Academic literature on the topic 'Muscles Genes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Muscles Genes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Muscles Genes"

1

Hooper, Scott L., and Jeffrey B. Thuma. "Invertebrate Muscles: Muscle Specific Genes and Proteins." Physiological Reviews 85, no. 3 (July 2005): 1001–60. http://dx.doi.org/10.1152/physrev.00019.2004.

Full text
Abstract:
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
APA, Harvard, Vancouver, ISO, and other styles
2

Kostrominova, Tatiana Y., Douglas E. Dow, Robert G. Dennis, Richard A. Miller, and John A. Faulkner. "Comparison of gene expression of 2-mo denervated, 2-mo stimulated-denervated, and control rat skeletal muscles." Physiological Genomics 22, no. 2 (July 14, 2005): 227–43. http://dx.doi.org/10.1152/physiolgenomics.00210.2004.

Full text
Abstract:
Loss of innervation in skeletal muscles leads to degeneration, atrophy, and loss of force. These dramatic changes are reflected in modifications of the mRNA expression of a large number of genes. Our goal was to clarify the broad spectrum of molecular events associated with long-term denervation of skeletal muscles. A microarray study compared gene expression profiles of 2-mo denervated and control extensor digitorum longus (EDL) muscles from 6-mo-old rats. The study identified 121 genes with increased and 7 genes with decreased mRNA expression. The expression of 107 of these genes had not been identified previously as changed after denervation. Many of the genes identified were genes that are highly expressed in skeletal muscles during embryonic development, downregulated in adults, and upregulated after denervation of muscle fibers. Electrical stimulation of denervated muscles preserved muscle mass and maximal force at levels similar to those in the control muscles. To understand the processes underlying the effect of electrical stimulation on denervated skeletal muscles, mRNA and protein expression of a number of genes, identified by the microarray study, was compared. The hypothesis was that loss of nerve action potentials and muscle contractions after denervation play the major roles in upregulation of gene expression in skeletal muscles. With electrical stimulation of denervated muscles, the expression levels for these genes were significantly downregulated, consistent with the hypothesis that loss of action potentials and/or contractions contribute to the alterations in gene expression in denervated skeletal muscles.
APA, Harvard, Vancouver, ISO, and other styles
3

Chalupová, P., V. Dvořáková, A. Knoll, A. Stratil, H. Bartenschlager, R. Stupka, and J. Čítek. "Polymorphism, linkage mapping, and association analysis with carcass traits of four porcine candidate genes selected from gene-expression profiles of Czech Large White and Wild Boar muscles." Czech Journal of Animal Science 59, No. 3 (March 18, 2014): 116–27. http://dx.doi.org/10.17221/7291-cjas.

Full text
Abstract:
Genes that are expressed in skeletal muscles may play a role in prenatal muscle development and postnatal muscle growth and can be considered candidates for economically important traits. Four porcine genes that were differentially expressed in skeletal muscles of Czech Large White and Wild Boar (SORT1, EMP3, IL18, and BTG2) were selected to search for polymorphism, linkage assignment, and association analysis with carcass traits. Through comparative sequencing of portions of the genes numerous polymorphisms were revealed (SORT1 &ndash; 21, EMP3 &ndash; 6, IL18 &ndash; 41, BTG2 &ndash; 9). Linkage analysis in a Meishan &times; Pietrain F<sub>2</sub> pedigree showed the positions of the genes relative to other genes and markers on the respective chromosomes &ndash; SORT1 on SSC4, EMP3 on SSC6, IL18 and BTG2 on SSC9. Preliminary association analysis in pig commercial crosses with selected SNPs showed associations with several carcass traits at nominal P value of &lt; 0.05, which may indicate their involvement in muscle growth and fat deposition. The tested polymorphisms may not be causal for the associations, but they may be in linkage disequilibrium with causative mutations. &nbsp;
APA, Harvard, Vancouver, ISO, and other styles
4

Lowe, Dawn A., Troy Lund, and Stephen E. Alway. "Hypertrophy-stimulated myogenic regulatory factor mRNA increases are attenuated in fast muscle of aged quails." American Journal of Physiology-Cell Physiology 275, no. 1 (July 1, 1998): C155—C162. http://dx.doi.org/10.1152/ajpcell.1998.275.1.c155.

Full text
Abstract:
Myogenic regulatory factors (MRFs) are a family of skeletal muscle-specific transcription factors that regulate the expression of several muscle genes. This study was designed to determine whether MRF transcripts were increased in hypertrophy-stimulated muscle of adult quails and whether equivalent increases occurred in muscles of older quails. Slow-tonic anterior latissimus dorsi and fast-twitch patagialis muscles of adult, middle-aged, aged, and senescent quails were stretch overloaded for 6, 24, or 72 h, with contralateral muscles serving as controls. RNase protection assays showed that MRF4 and MyoD transcript levels were increased and myogenin and Myf5 transcripts were induced in stretch-overloaded muscles. However, MRF4 and MyoD increases were significantly attenuated in patagialis muscles of older quails. RT-PCR analyses of three MRF-regulated genes showed that increases in the transcription of these genes occurred with stretch overload, but the increases were less in muscles of older quails. In summary, attenuated MRF responses in muscles from aged animals may partially explain why muscles from older animals do not hypertrophy to the same extent as muscles from younger animals.
APA, Harvard, Vancouver, ISO, and other styles
5

Raffaello, Anna, Paolo Laveder, Chiara Romualdi, Camilla Bean, Luana Toniolo, Elena Germinario, Aram Megighian, Daniela Danieli-Betto, Carlo Reggiani, and Gerolamo Lanfranchi. "Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling." Physiological Genomics 25, no. 1 (March 13, 2006): 60–74. http://dx.doi.org/10.1152/physiolgenomics.00051.2005.

Full text
Abstract:
Denervation deeply affects muscle structure and function, the alterations being different in slow and fast muscles. Because the effects of denervation on fast muscles are still controversial, and high-throughput studies on gene expression in denervated muscles are lacking, we studied gene expression during atrophy progression following denervation in mouse tibialis anterior (TA). The sciatic nerve was cut close to trochanter in adult CD1 mice. One, three, seven, and fourteen days after denervation, animals were killed and TA muscles were dissected out and utilized for physiological experiments and gene expression studies. Target cDNAs from TA muscles were hybridized on a dedicated cDNA microarray of muscle genes. Seventy-one genes were found differentially expressed. Microarray results were validated, and the expression of relevant genes not probed on our array was monitored by real-time quantitative PCR (RQ-PCR). Nuclear- and mitochondrial-encoded genes implicated in energy metabolism were consistently downregulated. Among genes implicated in muscle contraction (myofibrillar and sarcoplasmic reticulum), genes typical of fast fibers were downregulated, whereas those typical of slow fibers were upregulated. Electrophoresis and Western blot showed less pronounced changes in myofibrillar protein expression, partially confirming changes in gene expression. Isometric tension of skinned fibers was little affected by denervation, whereas calcium sensitivity decreased. Functional studies in mouse extensor digitorum longus muscle showed prolongation in twitch time parameters and shift to the left in force-frequency curves after denervation. We conclude that, if studied at the mRNA level, fast muscles appear not less responsive than slow muscles to the interruption of neural stimulation.
APA, Harvard, Vancouver, ISO, and other styles
6

Hitachi, Keisuke, Masashi Nakatani, and Kunihiro Tsuchida. "Long Non-Coding RNA Myoparr Regulates GDF5 Expression in Denervated Mouse Skeletal Muscle." Non-Coding RNA 5, no. 2 (April 8, 2019): 33. http://dx.doi.org/10.3390/ncrna5020033.

Full text
Abstract:
Skeletal muscle is a highly plastic tissue and decreased skeletal muscle mass (muscle atrophy) results in deteriorated motor function and perturbed body homeostasis. Myogenin promoter-associated long non-coding RNA (lncRNA) Myoparr promotes skeletal muscle atrophy caused by surgical denervation; however, the precise molecular mechanism remains unclear. Here, we examined the downstream genes of Myoparr during muscle atrophy following denervation of tibialis anterior (TA) muscles in C57BL/6J mice. Myoparr knockdown affected the expression of 848 genes. Sixty-five of the genes differentially regulated by Myoparr knockdown coded secretory proteins. Among these 65 genes identified in Myoparr-depleted skeletal muscles after denervation, we focused on the increased expression of growth/differentiation factor 5 (GDF5), an inhibitor of muscle atrophy. Myoparr knockdown led to activated bone morphogenetic protein (BMP) signaling in denervated muscles, as indicated by the increased levels of phosphorylated Smad1/5/8. Our detailed evaluation of downstream genes of Myoparr also revealed that Myoparr regulated differential gene expression between myogenic differentiation and muscle atrophy. This is the first report demonstrating the in vivo role of Myoparr in regulating BMP signaling in denervated muscles. Therefore, lncRNAs that have inhibitory activity on BMP signaling may be putative therapeutic targets for skeletal muscle atrophy.
APA, Harvard, Vancouver, ISO, and other styles
7

Glenmark, Birgitta, Maria Nilsson, Hui Gao, Jan-Åke Gustafsson, Karin Dahlman-Wright, and Håkan Westerblad. "Difference in skeletal muscle function in males vs. females: role of estrogen receptor-β." American Journal of Physiology-Endocrinology and Metabolism 287, no. 6 (December 2004): E1125—E1131. http://dx.doi.org/10.1152/ajpendo.00098.2004.

