia coli aspartate transcarbamoylase by site-specific mutagenesis." Biochemistry 31, no. 3 (January 1992): 792–98. http://dx.doi.org/10.1021/bi00118a022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Eri Nobusawa, Katsuhisa Nakajima, and Setsuko Nakajima. "Investigation of an antigenic determinant site on haemagglutinin molecule by site specific mutagenesis." Virus Research 3 (September 1985): 58. http://dx.doi.org/10.1016/0168-1702(85)90367-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zeng, Chenbo, and Herbert J. Fromm. "Active Site Residues of Human Brain Hexokinase as Studied by Site-specific Mutagenesis." Journal of Biological Chemistry 270, no. 18 (May 5, 1995): 10509–13. http://dx.doi.org/10.1074/jbc.270.18.10509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Inglese, James, John M. Smith, and Stephen J. Benkovic. "Active-site mapping and site-specific mutagenesis of glycinamide ribonucleotide transformylase from Escherichia coli." Biochemistry 29, no. 28 (July 1990): 6678–87. http://dx.doi.org/10.1021/bi00480a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chouljenko, Vladimir, Sukhanya Jayachandra, Galina Rybachuk, and Konstantin G. Kousoulas. "Efficient Long-PCR Site-Specific Mutagenesis of a High GC Template." BioTechniques 21, no. 3 (September 1996): 472–80. http://dx.doi.org/10.2144/96213st05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Eghtedarzadeh-Kondri, Mohammad, Michael A. Walls, and Scott M. Glaser. "Site-Specific Mutagenesis of Immunoglobulin Domains by Multiple-Fragment Homologous Recombination." BioTechniques 23, no. 5 (November 1997): 830–34. http://dx.doi.org/10.2144/97235bm14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Huang, Honglin, Denis Jeanteur, Franc Pattus, and Robert E. W. Hancock. "Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD." Molecular Microbiology 16, no. 5 (June 1995): 931–41. http://dx.doi.org/10.1111/j.1365-2958.1995.tb02319.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cianciotto, Nicholas P., Robert Long, Barry I. Eisenstein, and N. Cary Engleberg. "Site-specific mutagenesis inLegionella pneumophilaby allelic exchange using counterselectable ColE1 vectors." FEMS Microbiology Letters 56, no. 2 (December 1988): 203–7. http://dx.doi.org/10.1111/j.1574-6968.1988.tb03178.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

GUINET, Francoise, Jean-Dominique GUITTON, Nathalie GAULT, Francoise FOLLIARD, Nathalie TOUCHET, Jean-Michel CHEREL, Andre CRESPO, et al. "Interleukin-1beta-specific partial agonists defined by site-directed mutagenesis studies." European Journal of Biochemistry 211, no. 3 (February 1993): 583–90. http://dx.doi.org/10.1111/j.1432-1033.1993.tb17585.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Komissarov, Andrey A., Marie T. Marchbank, Michael J. Calcutt, Thomas P. Quinn, and Susan L. Deutscher. "Site-specific Mutagenesis of a Recombinant Anti-single-stranded DNA Fab." Journal of Biological Chemistry 272, no. 43 (October 24, 1997): 26864–70. http://dx.doi.org/10.1074/jbc.272.43.26864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nishimura, Chiaki, Kensuke Futatsugi, Kiyoshi Yasukawa, Tadamitsu Kishimoto, and Yoji Arata. "Site-specific mutagenesis of human interleukin-6 and its biological activity." FEBS Letters 281, no. 1-2 (April 9, 1991): 167–69. http://dx.doi.org/10.1016/0014-5793(91)80384-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography