Academic literature on the topic 'Muscoviti'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Muscoviti.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Muscoviti"
Monier, Gilles, and Jean-Louis Robert. "Muscovite solid solutions in the system K2O-MgO-FeO-Al2O3-SiO2-H2O: an experimental study at 2 kbar PH2O and comparison with natural Li-Free white micas." Mineralogical Magazine 50, no. 356 (June 1986): 257–66. http://dx.doi.org/10.1180/minmag.1986.050.356.08.
Full textPeruzzo, Luca, Raffaele Sassi, and F. P. Sassi. "Sulla vanabilità compositiva delle miche nell’amhito di uno stesso affioramento di metapeliti di basso grado: un esempio. 2: Le muscoviti e considerazioni conclusive." Rendiconti Lincei 3, no. 1 (March 1992): 43–55. http://dx.doi.org/10.1007/bf03002963.
Full textDallmeyer, R. D., J. D. Keppie, and R. D. Nance. "40Ar/39Ar ages of detrital muscovite within Lower Cambrian and Carboniferous clastic sequences in northern Nova Scotia and southern New Brunswick: implications for provenance regions." Canadian Journal of Earth Sciences 34, no. 2 (February 1, 1997): 156–68. http://dx.doi.org/10.1139/e17-013.
Full textTreloar, Peter J. "Chromian muscovites and epidotes from Outokumpu, Finland." Mineralogical Magazine 51, no. 362 (October 1987): 593–99. http://dx.doi.org/10.1180/minmag.1987.051.362.14.
Full textPereira, Ronaldo Mello, Diana Rodrigues, Ciro Alexandre Ávila, and Reiner Neumann. "Stockscheider Quartzo-Moscovíticos e Pegmatíticos na Zona de Cúpula do Granitóide Ritápolis, Região de São João del Rei, Minas Gerais." Anuário do Instituto de Geociências 34, no. 2 (January 1, 2011): 59–69. http://dx.doi.org/10.11137/2011_2_59-69.
Full textHalperin, Charles J. "“Scratch a Russian, Find a Turk”." Russian History 45, no. 4 (November 27, 2018): 367–77. http://dx.doi.org/10.1163/18763316-04504004.
Full textBrown, Peter B. "Muscovite Arithmetic in Seventeenth-Century Russian Civilization: Is It Not Time to Discard the “Backwardness” Label?" Russian History 39, no. 4 (2012): 393–459. http://dx.doi.org/10.1163/48763316-03904001.
Full textRužička, Peter, Pavol Myšľan, and Sergii Kurylo. "Minerálne zloženie metapelitovej a metapyroklastickej zložky kryštalických vápencov z lokalít Lubeník a Ochtiná (Slovenská republika)." Bulletin Mineralogie Petrologie 28, no. 2 (2020): 281–89. http://dx.doi.org/10.46861/bmp.28.281.
Full textSelin, Adrian Aleksandrovich. "«Expelled from Livonia»: Towards the issue of the arrangement of landowners of «Old» and «New German towns» after the Plyussa Treaty 1583." Studia Slavica et Balcanica Petropolitana, no. 2 (28) (2020): 24–35. http://dx.doi.org/10.21638/spbu19.2020.202.
Full textHalperin, Charles J. "Ivan IV and the Tatars." Golden Horde Review 9, no. 1 (March 29, 2021): 188–200. http://dx.doi.org/10.22378/2313-6197.2021-9-1.188-200.
Full textDissertations / Theses on the topic "Muscoviti"
LIBERATO. "Stratigraphic, sedimentological and provenance study on the Permian-Triassic sequences of southern Gondwana: comparison between Victoria Land (Antarctica) and Tasmania and paleoenvironmental implications." Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1118448.
Full textMayhew, Nick. "Marriage and brotherhood in Muscovite Russia." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275349.