Full text
Abstract:
Male skeletal muscles are generally faster and have higher maximum power output than female muscles. Conversely, during repeated contractions, female muscles are generally more fatigue resistant and recover faster. We studied the role of estrogen receptor-β (ERβ) in this gender difference by comparing contractile function of soleus (mainly slow-twitch) and extensor digitorum longus (fast-twitch) muscles isolated from ERβ-deficient (ERβ−/−) and wild-type mice of both sexes. Results showed generally shorter contraction and relaxation times in male compared with female muscles, and ERβ deficiency had no effect on this. Fatigue (induced by repeated tetanic contractions) and recovery of female muscles were not affected by ERβ deficiency. However, male ERβ−/− muscles were slightly more fatigue resistant and produced higher forces during the recovery period than wild-type male muscles. In fact, female muscles and male ERβ−/− muscles displayed markedly better recovery than male wild-type muscles. Gene screening of male soleus muscles showed 25 genes that were differently expressed in ERβ−/− and wild-type mice. Five of these genes were selected for further analysis: muscle ankyrin repeat protein-2, muscle LIM protein, calsequestrin, parvalbumin, and aquaporin-1. Expression of these genes showed a similar general pattern: increased expression in male and decreased expression in female ERβ−/− muscles. In conclusion, ERβ deficiency results in increased performance during fatigue and recovery of male muscles, whereas female muscles are not affected. Improved contractile performance of male ERβ−/− mouse muscles was associated with increased expression of mRNAs encoding important muscle proteins.
APA, Harvard, Vancouver, ISO, and other styles
8

Depuydt, Christophe E., Veerle Goosens, Rekin’s Janky, Ann D’Hondt, Jan L. De Bleecker, Nathalie Noppe, Stefaan Derveaux, Dietmar R. Thal, and Kristl G. Claeys. "Unraveling the Molecular Basis of the Dystrophic Process in Limb-Girdle Muscular Dystrophy LGMD-R12 by Differential Gene Expression Profiles in Diseased and Healthy Muscles." Cells 11, no. 9 (April 30, 2022): 1508. http://dx.doi.org/10.3390/cells11091508.

Full text
Abstract:
Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by two mutations in anoctamin-5 (ANO5). Our aim was to identify genes and pathways that underlie LGMD-R12 and explain differences in the molecular predisposition and susceptibility between three thigh muscles that are severely (semimembranosus), moderately (vastus lateralis) or mildly (rectus femoris) affected in this disease. We performed transcriptomics on these three muscles in 16 male LGMD-R12 patients and 15 age-matched male controls. Our results showed that LGMD-R12 dystrophic muscle is associated with the expression of genes indicative of fibroblast and adipocyte replacement, such as fibroadipogenic progenitors and immune cell infiltration, while muscle protein synthesis and metabolism were downregulated. Muscle degeneration was associated with an increase in genes involved in muscle injury and inflammation, and muscle repair/regeneration. Baseline differences between muscles in healthy individuals indicated that muscles that are the most affected by LGMD-R12 have the lowest expression of transcription factor networks involved in muscle (re)generation and satellite stem cell activation. Instead, they show relative high levels of fetal/embryonic myosins, all together indicating that muscles differ in their baseline regenerative potential. To conclude, we profiled the gene expression landscape in LGMD-R12, identified baseline differences in expression levels between differently affected muscles and characterized disease-associated changes.
APA, Harvard, Vancouver, ISO, and other styles
9

Agarwal, Andrea B., Austin J. Christensen, Cheng-Yuan Feng, Dan Wen, L. Alan Johnson, and Christopher S. von Bartheld. "Expression of schizophrenia biomarkers in extraocular muscles from patients with strabismus: an explanation for the link between exotropia and schizophrenia?" PeerJ 5 (December 22, 2017): e4214. http://dx.doi.org/10.7717/peerj.4214.

Full text
Abstract:
Recent studies have implicated exotropia as a risk factor for schizophrenia. We determined whether schizophrenia biomarkers have abnormal levels of expression in extraocular muscles from patients with strabismus and explored whether differences in gene expression between medial and lateral rectus muscles may explain the specific association of schizophrenia with exotropia but not esotropia. Samples from horizontal extraocular muscles were obtained during strabismus surgery and compared with age- and muscle type-matched normal muscles from organ donors. We used PCR arrays to identify differences in gene expression among 417 signaling molecules. We then focused on established schizophrenia-related growth factors, cytokines, and regulators of the extracellular matrix. Among 36 genes with significantly altered gene expression in dysfunctional horizontal rectus muscles, over one third were schizophrenia-related: CTGF, CXCR4, IL1B, IL10RA, MIF, MMP2, NPY1R, NRG1, NTRK2, SERPINA3, TIMP1, TIMP2, and TNF (adjusted p value ≤ 0.016667). By PCR array, expression of three of these genes was significantly different in medial rectus muscles, while eleven were significantly altered in lateral rectus muscles. Comparing baseline levels between muscle types, three schizophrenia-related genes (NPY1R, NTRK2, TIMP2) had lower levels of expression in medial rectus muscles. Despite the surprisingly large number of schizophrenia-related genes with altered gene expression levels in dysfunctional muscles, the lack of specificity for medial rectus muscles undermines a model of shared, region-specific gene expression abnormalities between exotropia and schizophrenia, but rather suggests consideration of the alternative model: that exotropia-induced aberrant early visual experiences may enable and/or contribute as a causative factor to the development of schizophrenia.
APA, Harvard, Vancouver, ISO, and other styles
10

Rouger, Karl, Martine Le Cunff, Marja Steenman, Marie-Claude Potier, Nathalie Gibelin, Claude A. Dechesne, and Jean J. Leger. "Global/temporal gene expression in diaphragm and hindlimb muscles of dystrophin-deficient (mdx) mice." American Journal of Physiology-Cell Physiology 283, no. 3 (September 1, 2002): C773—C784. http://dx.doi.org/10.1152/ajpcell.00112.2002.

Full text
Abstract:
The mdx mouse is a model for human Duchenne muscular dystrophy (DMD), an X-linked degenerative disease of skeletal muscle tissue characterized by the absence of the dystrophin protein. The mdx mice display a much milder phenotype than DMD patients. After the first week of life when all mdx muscles evolve like muscles of young DMD patients, mdx hindlimb muscles substantially compensate for the lack of dystrophin, whereas mdx diaphragm muscle becomes progressively affected by the disease. We used cDNA microarrays to compare the expression profile of 1,082 genes, previously selected by a subtractive method, in control and mdx hindlimb and diaphragm muscles at 12 time points over the first year of the mouse life. We determined that 1) the dystrophin gene defect induced marked expression remodeling of 112 genes encoding proteins implicated in diverse muscle cell functions and 2) two-thirds of the observed transcriptomal anomalies differed between adult mdx hindlimb and diaphragm muscles. Our results showed that neither mdx diaphram muscle nor mdx hindlimb muscles evolve entirely like the human DMD muscles. This finding should be taken under consideration for the interpretation of future experiments using mdx mice as a model for therapeutic assays.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Muscles Genes"

1

Tomc, Lyn Kathryn. "Role of MEF2 proteins in the activation of the c-jun and MCK genes in skeletal muscle /." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0018/MQ56210.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Viveiros, Ryan. "An investigation into the genes mediating myoblast migration in the nematode : Caenorhabditis elegans." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/631.

Full text
Abstract:
During C. elegans embryogenesis, myoblasts initially form two rows along the left and right lateral midlines and at ~290 min of development migrate dorsally and ventrally to form the four muscle quadrants present upon hatching (Sulston et al, 1983). As the myoblasts migrate they are still dividing, as are many other cells in their immediate environment. This means the cell-cell contact of cells during migration is dynamic and can vary from animal to animal (Schnabel et al, 1997). This situation creates an environment where the extracellular matrix (ECM) and cell surface contacts are in constant flux, which begs the questions as to how these cells navigate unerringly to their final destination. In an attempt to identify genes mediating these migrations, I performed an RNAi based screen targeting 776 genes predicted to be members of the extracellular matrix (ECM), or one of its receptors. Using both feeding and injection based RNAi, I was able to identify three genes of interest. Knockdowns of F56B3.2 resulted in paralyzed animals with detached muscle, making it a good candidate for a new component of the muscle attachment complex. F33G12.4 knockdowns resulted in an embryonic arrest phenotype with an abnormal muscle lineage, possibly stemming from polarity defects. The only knockdown that resulted in muscle migration defects was that for lam-2, which encodes for the laminin gamma subunit. Analysis of the lam-2 knockdown, as well as knockdowns for the other laminin subunits, revealed dorsal/ventral migration defects as well as a posterior displacement of the anterior-most ventral muscle cells. Investigation of this posterior displacement has led to the identification of a previously un-described anterior muscle migration event and its dependency upon the extension of muscle processes from the leading cells.
APA, Harvard, Vancouver, ISO, and other styles
3

Einheber, Steven. "Isolation and characterization of acDNA clone encoding avian skeletal muscle C-protein : an intracellular member of the immunoglobulin superfamily /." Access full-text from WCMC, 1989. http://proquest.umi.com/pqdweb?did=744115441&sid=1&Fmt=2&clientId=8424&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kocamis, Hakan. "Functional profiles of growth related genes during embryogenesis and postnatal development of chicken and mouse skeletal muscle." Morgantown, W. Va. : [West Virginia University Libraries], 2001. http://etd.wvu.edu/templates/showETD.cfm?recnum=2026.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 2001.
Title from document title page. Document formatted into pages; contains ix, 109 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 88-104).
APA, Harvard, Vancouver, ISO, and other styles
5

Amaral, Ian P. G. "Transcriptional regulation in skeletal muscle of zebrafish in response to nutritional status, photoperiod and experimental selection for body size." Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/2616.

