Academic literature on the topic 'Music information processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Music information processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Music information processing"
Zhao, Tian, and Patricia K. Kuhl. "Music, speech, and temporal information processing." Journal of the Acoustical Society of America 144, no. 3 (September 2018): 1760. http://dx.doi.org/10.1121/1.5067789.
Full textGoto, Masataka, and Keiji Hirata. "Recent studies on music information processing." Acoustical Science and Technology 25, no. 6 (2004): 419–25. http://dx.doi.org/10.1250/ast.25.419.
Full textTsuboi, Kuniharu. "Computer music and musical information processing." Journal of the Institute of Television Engineers of Japan 42, no. 1 (1988): 49–55. http://dx.doi.org/10.3169/itej1978.42.49.
Full textKatayose, Haruhiro. "The Dawn of Kansei Information Processing. Application of Kansei Information Processing. Music Performance." Journal of the Institute of Image Information and Television Engineers 52, no. 1 (1998): 53–55. http://dx.doi.org/10.3169/itej.52.53.
Full textBugos, Jennifer, and Wendy Mostafa. "Musical Training Enhances Information Processing Speed." Bulletin of the Council for Research in Music Education, no. 187 (January 1, 2011): 7–18. http://dx.doi.org/10.2307/41162320.
Full textFUKAYAMA, Satoru. "Music Information Processing for Visualization with Musical Notations." Journal of the Visualization Society of Japan 40, no. 158 (2020): 19–22. http://dx.doi.org/10.3154/jvs.40.158_19.
Full textAtherton, Ryan P., Quin M. Chrobak, Frances H. Rauscher, Aaron T. Karst, Matt D. Hanson, Steven W. Steinert, and Kyra L. Bowe. "Shared Processing of Language and Music." Experimental Psychology 65, no. 1 (January 2018): 40–48. http://dx.doi.org/10.1027/1618-3169/a000388.
Full textRammsayer, Thomas, and Eckart Altenmüller. "Temporal Information Processing in Musicians and Nonmusicians." Music Perception 24, no. 1 (September 1, 2006): 37–48. http://dx.doi.org/10.1525/mp.2006.24.1.37.
Full textAchkar, Charbel El, and Talar Atechian. "MEI2JSON: a pre-processing music scores converter." International Journal of Intelligent Information and Database Systems 1, no. 1 (2021): 1. http://dx.doi.org/10.1504/ijiids.2021.10040316.
Full textAchkar, Charbel El, and Talar Atéchian. "MEI2JSON: a pre-processing music scores converter." International Journal of Intelligent Information and Database Systems 15, no. 1 (2022): 57. http://dx.doi.org/10.1504/ijiids.2022.120130.
Full textDissertations / Theses on the topic "Music information processing"
Al-Shakarchi, Ahmad. "Scalable audio processing across heterogeneous distributed resources : an investigation into distributed audio processing for Music Information Retrieval." Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/47855/.
Full textSuyoto, Iman S. H., and ishs@ishs net. "Cross-Domain Content-Based Retrieval of Audio Music through Transcription." RMIT University. Computer Science and Information Technology, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090527.092841.
Full textByron, Timothy Patrick. "The processing of pitch and temporal information in relational memory for melodies." View thesis, 2008. http://handle.uws.edu.au:8081/1959.7/37492.
Full textA thesis submitted to the University of Western Sydney, College of Arts, School of Psychology, in fulfilment of the requirements for the degree of Doctor of Philosophy. Includes bibliographical references.
Meinz, Elizabeth J. "Musical experience, musical knowledge and age effects on memory for music." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/30881.
Full textMontecchio, Nicola. "Alignment and Identification of Multimedia Data: Application to Music and Gesture Processing." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422091.