Full textLixandrão, Filho Arnaldo Luis 1983. "Estudos de "annealing" de traços de íons e traços de fissão em muscovita." [s.n.], 2016. http://repositorio.unicamp.br/jspui/handle/REPOSIP/330569.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-31T19:22:36Z (GMT). No. of bitstreams: 1 LixandraoFilho_ArnaldoLuis_M.pdf: 11489211 bytes, checksum: 0e5e2fdcd3551b722c60d418964284ee (MD5) Previous issue date: 2016
Resumo: O trabalho consistiu em estudar a muscovita como termocronômetro. Por ter pequena quantidade de urânio, abaixo de 5 partes por milhão, a utilização direta é inviável. Dessa forma, irradiamos placas de muscovita com íons de $^{238}U$ moderados por folhas de alumínio (resultando em diferentes energias) e com diferentes ângulos de incidência, com a finalidade de analisar o comportamento da muscovita com traços de íons e também para que esses íons criassem canais com o objetivo de revelar maior quantidade de traços fósseis. Realizamos planejamento utilizando algorítimo D-ótimo para realizar tratamentos térmicos com diferentes tempos e temperaturas, a fim de obter dados de ''annealing'' para a muscovita. Medimos o comprimento dos traços de íons projetados com as seguintes dependências: massa do íon, tempo de ''annealing'', temperatura de ''annealing'', energia de incidência e ângulo de incidência. Os parâmetros energia de incidência, ângulo de incidência e características do íon, não são considerados em nenhum dos modelos disponíveis na literatura. Assim sendo, formulamos um novo modelo empírico para a cinética de ''annealing'': $l = l_0 + a*energia - e^{\left(\frac{temperatura}{b + c*log(tempo)}\right)}$, $l$ sendo comprimento do traço com ''annealing'' e $l_0$ o comprimento sem ''annealing'' e, as constantes $a$, $b$ e $c$ ajustadas a partir dos dados experimentais. As constantes $a$ e $L_0$ são as variáveis relativas ao ângulo de incidência, tipo do íon e energia. Este modelo, além de ter um número menor de parâmetros, com uma simples modificação, $\frac{L}{L_0} = 1 + A.e^{\frac{T}{b}},\ b = B+C.ln(t)$, pode ser aplicado também para traços de fissão confinados. Nesse caso são apenas 3 parâmetros, $A$, $B$ e $C$ e o modelo ajustado possibilita a análise térmica em qualquer mineral que possuir dados experimentais. Neste trabalho mostramos o ajuste para os seguintes minerais: apatita, zircão, epídoto e muscovita. A partir dos traços de íons que sofreram ''annealing'' conseguimos ajustar parâmetros e obtivemos resultados consistentes com trabalhos anteriores. Um deles foi a previsão de \citeauthor{Bigazzi1967} que, possivelmente, utilizou amostras de superfície à 303K. Com esse resultado, validamos que traços de íons podem gerar bons resultados no estudo de ''annealing'' em laboratório e em tempos geológicos. Por fim, desenvolvemos um aplicativo que contempla: o ajuste dos parâmetros do modelo aos dados experimentais de modo automático, a obtenção de índices térmicos (temperatura de fechamento e zona de ''annealing parcial'') independente do mineral e a reconstrução de histórias térmicas para múltiplos minerais a partir de vínculos geológicos, da idade e de uma lista de comprimento de traços confinados. Além dessas características, a inédita ferramenta utiliza interface ''web'' que pode ser utilizada em qualquer plataforma e sistema operacional. Por fim, os resultados significativos foram: novos dados de ''annealing'' de traços de íons em mica muscovita, novo modelo empírico para abordar a cinética do ''annealing'' para traços de íons ou fissão e um aplicativo para tratamento de dados, ajuste, obtenção de índices térmicos e histórias térmicas
Abstract: In this work we studied muscovite as a thermocronometer. Muscovite have low amount of uranium, below 5 parts per million. Because of that it is impractical to be used as thermocronometer. Thus irradiating it with swift heavy ions of $ ^ {238} U $, moderated by aluminum foil (resulting in different energies) and with different angles of incidence is one way to analyze the behavior of muscovite ion tracks. These tracks can act like channels to the acid, chemical etching, revealing more fossil traces. We carry out experimental planning using D-optimal algorithm do thermal treatments at different times and temperatures in order anneal muscovite tracks. We measured the length of the ion tracks created with the following dependencies: ion mass, annealing time and temperature, impact energy and angle of incidence. The incidence of energy parameters, angle of incidence and ion characteristics are not considered in any of the models available in the literature. Therefore, we have developed a new empirical model for the kinetics of annealing: $l = l_0 + a*energia - e^{\left(\frac{temperatura}{b + c*log(tempo)}\right)}$, $l$ annealed fission track length and $l_0$ fission track length and the constants $a$, $b$ and $c$ adjusted from the experimental data . The constants $a$ and $L_0$ are related to the angle of incidence, type of ion and energy. This model, besides having fewer parameters, with a simple modification, $\frac{L}{L_0} = 1 + A.e^{\frac{T}{b}},\ b = B+C.ln(t)$ may also be applied to confined fission tracks. The adjusted model , with only 3 parameters, $A$, $B$ and $C$, enables thermal analysis in any mineral that has experimental data. We show fitting for the following minerals: apatite, zircon, epidote and muscovite. From the annealed ion tracks we fit the data to get all parameters and obtained results consistent with previous work. One was that we predict that \citeauthor{Bigazzi1967}, possibly, used surface samples with 303 K. With this result, we validate that ions tracks can generate good results using annealing laboratory data extrapolated to geological time. Finally, we developed an application with the following features: automatic model fitting to experimental data, simulation of thermal index (closure temperature and partial annealing) independent of the mineral and the reconstruction of thermal histories for multiple minerals from geological. In addition to these features, the application has web interface and can be used on any platform and operating system. Finally, the most significant results of this work were: new experimental annealing data of ion tracks in muscovite, new empirical model to increase the knowledge of the ion or fission tracks annealing kinetics and an application for data processing, fit and simulation of thermal index and thermal histories reconstruction
Mestrado
Física
Mestre em Física
Davis, Laura E. "Pegmatitic muscovites: effect of composition on optical and lattice parameters." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/50066.