Full text
Abstract:
In the present study, the ease of rearing, short generation time and molecular research tools available for the zebrafish model (Danio rerio, Hamilton) were exploited to investigate transcriptional regulation in relation to feeding, photoperiod and experimental selection. Chapter 2 describes transcriptional regulation in fast skeletal muscle following fasting and a single satiating meal of bloodworms. Changes in transcript abundance were investigated in relation to the food content in the gut. Using qPCR, the transcription patterns of 16 genes comprising the insulin-like growth factor (IGF) system were characterized, and differential regulation between some of the paralogues was recorded. For example, feeding was associated with upregulation of igf1a and igf2b at 3 and 6h after the single-meal was offered, respectively, whereas igf1b was not detected in skeletal muscle. On the other hand, fasting triggered the upregulation of the igf1 receptors and igfbp1a/b, the only binding proteins whose transcription was responsive to a single-satiating meal. In addition to the investigation of the IGF-axis, an agnostic approach was used to discover other genes involved in transcriptional response to nutritional status, by employing a whole-genome microarray containing 44K probes. This resulted in the discovery of 147 genes in skeletal muscle that were differentially expressed between fasting and satiation. Ubiquitin-ligases involved in proteasome-mediated protein degradation, and antiproliferative and pro-apoptotic genes were among the genes upregulated during fasting, whereas satiation resulted in an upregulation of genes involved in protein synthesis and folding, and a gene highly correlated with growth in mice and fish, the enzyme ornithine decarboxylase 1. Zebrafish exhibit circadian rhythms of breeding, locomotor activity and feeding that are controlled by molecular clock mechanisms in central and peripheral organs. In chapter 3 the transcription of 17 known clock genes was investigated in skeletal muscle in relation to the photoperiod and food content in the gut. The hypothesis that myogenic regulatory factors and components of the IGF-pathway were clock-controlled was also tested. Positive (clock1 and bmal1 paralogues) and negative oscillators (cry1a and per genes) showed a strong circadian pattern in skeletal muscle in anti-phase with each other. MyoD was not clock-controlled in zebrafish in contrast to findings in mice, whereas myf6 showed a circadian pattern of expression in phase with clock and bmal. Similarly, the expression of two IGF binding proteins (igfbp3 and 5b) was circadian and in phase with the positive oscillators clock and bmal. It was also found that some paralogues responded differently to photoperiod. For example, clock1a was 3-fold more responsive than clock1b. Cry1b did not show a circadian pattern of expression. These patterns of expression provide evidence that the molecular clock mechanisms in skeletal muscle are synchronized with the molecular clock in central pacemaker organs such as eyes and the pineal gland. Using the short generation time of zebrafish the effects of selective breeding for body size at age were investigated and are described in chapter 4. Three rounds of artificial selection for small (S-lineage) and large body size (L-lineage) resulted in zebrafish populations whose average standard length were, respectively, 2% lower and 10% higher than an unselected control lineage (U-lineage). Fish from the L-lineage showed an increased egg production and bigger egg size with more yolk, possibly contributing to the larger body size observed in the early larval stage (6dpf) of fish from this lineage. Fish from S- and L-lineage exposed to fasting and refeeding showed very similar feed intake, providing evidence that experimental selection did not cause significant changes in appetite control. Investigation of the expression of the IGF-axis and nutritionally-response in skeletal muscle after fasting and refeeding revealed that the pattern of expression was not different between the selected lineages, but that a differential responsiveness was observed in a limited number of genes, providing evidence that experimental selection might have changed the way fish allocate the energy acquired through feeding. For example, a constitutive higher expression of igf1a was recorded in skeletal muscle of fish from the L-lineage whereas igfbp1a/b transcripts were higher in muscle of fish from the S-lineage. These findings demonstrate the rapid changes in growth and transcriptional response in skeletal muscle of zebrafish after only three rounds of selection. Furthermore, it provides evidences that differences in growth during embryonic and larval stages might be related to higher levels of energy deposited during oogenesis, whereas differences in adult fish were better explained by changes in energy allocation instead of energy acquisition. In chapter 5 the main findings made during this study and their impact on the literature are discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

GUYON, THIERRY. "Regulation de l'expression des genes codant pour les differents sous-unites du recepteur de l'acetylcholine dans les muscles de patients myastheniques." Paris 6, 1997. http://www.theses.fr/1997PA066373.

Full text
Abstract:
Dans la grande majorite des serums de patients myastheniques, des auto-anticorps pathogenes specifiques des recepteurs nicotiniques de l'acetylcholine (rach) induisent un desordre de la transmission neuro-musculaire. Cependant, aucune correlation stricte n'a ete etablie entre leur titre et la quantite de rach exprimee a la surface des replis post-synaptiques. Nous avons etudie l'implication de la cellule musculaire dans la modulation de la severite de la maladie. A partir de biopsies musculaires de patients avec ou sans anticorps detectables, nous avons observe une augmentation des transcrits codant pour les differentes sous-unite du rach adulte en reponse a l'attaque auto-immune. Ce mecanisme de compensation est un nouveau parametre biologique correle a la severite de la maladie et presentant une grande variabilite d'un patient a un autre. Parallelement, les anticorps monoclonaux et les serums de patients seropositifs induisent, dans la lignee musculaire te671, une augmentation similaire des transcrits codant la sous-unite du rach, et une diminution du nombre de recepteurs exprimes. Ce mecanisme de compensation semble etre induit par l'internalisation du rach independamment de l'influence des facteurs neurotrophiques et de l'activite electrique de la cellule musculaire. En revanche, les serums de patients seronegatifs induisent une augmentation des messagers de la sous-unite du rach sans diminution du nombre de recepteurs exprimes suggerant l'existence d'un facteur serique implique dans l'alteration de la fonction du rach, via l'interaction avec une autre cible presente a la surface des cellules musculaires. L'ensemble de ces travaux suggerent un role actif de la cible musculaire dans l'evolution et dans la modulation de la severite de la myasthenie, et souleve de nouvelles hypotheses concernant la physiopathologie de la myasthenie seronegative et les mecanismes de regulation du rach.
APA, Harvard, Vancouver, ISO, and other styles
7

Matsakas, Antonios [Verfasser]. "Effect of exercise on the mRNA expression of growth factors, metabolic genes and myosin heavy chain isoforms in skeletal muscles of the rat / Antonios Matsakas." Hamburg : Diplom.de, 2004. http://d-nb.info/118563598X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lacour, Floriane. "Contrôle des voies de signalisation Wnt par R-spondin1 au cours de la régénération du muscle squelettique adulte." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB035/document.

Full text
Abstract:
Le muscle squelettique adulte a une importante capacité à se régénérer après une lésion. La régénération musculaire dépend de divers signaux moléculaires tels que l’activation de la signalisation Wnt dans les cellules souches musculaires, appelées cellules satellites. Les protéines R-spondins (Rspo) composent une famille de quatre protéines qui ont un rôle d’activateurs/potentialisateurs sur les voies Wnt dans les cellules souches de différents tissus. Bien qu’il soit connu que ces protéines sont importantes pour la régénération de ces tissus, leur rôle dans la myogenèse régénérative n’a pas été étudié à ce jour. L’expression génique de R-spondin1 étant sur-régulée par Pax7, le marqueur des cellules satellites, nous avons émis l’hypothèse que R-spondin1 participe à la régénération musculaire. Nous avons, tout d’abord, isolé les cellules souches musculaires des modèles murins d’invalidation constitutive pour Rspo1 et avons observé qu’une déficience de R-spondin1 n’altère pas le cycle cellulaire de ces cellules. Cependant, une altération de l’expression de Rspo1 induit un défaut global de la cinétique de différenciation myogénique. Nous montrons que R-spondin1 inhibe la fusion des cellules musculaires puisque les myotubes déficients pour R-spondin1 possèdent un plus grand nombre de noyaux. Nous avons ensuite induit la régénération du muscle squelettique Tibalis Antérieur par une injection de Cardiotoxine et nous avons analysé les muscles à différents temps de régénération. Nos données prouvent qu’en l’absence de R-spondin1, les cellules souches présentent un retard de différenciation alors qu’elles possèdent une plus grande capacité de fusion, ayant pour conséquence une hypertrophie des myofibres dans le muscle. Concordant au rôle de R-spondin dans les cellules souches intestinales ou dans le follicule pileux, la protéine R-spondin1 stimule l’expression des gènes cibles de la voie Wnt canonique dans les cellules souches musculaires. Nous avons mis en évidence que R-spondin1 potentialise la voie Wnt canonique et régule négativement l’activation de la voie non-canonique dans les cellules. Nos résultats démontrent que la protéine R-spondin1 contribue à la régénération du muscle squelettique adulte par la régulation de l’activation des voies Wnt
Adult mammalian skeletal muscles have the remarkable ability to repair after injury. Muscle regeneration depends on various cellular and molecular responses, such as activation of Wnt signaling pathways in muscle stem cells called satellite cells. R-spondin (Rspo) proteins are able to potentiate Wnt signaling pathways in vivo in many stem cells and play important role for regeneration of several tissues. The role of R-spondin in injury-induced myogenesis has not been studied. Given that R-spondin1 gene expression is up-regulated by Pax7, the satellite cell-specific transcription factor, we explored the hypothesis that R-spondin1 plays a role during skeletal muscle regeneration. We firstly isolated primary myoblasts from Rspo1 constitutive knock-out mice and observed that a depletion of Rspo1 did not alter cell cycle of these cells. However, a lack of R-spondin1 on cells resulted in global alteration of differentiation kinetics. We found that R-spondin1 inhibits muscle cell fusion, as Rspo1 knock-out myotubes contain an higher number of myonuclei. Then, we injured the Tibialis Anterior (TA) muscle of Rspo1-null mice and littermates controls by Cardiotoxin injection and analyzed muscle regeneration at different time points following injury. Our data show that R-spondin1 removal results in a delay of stem cell differenciation. In contrast, a R-spondin1 deficiency leads to better cell capacity to fuse to dommaged myofibers, giving rise to myofiber hypertrophy. As with other tissue-specific stem cells, such as hair follicle or intestinal crypt stem cells, R-spondin1 potentiates canonical Wnt signaling target genes expression in muscle stem cells. We proved that R-spondin1 potentiates canonical Wnt signaling target genes expression and negatively regulates non-canonical signaling in muscle stem cells. Our results demonstrate that R-spondin1 is crucial for adult muscle regeneration through a tighly cross-talk regulation between Wnt signalings
APA, Harvard, Vancouver, ISO, and other styles
9

Sallum, Adriana Maluf Elias. "Correlações da expressão de MHC-I e II, C5b-9 e fenotipagem de células inflamatórias em tecido muscular na dermatomiosite juvenil (DMJ)." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/5/5141/tde-02102014-094536/.