Full textLa crescente disponibilità di grandi collezioni multimediali porta all'attenzione problemi di ricerca sempre più complessi in materia di organizzazione e accesso ai dati. Nell'ambito della comunità dell'Information Retrieval è stato raggiunto un consenso generale nel ritenere indispensabili nuovi strumenti di reperimento in grado di superare i limiti delle metodologie basate su meta-dati, sfruttando direttamente l'informazione che risiede nel contenuto multimediale. Lo scopo di questa tesi è lo sviluppo di tecniche per l'allineamento e l'identificazione di contenuti multimediali; la trattazione si focalizza su flussi audio musicali e sequenze numeriche registrate tramite dispositivi di cattura del movimento. Una speciale attenzione è dedicata all'efficienza degli approcci proposti, in particolare per quanto riguarda l'applicabilità in tempo reale degli algoritmi di allineamento e la scalabilità delle metodologie di identificazione. L'allineamento di entità comparabili si riferisce al processo di aggiustamento di caratteristiche strutturali allo scopo di permettere una comparazione diretta tra elementi costitutivi corrispondenti. Questa tesi si concentra sull'allineamento di sequenze rispettivamente ad una sola dimensione, con l'obiettivo di identificare e confrontare eventi significativi in sequenze temporali collegate. L'allineamento di registrazioni musicali alla loro rappresentazione simbolica è il punto di partenza adottato per esplorare differenti metodologie basate su modelli statistici. Si propone un modello unificato per l'allineamento in tempo reale di flussi musicali a partiture simboliche e registrazioni audio. I principali vantaggi sono collegati alla trattazione esplicita del tempo (velocità di esecuzione musicale) nell'architettura del modello statistico; inoltre, ambedue i problemi di allineamento sono formulati sfruttando una rappresentazione continua della dimensione temporale. Un'innovativa applicazione delle tecnologie di allineamento audio è proposta nel contesto della produzione di registrazioni musicali, dove l'intervento umano in attività ripetitive è drasticamente ridotto. L'allineamento di movimenti gestuali è strettamente correlato al contesto dell'allineamento musicale, in quanto gli obiettivi artistici e le soluzioni ingegneristiche delle due aree sono largamente coincidenti. L'espressività di un'esecuzione gestuale è caratterizzata simultaneamente dalla scelta del particolare gesto e dal modo di eseguirlo. Il primo aspetto è collegato ad un problema di riconoscimento, mentre il secondo è affrontato considerando l'evoluzione temporale delle caratteristiche del segnale ed il modo in cui queste differiscono da template pre-registrati. Si propone un modello, strettamente legato alla controparte musicale sopra citata, capace di riconoscere un gesto in tempo reale tra una libreria di templates, simultaneamente allineandolo mentre caratteristiche del segnale come rotazione, dimensionamento e velocità sono congiuntamente stimate. Il drastico incremento delle dimensioni delle collezioni musicali ha portato all'attenzione il problema dell'organizzazione di contenuti multimediali secondo caratteristiche percettive. In particolare, le tecnologie di identificazione basate sul contenuto forniscono strumenti appropriati per reperire e organizzare documenti musicali. Queste tecnologie dovrebbero idealmente essere in grado di identificare una registrazione -- attraverso il confronto con un insieme di registrazioni conosciute -- indipendentemente dalla particolare esecuzione, anche in caso di arrangiamenti o interpretazioni significativamente differenti. Sebbene le tecniche di allineamento assumano un ruolo centrale in letteratura, la metodologia proposta sfrutta strategie solitamente associate al reperimento di informazione testuale. Il calcolo della similarità musicale è basato su tecniche di hashing per creare collisioni fra vettori prossimi nello spazio. La compattezza della risultante rappresentazione del contenuto acustico permette l'utilizzo di tecniche di reperimento basate su indicizzazione, allo scopo di massimizzare l'efficienza computazionale. Un'applicazione in particolare è considerata nell'ambito della preservazione dei Beni Culturali, per l'identificazione automatica di collezioni di nastri e dischi in vinile digitalizzati. In questo contesto un supporto generalmente contiene più di un'opera rilevante. La metodologia di allineamento audio citata sopra è infine utilizzata per segmentare registrazioni in tracce individuali.
Sanden, Christopher, and University of Lethbridge Faculty of Arts and Science. "An empirical evaluation of computational and perceptual multi-label genre classification on music / Christopher Sanden." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Mathematics and Computer Science, c2010, 2010. http://hdl.handle.net/10133/2602.