Full textMaster of Science
incomplete_metadata
Zhukova, Tatyana Alexandra. "The gift-giving culture of Anglo-Muscovite diplomacy, 1566-1623." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/55471/.
Full textTshering, Peldon. "Detrital muscovite thermochronology in two drainage basins in western Bhutan." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39008.
Full textIncludes bibliographical references (leaves [34]-38).
New reconnaissance data for a poorly characterized area in the western Bhutan Himalaya show distinction between the 40Ar/39Ar cooling age distributions of detrital minerals in the two river catchments of the Punatsang chu and the Wang chu. Muscovites from five samples of Wang chu river sands yield ages (corresponding roughly to the time of bedrock cooling through a temperature of ca.350°C) between 9.37± 0.08 Ma and 13.98 ± 0.08 Ma. The majority of ages are less than 13 Ma, and the data for all samples have a unimodal distribution with an average age of ca. 11.4 ± 1.5 Ma. In contrast, muscovites from 14 Punatsang chu samples yield ages with nearly the same total range but with a distinctively multi-modal distribution. Two modes predominate in the Punatsang chu data: one at ca. 11.4 Ma, which is statistically indistinguishable from the single mode of the Wang chu data, and one at ca. 14.5 Ma. The full explanation for this distribution must await further bedrock and detrital dating studies, but one hypothesis is that the out-of-sequence Kakhtang thrust fault system - which is thought to transect the upper reaches of the river catchments - has juxtaposed two bedrock terrains with different cooling histories.
(cont.) A second possibility is that the younger mode of cooling ages is related to uplift of the footwall of the Chomolhari fault system, which includes the major bounding structures of the Yadong-Gulu rift northwest of the catchments. Exactly why the older mode of ages is not found in the Wang chu dataset is unclear. If the first of the above hypotheses is correct, the lack of an older mode in the Wang chu dataset may mean that the muscovites in the Wang chu fluvial sediments were derived exclusively from the Kakhtang thrust system hanging wall. If the second hypothesis is correct, the muscovites may have been derived exclusively from the Chomolhari fault system footwall. However, since we do not know the actual distribution of muscovites in the Wang chu catchment and we do not know that modern erosion is uniform in the catchment, it is also possible that the older mode is simply missing as an artifact not-uniform sampling. Again, more studies are needed to evaluate these alternative explanations.
by Peldon Tshering.
S.M.
Gridi-Bennadji, Fayza. "Matériaux de mullite à microstructure organisée composés d'assemblage muscovite-kaolinite." Limoges, 2007. https://aurore.unilim.fr/theses/nxfile/default/0475a8c9-501a-4ac2-bdac-9d95eeaa3b66/blobholder:0/2007LIMO4033.pdf.
Full textMicro-composite materials with an organized microstructure with mullite are formed from assemblages of muscovite and kaolinite minerals. Rx diffraction and neutron studies of muscovite point to the temperature effect on the reduction of the structural organization, while sheet arrangements and preferential orientations of structural units in the 3 directions of mullite crystals are maintained up to 1095°C. These behaviors favor the organized growth of large mullite crystals by epitaxy on the high-temperature form of muscovite. The study of the kinetics of thermal transformations and of the exfoliation process of muscovite leads to the optimization of the sintering process of substrates with a thickness of 500µm. The study of correlations between microstructure and mechanical properties leads to the optimization of materials with a higher strength and fracture toughness, in comparison with the behavior of similar materials
Nana, Koumtoudji Lecomte Gisèle Laure. "Transformations thermiques, organisation structurale et frittage des composés kaolinite-muscovite." Limoges, 2004. http://aurore.unilim.fr/theses/nxfile/default/1f887c04-ebcd-4780-a15c-aee018af90f2/blobholder:0/2004LIMO0034.pdf.