Full text
Abstract:
A presença de uma inflamação crônica no músculo, a associação com outras doenças e a presença de auto-anticorpos, sugere o envolvimento de um mecanismo autoimune na patogênese da DMJ. Trinta e sete fragmentos musculares de pacientes com o diagnóstico de DMJ foram estudados com o objetivo de avaliar a expressão de MHC classes I e II, C5b-9 e fenotipagem das células inflamatórias CD4, CD8, CD20 e CD68 em tecido muscular e correlacionar com os principais parâmetros clínicos, laboratoriais, histológicos e terapêuticos desta doença. Os achados foram comparados à expressão em oito fragmentos musculares de pacientes com polimiosite (PM), cinco de dermatomiosite (DM) e quatro de distrofia. As expressões de MHC-I, MHC-II e C5b-9 foram identificadas por imunohistoquímica, através da técnica de imunoperoxidase StreptABComplex/HRP; as células CD20 e CD68, pelo sistema LSAB+ e CD4 e CD8, pela técnica EnVision-AP. A expressão de MHC-I apresentou positividade em 97,2% dos casos, enquanto que a expressão de MHC-II foi observada em apenas 21,6% dos casos. C5b-9 (83,8% de positividade), correlacionou-se com a presença de calcinose e envolvimento cardíaco. A presença de linfócitos CD4 (81,1% de positividade), CD8 (86,5% de positividade) e CD20 (62,2 % de positividade), e CD68 (97,2% de positividade) correlacionaram-se com o grau de inflamação observada na histologia muscular. A presença de CD4 e CD68, e marcação de C5b-9 também se correlacionaram com a intensidade de fraqueza muscular, e laboratorialmente, CD4 correlacionou-se com níveis elevados de CK e CD20 com DHL. Na DMJ observou-se maior expressão de C5b-9, CD4 e CD8 e menor expressão de MHC-I e II em comparação à DM e PM. A expressão destes marcadores foi sempre menor na distrofia. A expressão de MHC-I, adjuvante ao envolvimento dos linfócitos CD4 e CD8, sugere um mecanismo inicial celular citotóxico relacionado a maior gravidade do envolvimento muscular. A concomitância da maior expressão de C5b-9 foi um fator preditivo de comprometimento sistêmico e demanda de terapêutica imunossupresssora. Os resultados deste estudo apontam para o papel do MHC-I e II, C5b-9, CD4, CD8, CD20 e CD68 na patogênese da DMJ
The presence of chronic muscle inflammation, in association with other diseases and seric autoantibodies in JDM patients, suggest the involvement of an autoimmune mechanism in the pathogenesis of this inflammatory myopathy. Thirty seven muscle biopsy specimens from patients with JDM were analyzed in order to assess the expression of MHC-I and II, C5b-9, CD4, CD8, CD20 and CD68 and to correlate with the clinical, laboratorial, histological and therapeutical parameters. These findings were compared to the expression in five dermatomyositis (DM), eight polymyositis (PM) and four dystrophy cases. Immunohistochemical reactions for MHC-I and II and C5b-9 (StreptABCcomplex/HRP), CD4, CD8 (EnVision-AP) and CD20, CD68 (LSAB+) were evaluated. MHC-I expression was positive in 97.2% of the cases, whilst MHC-II was positive in only 21.6% of the cases. C5b-9 expression (positivity of 83.8%) correlated with calcinosis and cardiac involvement. The presence of lymphocytes CD4 (positivity of 81.1%), CD8 (positivity of 86.5%), CD20 (positivity of 62.2%), and CD68 (positivity of 97.2%) correlated with inflammation in muscular histology. The presence of CD4 and CD8 and expression of C5b-9 also correlated with the severity of muscle weakness, and CD4 expression correlated with serum levels of CK and CD20 with LDH. In JDM, the expressions of C5b-9, CD4 and CD8 were statistically more significant when compared to PM and DM, while expressions of MHC-I and II were lower in JDM. All expressions were lower in dystrophy. MHC-I expression, adjuvant to the presence of CD4 and CD8 lymphocytes, corroborates the involvement of the cytotoxic cellular mechanism of muscular lesion in JDM, which correlates to severity. Concomitantly, C5b-9 expression was a predictive factor of systemic involvement and of the need for imunossupressive treatment. The results of this study indicate for the function of MHC-I and II, C5b-9, CD4, CD8, CD20 e CD68 at JDM pathogenesis
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, Anish D. "Regulation and function of the non-muscle [beta]-actin and [gamma]-actin genes." Phd thesis, Department of Paediatrics and Child Health, Faculty of Medicine, 2004. http://hdl.handle.net/2123/11556.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Muscles Genes"

1

1933-, Pette Dirk, and Symposium "The Dynamic State of Muscle Fibers" (1989 : University of Konstanz), eds. The Dynamic state of muscle fibers: Proceedings of the international symposium, October 1-6, 1989, Konstanz, Federal Republic of Germany. Berlin: De Gruyter, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duan, Dongsheng. Muscle gene therapy. New York: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Muscle gene therapy: Methods and protocols. New York, NY: Humana, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

C, Strohman Richard, Wolf Stewart 1914-, and Muscular Dystrophy Association, eds. Gene expression in muscle. New York: Plenum Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muscular, Dystrophy Association-UCLA Symposium (1988 Steamboat Springs Colo ). Cellular and molecular biology of muscle development: Proceedings of a Muscular Dystrophy Association-UCLA Symposium, held at Steamboat Springs, Colorado, April 3-10, 1988. New York: Liss, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

rdh-Nilsson, Anna Hultga. Oncogenes and second messengers in the regulation of smooth muscle cell growth and differentiation. Stockholm: Kongl. Carolinska Medico Chirurgiska Institutet, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

M, Kelly Alan, and Blau Helen M, eds. Neuromuscular development and disease. New York: Raven Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, Sŭng-gwŏn. So ŭi kŭnyuk kwa chibang kwallyŏn kyŏngje hyŏngjil yuyong yujŏnja ŭi kinŭng punsŏk ŭl wihan model sisŭt'em ŭi kaebal kwa sanŏpchŏk hwaryong pangan kuch'uk =: Development of high-throughput screening system to evaluate the fuctional role of various genes related in muscle and adipose growth and differentiation in bovine. [Kyŏnggi-do Suwŏn-si]: Nongch'on Chinhŭngch'ŏng, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reggiani, Carlo, and Roberto Bottinelli. Skeletal Muscle Plasticity in Health and Disease: From Genes to Whole Muscle. Springer London, Limited, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

(Editor), Roberto Bottinelli, and Carlo Reggiani (Editor), eds. Skeletal Muscle Plasticity in Health and Disease: From Genes to Whole Muscle (Advances in Muscle Research). Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Muscles Genes"

1

Rubinstein, Neal A., Gary E. Lyons, and Alan M. Kelly. "Hormonal Control of Myosin Heavy Chain Genes During Development of Skeletal Muscles." In Novartis Foundation Symposia, 35–51. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470513675.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lai, Yi, Yongping Yue, Brian Bostick, and Dongsheng Duan. "Delivering Large Therapeutic Genes for Muscle Gene Therapy." In Muscle Gene Therapy, 205–18. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1207-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tabebordbar, Mohammadsharif, Jason Cheng, and Amy J. Wagers. "Therapeutic Gene Editing in Muscles and Muscle Stem Cells." In Research and Perspectives in Neurosciences, 103–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60192-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karn, Jonathan, Nick J. Dibb, and David M. Miller. "Cloning Nematode Myosin Genes." In Cell and Muscle Motility, 185–237. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-4723-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Janssen, Paul M. L., and Jonathan P. Davis. "An Overview of Muscle Biology and Physiology for Muscle Gene Therapy." In Muscle Gene Therapy, 3–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03095-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Dan, Alexander Brown, and Guangping Gao. "Viral Vectors for Muscle Gene Therapy." In Muscle Gene Therapy, 179–92. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03095-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nance, Michael E., and Dongsheng Duan. "Development of Next-Generation Muscle Gene Therapy AAV Vectors." In Muscle Gene Therapy, 193–206. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03095-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lawlor, Michael W., Joel S. Schneider, Martin K. Childers, and Kristy J. Brown. "Histological and Biochemical Evaluation of Muscle Gene Therapy." In Muscle Gene Therapy, 207–26. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03095-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yao, Gang. "Optical Polarization Tractography Imaging of Structural Changes in the Skeletal and Cardiac Muscles of the mdx4cv Mice." In Muscle Gene Therapy, 227–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03095-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hathout, Yetrib, Kristy J. Brown, Kanneboyina Nagaraju, and Eric P. Hoffman. "Biomarkers for Muscle Disease Gene Therapy." In Muscle Gene Therapy, 239–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03095-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Muscles Genes"

1

Ahmed, Amira, Huda Farah, Omnia Ahmed, Dina Elsayegh, Abdelrahman Elgamal, and Nasser Moustafa Rizk. "Profile Of Oxidative Stress Genes In Response To Obesity Treatment." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0150.