Full textviii, 87 leaves ; 29 cm
Fiebrink, Rebecca. "An exploration of feature selection as a tool for optimizing musical genre classification /." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99372.
Full textBianchi, Frederick W. "The cognition of atonal pitch structures." Virtual Press, 1985. http://liblink.bsu.edu/uhtbin/catkey/438705.
Full textStreich, Sebastian. "Music complexity: a multi-faceted description of audio content." Doctoral thesis, Universitat Pompeu Fabra, 2007. http://hdl.handle.net/10803/7545.
Full textThis thesis proposes a set of algorithms that can be used to compute estimates of music complexity facets from musical audio signals. They focus on aspects of acoustics, rhythm, timbre, and tonality. Music complexity is thereby considered on the coarse level of common agreement among human listeners. The target is to obtain complexity judgments through automatic computation that resemble a naive listener's point of view. The motivation for the presented research lies in the enhancement of human interaction with digital music collections. As we will discuss, there is a variety of tasks to be considered, such as collection visualization, play-list generation, or the automatic recommendation of music. Through the music complexity estimates provided by the described algorithms we can obtain access to a level of semantic music description, which allows for novel and interesting solutions of these tasks.
SIMONETTA, FEDERICO. "MUSIC INTERPRETATION ANALYSIS. A MULTIMODAL APPROACH TO SCORE-INFORMED RESYNTHESIS OF PIANO RECORDINGS." Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/918909.
Full textBooks on the topic "Music information processing"
Advances in music information retrieval. Berlin: Springer Verlag, 2010.
Find full textInformation retrieval for music and motion. New York: Springer, 2007.
Find full textMüller, Meinard. Information retrieval for music and motion. New York: Springer, 2007.
Find full textJialie, Shen, ed. Intelligent music information systems: Tools and methodologies. Hershey, PA: Information Science Reference, 2008.
Find full textThe strange music of social life: A dialogue on dialogic sociology. Philadelphia: Temple University Press, 2011.
Find full textMusic data mining. New York: Taylor & Francis, 2011.
Find full textTaraeva, G. R., and T. F. Shak. Muzyka v informat︠s︡ionnom mire: Nauka, tvorchestvo, pedagogika : sbornik nauchnykh stateĭ = Music in the world of information : science, creative work, pedagogics : collection of articles. Rostov-na-Donu: [Izd-vo Rostovskoĭ gos. konservatorii], 2004.
Find full textH, Chen Homer, ed. Music emotion recognition. Boca Raton, Fla: CRC, 2011.
Find full textKock, Wiil Uffe, ed. Computer music modeling and retrieval: Second International Symposium, CMMR 2004, Esbjerg, Denmark, May 26-29, 2004 : revised papers. Berlin: Springer, 2005.
Find full textDavid, Hutchison. Computer Music Modeling and Retrieval. Genesis of Meaning in Sound and Music: 5th International Symposium, CMMR 2008 Copenhagen, Denmark, May 19-23, 2008 Revised Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Find full textBook chapters on the topic "Music information processing"
Baras, C., N. Moreau, and T. Dutoit. "How could music contain hidden information?" In Applied Signal Processing, 223–63. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-74535-0_7.
Full textMedhat, Fady, David Chesmore, and John Robinson. "Music Genre Classification Using Masked Conditional Neural Networks." In Neural Information Processing, 470–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70096-0_49.
Full textZhong, Guoqiang, Haizhen Wang, and Wencong Jiao. "MusicCNNs: A New Benchmark on Content-Based Music Recommendation." In Neural Information Processing, 394–405. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04167-0_36.
Full textFang, Qianqi, Ling Liu, Junliang Yu, and Junhao Wen. "Meta-path Based Heterogeneous Graph Embedding for Music Recommendation." In Neural Information Processing, 101–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04182-3_10.
Full textMonsignori, M., P. Nesi, and M. B. Spinu. "Watermarking Music Sheets." In Advances in Multimedia Information Processing — PCM 2001, 646–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45453-5_83.