Full textGruber, Isaiah. "The Muscovite embassy of 1599 to Emperor Rudolf II of Habsburg." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0022/MQ50518.pdf.
Full textRoland, Patrick. "Contribution à l'étude du broyage des amiantes et du mica muscovite." Mulhouse, 1986. http://www.theses.fr/1986MULH0014.
Full textBooks on the topic "Muscoviti"
Explorations in Muscovite history. Hampshire, Great Britain: Variorum, 1991.
Find full textHughes, Lindsey, ed. New Perspectives on Muscovite History. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22428-9.
Full textMonier, Gilles. Cristallochimie des micas des leucogranites: Nouvelles données expérimentales et applications pétrologiques. Vandœuvre-les-Nancy, France: Centre de recherches sur la géologie de l'uranium, 1987.
Find full textRussia. The Muscovite Law Code (Ulozhenie) of 1649. Irvine, Calif. (P.O. Box 5001, Irvine, 92716-5001): C. Schlacks Jr., 1988.
Find full textMuzhik and Muscovite: Urbanization in late imperial Russia. Berkeley: University of California Press, 1985.
Find full textBradley, Joseph. Muzhik and Muscovite: Urbanization in late imperial Russia. Berkeley: University of California Press, 1985.
Find full textPontifical Institute of Mediaeval Studies. and Gosudarstvennyĭ istoricheskiĭ muzeĭ (Moscow, Russia)., eds. The Volokolamsk paterikon: A window on a Muscovite monastery. Toronto: Pontifical Institute of Mediaeval Studies, 2008.
Find full textCroskey, Robert M. Muscovite diplomatic practice in the reign of Ivan III. New York: Garland Pub., 1987.
Find full textAlef, Gustave. The origins of Muscovite autocracy: The age of Ivan III. Berlin: Osteuropa-Institut, 1986.
Find full textTolstoĭ, Petr Andreevich. The travel diary of Peter Tolstoi: A Muscovite in early modern Europe. DeKalb: Northern Illinois University Press, 1987.
Find full textBook chapters on the topic "Muscoviti"
Gooch, Jan W. "Muscovite." In Encyclopedic Dictionary of Polymers, 476. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7747.
Full textBaron, Samuel. "B.A. Rybakov on the Jenkinson Map of 1562." In New Perspectives on Muscovite History, 3–13. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22428-9_1.
Full textStevens, Carol B. "Solvency and Service Status: The Impact of Military Reform, 1678–1682." In New Perspectives on Muscovite History, 156–73. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22428-9_10.
Full textHughes, Lindsey. "Russia in 1689: Court Politics in Foy de la Neuville’s Relation curieuse et nouvelle de Moscovie." In New Perspectives on Muscovite History, 177–87. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22428-9_11.
Full textPolevoi, Boris P. "Concerning the Origin of the Maps of Russia of 1613–1614 of Hessel Gerritsz." In New Perspectives on Muscovite History, 14–23. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22428-9_2.
Full textUrness, Carol. "Rybakov on the Delisle Map of 1706." In New Perspectives on Muscovite History, 24–34. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22428-9_3.
Full textBirnbaum, Henrik. "Did the 1478 Annexation of Novgorod by Muscovy Fundamentally Change the Course of Russian History?" In New Perspectives on Muscovite History, 37–50. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22428-9_4.
Full textPickhan, Gertrud. "The Incorporation of Gospodin Pskov into the Muscovite State." In New Perspectives on Muscovite History, 51–58. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22428-9_5.
Full textSkrynnikov, Ruslan G. "The Civil War in Russia at the Beginning of the Seventeenth Century (1603–1607): Its Character and Motive Forces." In New Perspectives on Muscovite History, 61–79. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22428-9_6.
Full textGraham, Hugh F. "Further Sources for the Rule of False Dmitrii I." In New Perspectives on Muscovite History, 80–97. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-22428-9_7.
Full textConference papers on the topic "Muscoviti"
Kaur, Navjeet, Lakhwant Singh, Mohan Singh, A. M. Awasthi, and Jitender Kumar. "Dielectric relaxation characteristics of muscovite mica." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872707.
Full textFali, Alireza, Sampath Gamage, Marquez Howard, Kirill Bolotin, and Yohannes Abate. "Nanoimaging and Nano-FTIR of Muscovite Mica." In 2018 IEEE Research and Applications of Photonics In Defense Conference (RAPID). IEEE, 2018. http://dx.doi.org/10.1109/rapid.2018.8509013.