Full text
Abstract:
Background: Oxidative stress (OS) is an imbalance between free radical production and the antioxidants defense in the body. Previous studies demonstrated the correlation of OS to the increased risk of developing metabolic disorders such as obesity. Sulforaphane (SFN), a bioactive compound, can protect against inflammation and OS, thus an effective anti-obesity supplement. Aim: This study explores the impact of SNF on OS in diet induced obese (DIO) mice via profiling of OS genes and pathways in skeletal muscles related to the anti-obesity effect. Methods: Wild-type CD1 male mice and the knockout of nuclear factor (erythroid-derived 2) like 2 (NrF2) mice were fed a high-fat diet (HFD) for 16 weeks; to induce obesity. Subsequently, each group was subdivided into two subgroups and received either Vehicle (25μl) or SFN (5 mg/kg BW) for four weeks. Body weight was measured daily, and a glucose tolerance test (GTT) was performed after 21 days of treatment. Afterward, mice were decapitated, blood and tissue samples were collected and snap-frozen immediately. Total RNA was extracted from Skeletal muscle and epididymal white adipose tissue (eWAT), leptin expression was measured in (eWAT), and 84 OS genes in skeletal muscle were examined using RT-PCR. Results: Significant reduction in body weight in SFN treated WT mice, while no change in KO mice. Plasma glucose, leptin, and leptin gene expression (eWAT) were significantly reduced in the WT-DIO SFN treated group, while no changes were detected in KO mice. SFN decreases OS damage in skeletal muscles, such as lipid peroxidation and production of reactive oxygen species (ROS). Conclusion: This study demonstrated that SFN had lowered body weight in WT-DIO mice by decreasing OS damage in skeletal muscles through the NrF2 pathway and can be a potential anti-obesity drug.
APA, Harvard, Vancouver, ISO, and other styles
2

Perez, Matheus Moreira, David Feder, Beatriz da Costa Aguiar Alves, Fernando Luiz Affonso Fonseca, and Alzira Alves de Siqueira Carvalho. "myoMIR and gene expression in myofibrillar myopathy." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.662.

Full text
Abstract:
Background: Myofibrillar myopathies (MFM) represent a heterogeneous group of muscle disorders caused by mutations in different genes. It has been identified a group of microRNAs present in muscles named myoMIR. Objective: Evaluate the diagnostic value of these myoMIRs and mRNA expression in skeletal tissue from muscle biopsy of patients with MFM. Design and Setting: Muscle biopsies from 16 MFM patients with mutations in Desmin (DES), Myotilin (MYOT), ZASP, or Filamin C (FLNC) genes, and 18 donors (patients with minimal non- specific changes in muscle biopsy) were included. Study were conducted at FMABC. Methods: mRNA and myoMIR expression from both groups were assessed. The target myoMIRs were MIR1, MIR133a, MIR133b, MIR206, MIR208a, MIR208b, MIR486, and MIR499. Anova and Student’s t-test were performed. Results: Six patients presented mutations in DES, five in ZASP, three in FLNC, and two in MYOT. MIR133b (p=0.05), MIR499 (p=0.027), and mRNA expression was up-regulated in patients with MFM. MIR208a (p=0.042) was higher in the control group. We found an association between MIR133a and the presence of mutations in all genes studied (p=0.006). A relation between MIR486 and mutations in ZASP and DES (p=0.035) was also noted. Conclusions: • MIR208a seems to have a protective function in the muscle fiber; • Heterogeneity could be related to the concentration of gene expression in each patient; • Expression of myoMIRs influences several aspects in the muscle function through genes modulation which are important to myogenesis control;
APA, Harvard, Vancouver, ISO, and other styles
3

Fonseca, Alulin Tácio Quadros Santos Monteiro, Clara Gontijo Camelo, André Macedo Serafim da Silva, Cristiane Araújo Martins Moreno, and Edmar Zanoteli. "Genetic and clinical features of congenital titinopathy: a singlecenter cohort." In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.425.

Full text
Abstract:
Introduction: TTN has the longest coding sequence of human genes and encodes titin, a huge protein that serves as the scaffold for sarcomere assembly. Titinopathy encompasses a complex spectrum of phenotypes with involvement of skeletal and cardiac muscles, with recessive and dominant autosomal inheritance. Objectives: In this work we present the clinical and genetic data of seven patients with autosomal recessive TTN-related congenital myopathy, aged between 9 months and 38 years (mean age 14.73 years). Methods: Clinical, muscle histology and genetic data are presented. TTN gene were analyzed by next-generation sequencing (NGS). Results: Thirteen different variants were found, all classified as null variants (nonsense, frameshift or canonical splice site). All variants were presumably compound heterozygous. Only one variant was recurrent (c.44815+1G>A. All patients had a history of neonatal hypotonia. The latest age for gait acquisition was 7 years old, and a 19-year-old patient never acquired the gait. Joint hypermobility was prominent in two patients. No patient had ophthalmoparesis. Baseline CK ranged from 75 to 4619 U/L. Minicores and mild dystrophic changes were the most prominent findings on muscle biopsies. Conclusion: Congenital muscle titinopathy commonly presents with null biallelic variants. Patients who present with distal hyperelasticity, normal or slightly increased CK, and dystrophic findings on muscle biopsy may have an initial etiologic suspicion of COL6-related myopathy, a more common group of skeletal muscle disorders and important differential diagnosis of TTN myopathy.
APA, Harvard, Vancouver, ISO, and other styles
4

Barbosa, Alana Strucker, Camila Alves Pereira, Vanessa de Freitas Moreira, Igor Braga Farias, Paulo de Lima Serrano, Bruno de Mattos Lombardi Badia, Hélvia Bertoldo de Oliveira, Wladimir Bocca Vieira de Rezende Pinto, Paulo Victor Sgobbi de Souza, and Acary Souza Bulle Oliveira. "Case report: myofasciitis associated with the NFkB gene." In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.771.

Full text
Abstract:
A male patient, 44-year-old, presents with severe abrupt myalgia in the upper and lower limbs, with evolution to muscle weakness after two weeks. After 40 days, he developed intermittent fever and night sweats. Personal history of anorectal abscess drainage. The neurological exam evidenced discreet muscular hypotrophy of the lateral and medial portion of the thighs, global hyperreflexia, proximal muscle weakness, and bilateral antalgic gait. A right vastus lateralis muscle biopsy showed muscle atrophy and congested vessels. Magnetic resonance imaging of the thighs visualizes diffuse inflammation of the fascia and muscles of the thigh. After beginning the use of corticosteroids, there was a significant improvement. A genetic test showing the c.1129G>A variant (p.Gly377Ser) in the NFKB1 gene was also requested, followed by corticoid weaning and human immunoglobulin initiation.Myofasciitis is a painful inflammatory condition affecting the muscles and the tissues around them. One of them is the fascia, a fibrous connective tissue that surrounds and connects the body’s muscles, tendons, and bones. The pathogenesis may be founded on the mutation of the NFkB gene, which regulates our body’s inflammatory and immune processes, which may result in autoinflammatory diseases, immunodeficiencies, and, consequently, tissue damage. Symptoms are varied and can include muscle weakness, arthralgia, and skin rashes. Diagnosis is based on blood tests, imaging, muscle biopsy, and genetic testing. Treatment involves rehabilitation and immunosuppressive medications to control the immune system’s response. Although NFkB-associated myofasciitis is rare, awareness and understanding of its symptoms are essential to ensure early diagnosis and appropriate treatment.
APA, Harvard, Vancouver, ISO, and other styles
5

Angelotti, Austin, Rachel Cole, Amy Webb, Maciej Pietrzak, and Martha Belury. "Diet-induced Gene Expression Changes of Cachectic Muscle, Adipose, and Liver." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/gvbe2596.

Full text
Abstract:
Cancer cachexia is a systemic disease characterized by muscle and adipose loss that cannot be reversed by increasing caloric intake. Our previous research has shown insulin resistance precedes cancer cachexia in the C26 mouse model of cachexia, and a diet high in linoleic acid, the essential omega-6 polyunsaturated fatty acid, attenuates the C26-induced insulin resistance. Therefore, to better understand how dietary linoleic acid is improving insulin sensitivity, we characterized gene expression changes in three major tissues responsible for controlling insulin sensitivity: skeletal muscle, adipose, and liver. To do this male CD2F1 (Charles River, MA) were randomized to semi-purified diet (24% fat by weight) containing fat prominently from lard, or containing fat prominently from safflower oil (a linoleic acid-rich oil). One week after diet randomization, mice were inoculated with colon-26 (C26) adenocarcinoma cells (1.0E6 cells). 13 days after inoculation mice were euthanized and gastrocnemius skeletal muscle, epididymal white adipose tissue, and liver tissue were collected for total transcriptome analysis using poly-A enriched next generation RNA-sequencing. Differentially expressed genes were selected based on p-values < 0.05. There were no detectable differences in body weight or food intake between the two diets in mice with C26 tumors. Between the two diets 12 genes were differentially expressed in the muscle, while 57 genes were differentially expressed in the liver, and 314 genes were differentially expressed in adipose. A linoleic acid enriched diet had little effect on the skeletal muscle transcriptome but induced larger transcriptome changes in liver and adipose. This could suggest dietary linoleic acid increases insulin sensitivity through affecting metabolism in adipose and liver, rather than skeletal muscle. Determining these diet-induced transcriptome changes allows us to better target tissue-specific molecular mechanisms of linoleic acid in future research.
APA, Harvard, Vancouver, ISO, and other styles
6

Brooks, Joseph Bruno Bidin. "De novo variant in the MAPK8IP3 gene in the differential diagnosis of global development delay. Case report." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.181.

Full text
Abstract:
Context: The global development delay has a high prevalence and heterogeneity in the world population. With the advancement of technology and detection of pathogenic variants detected by sequencing the exome, genes related to global developmental delay could be identified and collaborate for further clinical clarification. Among the studied genes, the MAPK8IP3 gene, became an attractive candidate due to its performance in neuronal axonal transport in vertebrates and invertebrates. This case report was approved by the Ethics Committee of Universidade Metropolitana de Santos. Case Report: The present case refers to a 6-year-old male patient presenting with a clinical picture of global developmental delay without bodily dysmorphia. Cerebellar ataxia, muscle hypotonia and intellectual impairment are important clinical impairments. Skull MRI and complementary exams were normal. The genetic study showed a new and heterozygous pathogenic variant in the MAPK8IP3 gene. Conclusions: Symptomatic treatment with multiprofessional rehabilitation was instituted with partial improvement of symptoms.
APA, Harvard, Vancouver, ISO, and other styles
7

Athayde, Natália Merten, and Alzira Alves de Siqueira Carvalho. "The heart of myofibrillary myopathy." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.457.