Full textSitarek, Tomasz, and Wladyslaw Homenda. "Efficient Processing the Braille Music Notation." In Computer Information Systems and Industrial Management, 338–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33260-9_29.
Full textIkeuchi, Ryota, and Kazushi Ikeda. "An Automatic Music Transcription Based on Translation of Spectrum and Sound Path Estimation." In Neural Information Processing, 532–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24955-6_64.
Full textBrewer, Madeline, and Jessica Sharmin Rahman. "Pruning Long Short Term Memory Networks and Convolutional Neural Networks for Music Emotion Recognition." In Neural Information Processing, 343–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63836-8_29.
Full textDuan, Ruo-Nan, Xiao-Wei Wang, and Bao-Liang Lu. "EEG-Based Emotion Recognition in Listening Music by Using Support Vector Machine and Linear Dynamic System." In Neural Information Processing, 468–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34478-7_57.
Full textLiu, Ning-Han, and Shu-Ju Hsieh. "Intelligent Music Playlist Recommendation Based on User Daily Behavior and Music Content." In Advances in Multimedia Information Processing - PCM 2009, 671–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10467-1_59.
Full textConference papers on the topic "Music information processing"
Bozkurt, Baris, Ali Cenk Gedik, and M. Kemal Karaosmanoglu. "Music information retrieval for Turkish music: problems, solutions and tools." In 2009 IEEE 17th Signal Processing and Communications Applications Conference (SIU). IEEE, 2009. http://dx.doi.org/10.1109/siu.2009.5136518.
Full textSimonetta, Federico, Stavros Ntalampiras, and Federico Avanzini. "Multimodal Music Information Processing and Retrieval: Survey and Future Challenges." In 2019 International Workshop on Multilayer Music Representation and Processing (MMRP). IEEE, 2019. http://dx.doi.org/10.1109/mmrp.2019.00012.
Full textSimonetta, Federico, Stavros Ntalampiras, and Federico Avanzini. "Multimodal Music Information Processing and Retrieval: Survey and Future Challenges." In 2019 International Workshop on Multilayer Music Representation and Processing (MMRP). IEEE, 2019. http://dx.doi.org/10.1109/mmrp.2019.8665366.
Full textWang, Tao, Dong-Ju Kim, Kwang-Seok Hong, and Jeh-Seon Youn. "Music Information Retrieval System Using Lyrics and Melody Information." In 2009 Asia-Pacific Conference on Information Processing, APCIP. IEEE, 2009. http://dx.doi.org/10.1109/apcip.2009.283.
Full textMoh, Yvonne, Peter Orbanz, and Joachim M. Buhmann. "Music preference learning with partial information." In ICASSP 2008 - 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4518036.
Full textGoto, Masataka. "Frontiers of music information research based on signal processing." In 2014 12th International Conference on Signal Processing (ICSP 2014). IEEE, 2014. http://dx.doi.org/10.1109/icosp.2014.7014960.
Full textEzzaidi, Hassan, Mohammed Bahoura, and Jean Rouat. "Singer and music discrimination based threshold in polyphonic music." In 2010 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 2010. http://dx.doi.org/10.1109/isspit.2010.5711726.
Full textAbdallah, Samer A., Henrik Ekeus, Peter Foster, Andrew Robertson, and Mark D. Plumbley. "Cognitive music modelling: An information dynamics approach." In 2012 3rd International Workshop on Cognitive Information Processing (CIP). IEEE, 2012. http://dx.doi.org/10.1109/cip.2012.6232940.
Full textAcici, Koray, Tunc Asuroglu, and Hasan Ogul. "Information retrieval in metal music sub-genres." In 2017 25th Signal Processing and Communications Applications Conference (SIU). IEEE, 2017. http://dx.doi.org/10.1109/siu.2017.7960162.
Full textHuang, Yu-Siang, Szu-Yu Chou, and Yi-Hsuan Yang. "Music thumbnailing via neural attention modeling of music emotion." In 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2017. http://dx.doi.org/10.1109/apsipa.2017.8282049.
Full text