Full textSchabernack, Jonas, Augusto Oliveira, Thomas Heine, and Cornelius Fischer. "Site-Specific Europium Adsorption on Muscovite (001) Surfaces." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.13175.
Full textHeizler, Matthew, Mark Holland, and Sean Long. "Muscovite MDD: In Vacuo Argon Release via Volume Diffusion." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1013.
Full textKaur, Sukhnandan, Surinder Singh, Lakhwant Singh, and S. P. Lochab. "Thermoluminescence and dielectric response of gamma irradiated muscovite mica." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872966.
Full textGreathouse, Jeffery, Daniel Long, Guangping Xu, Hongkyu Yoon, and Katherine Jungjohann. "Molecular-Scale Studies of Surfactant Partitioning on Muscovite Surfaces." In Proposed for presentation at the 57th Annual Clay Minerals Society Meeting held October 19-23, 2020. US DOE, 2020. http://dx.doi.org/10.2172/1824261.
Full textPaterson, Jason, Andrew J. Shields, and Donald M. Hepburn. "Artificial vented void partial discharge degradation of Muscovite mica." In 2012 47th International Universities Power Engineering Conference (UPEC). IEEE, 2012. http://dx.doi.org/10.1109/upec.2012.6398691.
Full textWang, Chih-Kuo, Hena-Jui Liu, Dong Su, Do Thi Hien, Ha Thai Duy, Kun-Hong Wu, Yi-Chun Chen, et al. "Heteroepitaxial Cof'e2O4/Muscovite Bimorph with Large Magnetostriction for Flexible Electronics." In 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS). IEEE, 2016. http://dx.doi.org/10.1109/icaums.2016.8479704.
Full textArchilla, J. F. R., J. Cuevas, F. R. Romero, Michio Tokuyama, Irwin Oppenheim, and Hideya Nishiyama. "Effect of Breather Existence on Reconstructive Transformations in Mica Muscovite." In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897904.
Full textAwasthi, Saurabh, Douglas J. Little, Alex Fuerbach, Chris Marjo, Bill Gong, and Deb M. Kane. "Response of natural muscovite to a single femtosecond laser pulse." In Micro + Nano Materials, Devices, and Applications 2019, edited by M. Cather Simpson and Saulius Juodkazis. SPIE, 2019. http://dx.doi.org/10.1117/12.2541140.
Full textReports on the topic "Muscoviti"
Shaw, D. R., C. J. Hodgson, C. H. B. Leitch, and R. J. W. Turner. Geochemistry of tourmalinite, muscovite, and chlorite-garnet-biotite alteration, Sullivan Zn-Pb Deposit, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1993. http://dx.doi.org/10.4095/134196.
Full textCarroll, S., M. Smith, and K. Lammers. Chlorite, Biotite, Illite, Muscovite, and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 C. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1345341.
Full textSkipton, D. R., M R St-Onge, and N. L. Joyce. 40Ar/39Ar biotite, muscovite, and hornblende ages from the Cape Smith belt and Superior Craton, northern Quebec. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2020. http://dx.doi.org/10.4095/322170.
Full textPowell, J., and D. A. Schneider. Preliminary results of detrital muscovite 40Ar/39Ar geochronology from the eastern Mackenzie Mountains and Mackenzie Plain, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/292712.
Full textKellett, D. A., and P. Iraheta Muniz. Detrital U-Pb zircon and 40Ar/39Ar muscovite geochronology of the Whitehorse Trough, and surrounding rocks, Yukon and British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/314694.
Full textKellett, D. A., and A. Zagorevski. Overlap assemblages: Laberge Group of the Whitehorse Trough, northern Canadian Cordillera. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/326064.
Full textSpecht, Paul Elliott, and Marcia A. Cooper. Thermal Diffusivity and Specific Heat Measurements of Titanium Potassium Perchlorate Titanium Subhydride Potassium Perchlorate 9013 Glass 7052 Glass SB-14 Glass and C-4000 Muscovite Mica Using the Flash Technique. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1170406.
Full textJacques, I. J., A. J. Anderson, and S. G. Nielsen. The geochemistry of thallium and its isotopes in rare-element pegmatites. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328983.
Full textCaritat, P. de, and U. Troitzsch. Towards a regolith mineralogy map of the Australian continent: a feasibility study in the Darling-Curnamona-Delamerian region. Geoscience Australia, 2021. http://dx.doi.org/10.11636/record.2021.035.
Full text