Full text
Abstract:
Context: Myofibrillar myopathies (MFM) represent a heterogeneous group of disorders of skeletal and cardiac muscle caused by mutations in genes that encode proteins of sarcomere. Diagnosis is a challenge due to clinical and genetic variability. Case report: Woman, 36 years old, presenting stumbles and falls for 3 years evolving with proximal limb weakness. At age 30, she fainted and a cardiac pacemaker was implanted. Non-consanguineous parents. Neurological exam: proximal and distal weakness in lower limbs and distal atrophy; osteotendinous reflexes normal. Bilateral scapula alata. Exams: CPK = 457 U / l; EMG: myopathic pattern. Muscle MRI: diffuse and heterogeneous fatty degeneration, marked in sartorius, gracilis and semitedinous. Panel NGS myopathies: pathogenic variant, c.1175T> C, missense in heterozygosis in desmin gene. CONCLUSION: The diagnosis of MFM is based on the morphological findings of muscle biopsy with the presence of protein aggregates as a determining factor. Currently, genetic testing by NGS has facilitated early diagnosis allowing for a more appropriate clinical approach. The desmin gene was the first one described to be associated with this group of myopathies. It encodes the desmin protein, a member of the intermediate filament family present in cardiac and skeletal muscle. Several phenotypes are related to desmin gene: isolated dilated cardiomyopathy; scapuloperoneal weakness and distoproximal weakness with cardiac alterations. Desminopathy is a rare cause of cardiomyopathy and / or myopathy. The diagnosis should be thought in patient with muscle weakness and cardiac changes.
APA, Harvard, Vancouver, ISO, and other styles
8

Kanthou, C., C. Parker, D. E. Huber, P. Stroobant, V. V. Kakkar, N. Pringle, and W. Richardson. "PLATELET-DERIVED GROWTH FACTORA-CHAIN GENE ACTIVATION AND GROWTH FACTOR PRODUCTION BY HUMAN AORTIC SMOOTH MUSCLE CELLS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643751.

Full text
Abstract:
The many contributory factors leading to the development of cardiovascular disease are currently thought to induce a common pathological change involving smooth muscle cells, which migrate from the vessel wall, proliferate,accumulate at the sites of endothelial cell damage, and then secrete connective tissue proteins and lipids which contribute to the plaque which results in the occlusion of the vessel. According to the recently modified hypothesis of Ross (1), a key event in the development of atheroma may be the abnormal release of a number of growth modulatory polypeptides,including platelet-derived growth factor (PDGF), which can potentially originate from platelets, endothelial cells, monocytes or macrophages, and smooth muscle cells themselves.We have isolated smooth muscle cell lines from 25 samples of human aorta, using digestion with collagenase and elastase. With DNA synthesis and Northern blot techniques, we examined them for both the production of PDGF-like proteins, and for the possible activation of the PDGF A-chain and B-chain genes. Severallines secreted a growth factor and were stillviable after culture for 57 days in serum-free medium. Parallel experiments using Northernblot analysis revealed the activation of the PDGF A-chain gene in all lines examined with no detectable B-chain gene transcripts.These data raise the possibility that vascular damage may activate the gene encoding the A-chain of PDGF in adjacent smooth muscle cells. Such cells might then become capable ofautonomous growth, in an analogous manner tocells transformed by Simian Sarcoma Virus, whose sis oncogene encodes the B-chain of PDGF.
APA, Harvard, Vancouver, ISO, and other styles
9

Lima, Karlla Danielle Ferreira, Pedro Henrique Marte Arruda Sampaio, Marco Antonio Veloso Albuquerque, and Edmar Zanoteli. "Evaluation of lung function and respiratory muscles in Duchenne muscular dystrophy." In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.695.

Full text
Abstract:
Introduction: Duchenne muscular Dystrophy (DMD) is a genetic disease of recessive inheritance linked to the X chromosome, caused by a mutation in the dystrophin gene. This mutation will result in absence of the dystrophin protein, leading to the degeneration of muscle skeletal. The disease is the most common childhood-onset form of muscular dystrophy and affects males almost exclusively. DMD symptoms onset occurs in early childhood, usually between the ages of three and five years, with progressive muscle weakness and loss of gait in adolescence, progressive cardiomyopathy, and respiratory failure, leading to death. Spirometric parameters such as forced vital capacity (FVC) are used to monitor lung function. Muscle ultrasound has been increasingly used in neuromuscular diseases, being a possible tool for evaluating respiratory muscles individually and a non-invasive method of assessing diaphragm function. Objectives: This study aims to evaluate lung function and respiratory muscles in patients with DMD at different stages of the disease. Methods: This is a prospective observational study with 25 patients with DMD follow-up at the Hospital das Clínicas de São Paulo (HC/FMUSP), with Assessment of diaphragmatic thickness by ultrasonography in DMD patients and correlate with FVC. Results: Diphragmatic thickness significantly decreased with age and with the reduction of the FVC in DMD patients. Some patients had pseudo hypertrophy of the diaphragm but without related reduction in lung function. Conclusion: Ultrasound of respiratory and appendicular muscles can help in the assessment of respiratory function and possible indirect markers of worsening lung function.
APA, Harvard, Vancouver, ISO, and other styles
10

Tieppo, Eduardo Macedo de Souza, Miriam Eva Koch, and Alzira Alves de Siqueira Carvalho. "A deletion in CFL-2 gene associated with Severe Nemaline Myopathy with peculiar features." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.362.

Full text
Abstract:
Context: Nemaline myopathy (NM) is the most common congenital myopathy characterized by muscle weakness and presence of nemaline bodies (rods) in muscle biopsy. Phenotype ranges from neonatal death to normal lifespan. 13 genes have been reported. We describe a new variant in cofilin 2 gene (CFL2;OMIM*601443). Case report: A 5-year-old boy born severely hypotonic and unable to breathe, in need of mechanic ventilation. Healthy non-consanguineous parents. Physical examination: severe hypotonia with only extraocular motricity preserved and multiple contractures. Dysmorphic features were observed as brachycephaly, hypertelorism, pseudohypertrophy, macroglossia, premature pubic hair. Deep reflexes were absent. CK: 1010U/l. DHEA-S elevated. Muscular biopsy: Rods, cores and dystrophic pattern. Exome: homozygous deletion in exons 1 to 4 of CFL2 and partial deletion of the next gene Sorting nexin-6 (SNX6) in Chr14:34.563.122-34.714.639. Conclusion: 9 cases were described previously: Age onset was before 31 months. 4 presented respiratory distress at birth, 1 presented macroglossia, 2 contractures, 2 spinal deformities and 3 delayed motor milestones. Our patient presents an extent deletion in homozygosis not described before. A second deletion was found in SNX6, which is involved in protein trafficking and is expressed in different cells, as endocrine and cardiac. The early puberty and dimorphisms could be due to SNX6, though there is no previous disease caused by this gene. Among differential diagnosis of macroglossia, congenital myopathy caused by CFL2 should be considered.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Muscles Genes"

1

Funkenstein, Bruria, and Shaojun (Jim) Du. Interactions Between the GH-IGF axis and Myostatin in Regulating Muscle Growth in Sparus aurata. United States Department of Agriculture, March 2009. http://dx.doi.org/10.32747/2009.7696530.bard.

Full text
Abstract:
Growth rate of cultured fish from hatching to commercial size is a major factor in the success of aquaculture. The normal stimulus for muscle growth in growing fish is not well understood and understanding the regulation of muscle growth in fish is of particular importance for aquaculture. Fish meat constitutes mostly of skeletal muscles and provides high value proteins in most people's diet. Unlike mammals, fish continue to grow throughout their lives, although the size fish attain, as adults, is species specific. Evidence indicates that muscle growth is regulated positively and negatively by a variety of growth and transcription factors that control both muscle cell proliferation and differentiation. In particular, growth hormone (GH), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs) and transforming growth factor-13 (TGF-13) play critical roles in myogenesis during animal growth. An important advance in our understanding of muscle growth was provided by the recent discovery of the crucial functions of myostatin (MSTN) in controlling muscle growth. MSTN is a member of the TGF-13 superfamily and functions as a negative regulator of skeletal muscle growth in mammals. Studies in mammals also provided evidence for possible interactions between GH, IGFs, MSTN and the musclespecific transcription factor My oD with regards to muscle development and growth. The goal of our project was to try to clarify the role of MSTNs in Sparus aurata muscle growth and in particular determine the possible interaction between the GH-IGFaxis and MSTN in regulating muscle growth in fish. The steps to achieve this goal included: i) Determining possible relationship between changes in the expression of growth-related genes, MSTN and MyoD in muscle from slow and fast growing sea bream progeny of full-sib families and that of growth rate; ii) Testing the possible effect of over-expressing GH, IGF-I and IGF-Il on the expression of MSTN and MyoD in skeletal muscle both in vivo and in vitro; iii) Studying the regulation of the two S. aurata MSTN promoters and investigating the possible role of MyoD in this regulation. The major findings of our research can be summarized as follows: 1) Two MSTN promoters (saMSTN-1 and saMSTN-2) were isolated and characterized from S. aurata and were found to direct reporter gene activity in A204 cells. Studies were initiated to decipher the regulation of fish MSTN expression in vitro using the cloned promoters; 2) The gene coding for saMSTN-2 was cloned. Both the promoter and the first intron were found to be polymorphic. The first intron zygosity appears to be associated with growth rate; 3) Full length cDNA coding for S. aurata growth differentiation factor-l I (GDF-II), a closely related growth factor to MSTN, was cloned from S. aurata brain, and the mature peptide (C-terminal) was found to be highly conserved throughout evolution. GDF-II transcript was detected by RT -PCR analysis throughout development in S. aurata embryos and larvae, suggesting that this mRNA is the product of the embryonic genome. Transcripts for GDF-Il were detected by RT-PCR in brain, eye and spleen with highest level found in brain; 4) A novel member of the TGF-Bsuperfamily was partially cloned from S. aurata. It is highly homologous to an unidentified protein (TGF-B-like) from Tetraodon nigroviridisand is expressed in various tissues, including muscle; 5) Recombinant S. aurata GH was produced in bacteria, refolded and purified and was used in in vitro and in vivo experiments. Generally, the results of gene expression in response to GH administration in vivo depended on the nutritional state (starvation or feeding) and the time at which the fish were sacrificed after GH administration. In vitro, recombinantsaGH activated signal transduction in two fish cell lines: RTHI49 and SAFI; 6) A fibroblastic-like cell line from S. aurata (SAF-I) was characterized for its gene expression and was found to be a suitable experimental system for studies on GH-IGF and MSTN interactions; 7) The gene of the muscle-specific transcription factor Myogenin was cloned from S. aurata, its expression and promoter activity were characterized; 8) Three genes important to myofibrillogenesis were cloned from zebrafish: SmyDl, Hsp90al and skNAC. Our data suggests the existence of an interaction between the GH-IGFaxis and MSTN. This project yielded a great number of experimental tools, both DNA constructs and in vitro systems that will enable further studies on the regulation of MSTN expression and on the interactions between members of the GHIGFaxis and MSTN in regulating muscle growth in S. aurata.
APA, Harvard, Vancouver, ISO, and other styles
2

Shani, Moshe, and C. P. Emerson. Genetic Manipulation of the Adipose Tissue via Transgenesis. United States Department of Agriculture, April 1995. http://dx.doi.org/10.32747/1995.7604929.bard.

Full text
Abstract:
The long term goal of this study was to reduce caloric and fat content of beef and other red meats by means of genetic modification of the animal such that fat would not be accumulated. This was attempted by introducing into the germ line myogenic regulatory genes that would convert fat tissue to skeletal muscle. We first determined the consequences of ectopic expression of the myogenic regulatory gene MyoD1. It was found that deregulation of MyoD1 did not result in ectopic skeletal muscle formation but rather led to embryonic lethalities, probably due to its role in the control of the cell cycle. This indicated that MyoD1 should be placed under stringent control to allow survival. Embryonic lethalities were also observed when the regulatory elements of the adipose-specific gene adipsin directed the expression of MyoD1 or myogenin cDNAs, suggesting that these sequences are probably not strong enough to confer tissue specificity. To determine the specificity of the control elements of another fat specific gene (adipocyte protein 2-aP2), we fused them to the bacterial b-galactosidase reporter gene and established stable transgenic strains. The expression of the reporter gene in none of the strains was adipose specific. Each strain displayed a unique pattern of expression in various cell lineages. Most exciting results were obtained in a transgenic strain in which cells migrating from the ventro-lateral edge of the dermomyotome of developing somites to populate the limb buds with myoblasts were specifically stained for lacZ. Since the control sequences of the adipsin or aP2 genes did not confer fat specificity in transgenic mice we have taken both molecular and genetic approaches as an initial effort to identify genes important in the conversion of a multipotential cell such as C3H10T1/2 cell to adipoblast. Several novel adipocyte cell lines have been established that differ in the expression of transcription factors of the C/EBP family known to be markers for adipocyte differentiation. These studies revealed that one of the genetic programming changes which occur during 10T1/2 conversion from multipotential cell to a committed adipoblast is the ability to linduce C/EBPa gene expression. It is expected that further analysis of this gene would identify elements which regulate this lineage-specific expression. Such elements might be good candidates in future attempts to convert adipoblasts to skeletal muscle cells in vivo.
APA, Harvard, Vancouver, ISO, and other styles
3

Steelman, Carissa A., Jacklyn K. Potts, and James M. Reecy. Characterization of Gene Expression in Double-Muscled and Normal-Muscled Bovine Embryos. Ames (Iowa): Iowa State University, January 2004. http://dx.doi.org/10.31274/ans_air-180814-448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Svendsen, Clive, and Genevieve Gowing. Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada621394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Halevy, Orna, Sandra Velleman, and Shlomo Yahav. Early post-hatch thermal stress effects on broiler muscle development and performance. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7597933.bard.

Full text
Abstract:
In broilers, the immediate post-hatch handling period exposes chicks to cold or hot thermal stress, with potentially harmful consequences to product quantity and quality that could threaten poultry meat marketability as a healthy, low-fat food. This lower performance includes adverse effects on muscle growth and damage to muscle structure (e.g., less protein and more fat deposition). A leading candidate for mediating the effects of thermal stress on muscle growth and development is a unique group of skeletal muscle cells known as adult myoblasts (satellite cells). Satellite cells are multipotential stem cells that can be stimulated to follow other developmental pathways, especially adipogenesis in lieu of muscle formation. They are most active during the first week of age in broilers and have been shown to be sensitive to environmental conditions and nutritional status. The hypothesis of the present study was that immediate post-hatch thermal stress would harm broiler growth and performance. In particular, growth characteristics and gene expression of muscle progenitor cells (i.e., satellite cells) will be affected, leading to increased fat deposition, resulting in long-term changes in muscle structure and a reduction in meat yield. The in vitro studies on cultured satellite cells derived from different muscle, have demonstrated that, anaerobic pectoralis major satellite cells are more predisposed to adipogenic conversion and more sensitive during myogenic proliferation and differentiation than aerobic biceps femoris cells when challenged to both hot and cold thermal stress. These results corroborated the in vivo studies, establishing that chronic heat exposure of broiler chicks at their first two week of life leads to impaired myogenicity of the satellite cells, and increased fat deposition in the muscle. Moreover, chronic exposure of chicks to inaccurate temperature, in particular to heat vs. cold, during their early posthatch periods has long-term effects of BW, absolute muscle growth and muscle morphology and meat quality. The latter is manifested by higher lipid and collagen deposition and may lead to the white striping occurrence. The results of this study emphasize the high sensitivity of muscle progenitor cells in the early posthatch period at a time when they are highly active and therefore the importance of rearing broiler chicks under accurate ambient temperatures. From an agricultural point of view, this research clearly demonstrates the immediate and long-term adverse effects on broiler muscling and fat formation due to chronic exposure to hot stress vs. cold temperatures at early age posthatch. These findings will aid in developing management strategies to improve broiler performance in Israel and the USA. BARD Report - Project4592 Page 2 of 29
APA, Harvard, Vancouver, ISO, and other styles
6

Cahaner, Avigdor, Sacit F. Bilgili, Orna Halevy, Roger J. Lien, and Kellye S. Joiner. effects of enhanced hypertrophy, reduced oxygen supply and heat load on breast meat yield and quality in broilers. United States Department of Agriculture, November 2014. http://dx.doi.org/10.32747/2014.7699855.bard.

Full text
Abstract:
Original objectivesThe objectives of this project were to evaluate the growth performance, meat yield and quality attributes of broiler strains widely differing in their genetic potential under normal temperature vs. warm temperature (short and long-term) conditions. Strain differences in breast muscle accretion rate, metabolic responses under heat load and, gross and histopathological changes in breast muscle under thermal load was also to be characterized. BackgroundTremendous genetic progress has been made in broiler chicken growth rate and meat yield since the 1950s. Higher growth rate is driven by higher rates of feed intake and metabolism, resulting in elevated internal heat production. Hot rearing conditions negatively affect broiler growth by hindering dissipation of heat and may lead to a lethal elevation in body temperature. To avoid heat-induced mortality, broilers reduce feed intake, leading to depressed growth rate, lower weight gain, reduce breast meat yield and quality. Thus, the genetic potential of contemporary commercial broilers (CCB) is not fully expressed under hot conditions. Major conclusions, solutions, and achievementsResearch conducted in Israel focused on three broiler strains – CCB, Featherless, Feathered sibs (i.e., sharing similar genetic background). Complimentary research trials conducted at Auburn utilized CCB (Cobb 500, Cobb 700, Ross 308, Ross 708), contrasting their performance to slow growing strains. Warm rearing conditions consistently reduced feed intake, growth rate, feed efficiency, body weight uniformity and breast muscle yield, especially pronounced with CCB and magnified with age. Breast meat quality was also negatively affected, as measured by higher drip loss and paler meat color. Exposure to continuous or short-term heat stress induced respiratory alkalosis. Breast muscle histomorphometrics confirmed enhanced myofiber hypertrophy in CCB. Featherless broilers exhibited a significant increase in blood-vessel density under warm conditions. Rapid growth and muscle accretion rate was correlated to various myopathies (white striping, woody and necrotic) as well as to increases in plasma creatinekinase levels. Whether the trigger(s) of muscle damage is loss of cellular membrane integrity due to oxidative damage or tissue lactate accumulation, or to loss of inter-compartmental cation homeostasis is yet to be determined. Based on genome-wide single-nucleotide polymorphism array genotyping, identification of the gene with the recessive mutation Scaleless (sc) facilitated the development a dCAPS assay to discriminate between sc carrier (sc/+) and non-carrier (+/+) individuals. ImplicationsThis project confirmed that featherless broiler strains grow efficiently with high yield and quality of breast meat, even under warm rearing conditions that significantly depress the overall performance of CCB. Therefore, broiler meat production in hot regions and climates can be substantially improved by introducing the featherless gene into contemporary commercial broiler stocks. This approach has become more feasible with the development of dCAPS assay. A novel modification of the PCR protocol (using whole blood samples instead of extracted DNA) may contribute to the efficient development of commercial featherless broiler strains. Such strains will allow expansion of the broiler meat production in developing countries in warm climates, where energy intensive environmental control of rearing facilities are not economical and easily achievable.
APA, Harvard, Vancouver, ISO, and other styles
7

Uni, Zehava, and Peter Ferket. Enhancement of development of broilers and poults by in ovo feeding. United States Department of Agriculture, May 2006. http://dx.doi.org/10.32747/2006.7695878.bard.

Full text
Abstract:
The specific objectives of this research were the study of the physical and nutritional properties of the In Ovo Feeding (IOF) solution (i.e. theosmostic properties and the carbohydrate: protein ratio composition). Then, using the optimal solution for determining its effect on hatchability, early nutritional status and intestinal development of broilers and turkey during the last quarter of incubation through to 7 days post-hatch (i.e. pre-post hatch period) by using molecular, biochemical and histological tools. The objective for the last research phase was the determination of the effect of in ovo feeding on growth performance and economically valuable production traits of broiler and turkey flocks reared under practical commercial conditions. The few days before- and- after hatch is a critical period for the development and survival of commercial broilers and turkeys. During this period chicks make the metabolic and physiological transition from egg nutriture (i.e. yolk) to exogenous feed. Late-term embryos and hatchlings may suffer a low glycogen status, especially when oxygen availability to the embryo is limited by low egg conductance or poor incubator ventilation. Much of the glycogen reserve in the late-term chicken embryo is utilized for hatching. Subsequently, the chick must rebuild that glycogen reserve by gluconeogenesis from body protein (mostly from the breast muscle) to support post-hatch thermoregulation and survival until the chicks are able to consume and utilize dietary nutrients. Immediately post-hatch, the chick draws from its limited body reserves and undergoes rapid physical and functional development of the gastrointestinal tract (GIT) in order to digest feed and assimilate nutrients. Because the intestine is the nutrient primary supply organ, the sooner it achieves this functional capacity, the sooner the young bird can utilize dietary nutrients and efficiently grow at its genetic potential and resist infectious and metabolic disease. Feeding the embryo when they consume the amniotic fluid (IOF idea and method) showed accelerated enteric development and elevated capacity to digest nutrients. By injecting a feeding solution into the embryonic amnion, the embryo naturally consume supplemental nutrients orally before hatching. This stimulates intestinal development to start earlier as was exhibited by elevated gene expression of several functional genes (brush border enzymes an transporters , elvated surface area, elevated mucin production . Moreover, supplying supplemental nutrients at a critical developmental stage by this in ovo feeding technology improves the hatchling’s nutritional status. In comparison to controls, administration of 1 ml of in ovo feeding solution, containing dextrin, maltose, sucrose and amino acids, into the amnion of the broiler embryo increased dramatically total liver glycogen in broilers and in turkeys in the pre-hatch period. In addition, an elevated relative breast muscle size (% of broiler BW) was observed in IOF chicks to be 6.5% greater at hatch and 7 days post-hatch in comparison to controls. Experiment have shown that IOF broilers and turkeys increased hatchling weights by 3% to 7% (P<0.05) over non injected controls. These responses depend upon the strain, the breeder hen age and in ovo feed composition. The weight advantage observed during the first week after hatch was found to be sustained at least through 35 days of age. Currently, research is done in order to adopt the knowledge for commercial practice.
APA, Harvard, Vancouver, ISO, and other styles
8

Funkenstein, Bruria, and Cunming Duan. GH-IGF Axis in Sparus aurata: Possible Applications to Genetic Selection. United States Department of Agriculture, November 2000. http://dx.doi.org/10.32747/2000.7580665.bard.

Full text
Abstract:
Many factors affect growth rate in fish: environmental, nutritional, genetics and endogenous (physiological) factors. Endogenous control of growth is very complex and many hormone systems are involved. Nevertheless, it is well accepted that growth hormone (GH) plays a major role in stimulating somatic growth. Although it is now clear that most, if not all, components of the GH-IGF axis exist in fish, we are still far from understanding how fish grow. In our project we used as the experimental system a marine fish, the gilthead sea bream (Sparus aurata), which inhabits lagoons along the Mediterranean and Atlantic coasts of Europe, and represents one of the most important fish species used in the mariculture industry in the Mediterranean region, including Israel. Production of Sparus is rapidly growing, however, in order for this production to stay competitive, the farming of this fish species has to intensify and become more efficient. One drawback, still, in Sparus extensive culture is that it grows relatively slow. In addition, it is now clear that growth and reproduction are physiological interrelated processes that affect each other. In particular sexual maturation (puberty) is known to be closely related to growth rate in fish as it is in mammals, indicating interactions between the somatotropic and gonadotropic axes. The goal of our project was to try to identify the rate-limiting components(s) in Sparus aurata GH-IGF system which might explain its slow growth by studying the ontogeny of growth-related genes: GH, GH receptor, IGF-I, IGF-II, IGF receptor, IGF-binding proteins (IGFBPs) and Pit-1 during early stages of development of Sparus aurata larvae from slow and fast growing lines. Our project was a continuation of a previous BARD project and could be divided into five major parts: i) obtaining additional tools to those obtained in the previous project that are necessary to carry out the developmental study; ii) the developmental expression of growth-related genes and their cellular localization; iii) tissue-specific expression and effect of GH on expression of growth-related genes; iv) possible relationship between GH gene structure, growth rate and genetic selection; v) the possible role of the IGF system in gonadal development. The major findings of our research can be summarized as follows: 1) The cDNAs (complete or partial) coding for Sparus IGFBP-2, GH receptor and Pit-1 were cloned. Sequence comparison reveals that the primary structure of IGFBP-2 protein is 43-49% identical to that of zebrafish and other vertebrates. Intensive efforts resulted in cloning a fragment of 138 nucleotides, coding for 46 amino acids in the proximal end of the intracellular domain of GH receptor. This is the first fish GH receptor cDNA that had been cloned to date. The cloned fragment will enable us to complete the GH - receptor cloning. 2) IGF-I, IGF-II, IGFBP-2, and IGF receptor transcripts were detected by RT-PCR method throughout development in unfertilized eggs, embryos, and larvae suggesting that these mRNAs are products of both the maternal and the embryonic genomes. Preliminary RT-PCR analysis suggest that GH receptor transcript is present in post-hatching larvae already on day 1. 3) IGF-1R transcripts were detected in all tissues tested by RT-PCR with highest levels in gill cartilage, skin, kidney, heart, pyloric caeca, and brain. Northern blot analysis detected IGF receptor only in gonads, brain and gill cartilage but not in muscle; GH increased slightly brain and gill cartilage IGF-1R mRNA levels. 4) IGFBP-2 transcript were detected only in liver and gonads, when analyzed by Northern blots; RT-PCR analysis revealed expression in all tissues studied, with the highest levels found in liver, skin, gonad and pyloric caeca. 5) Expression of IGF-I, IGF-II, IGF-1R and IGFBP-2 was analyzed during gonadal development. High levels of IGF-I and IGFBP-2 expression were found in bisexual young gonads, which decreased during gonadal development. Regardless of maturational stage, IGF-II levels were higher than those of IGF-L 6) The GH gene was cloned and its structure was characterized. It contains minisatellites of tandem repeats in the first and third introns that result in high level of genetic polymorphism. 7) Analysis of the presence of IGF-I and two types of IGF receptor by immunohistochemistry revealed tissue- and stage-specific expression during larval development. Immunohistochemistry also showed that IGF-I and its receptors are present in both testicular and ovarian cells. Although at this stage we are not able to pinpoint which is the rate-limiting step causing the slow growth of Sparus aurata, our project (together with the previous BARD) yielded a great number of experimental tools both DNA probes and antibodies that will enable further studies on the factors regulating growth in Sparus aurata. Our expression studies and cellular localization shed new light on the tissue and developmental expression of growth-related genes in fish.
APA, Harvard, Vancouver, ISO, and other styles
9

Yahav, Shlomo, John McMurtry, and Isaac Plavnik. Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life. United States Department of Agriculture, 1998. http://dx.doi.org/10.32747/1998.7580676.bard.

Full text
Abstract:
The research on thermotolerance acquisition in broiler chickens by temperature conditioning early in life was focused on the following objectives: a. To determine the optimal timing and temperature for inducing the thermotolerance, conditioning processes and to define its duration during the first week of life in the broiler chick. b. To investigate the response of skeletal muscle tissue and the gastrointestinal tract to thermal conditioning. This objective was added during the research, to understand the mechanisms related to compensatory growth. c. To evaluate the effect of early thermo conditioning on thermoregulation (heat production and heat dissipation) during 3 phases: (1) conditioning, (2) compensatory growth, (3) heat challenge. d. To investigate how induction of improved thermotolerance impacts on metabolic fuel and the hormones regulating growth and metabolism. Recent decades have seen significant development in the genetic selection of the meat-type fowl (i.e., broiler chickens); leading to rapid growth and increased feed efficiency, providing the poultry industry with heavy chickens in relatively short growth periods. Such development necessitates parallel increases in the size of visceral systems such as the cardiovascular and the respiratory ones. However, inferior development of such major systems has led to a relatively low capability to balance energy expenditure under extreme conditions. Thus, acute exposure of chickens to extreme conditions (i.e., heat spells) has resulted in major economic losses. Birds are homeotherms, and as such, they are able to maintain their body temperature within a narrow range. To sustain thermal tolerance and avoid the deleterious consequences of thermal stresses, a direct response is elicited: the rapid thermal shock response - thermal conditioning. This technique of temperature conditioning takes advantage of the immaturity of the temperature regulation mechanism in young chicks during their first week of life. Development of this mechanism involves sympathetic neural activity, integration of thermal infom1ation in the hypothalamus, and buildup of the body-to-brain temperature difference, so that the potential for thermotolerance can be incorporated into the developing thermoregulation mechanisms. Thermal conditioning is a unique management tool, which most likely involves hypothalamic them1oregulatory threshold changes that enable chickens, within certain limits, to cope with acute exposure to unexpected hot spells. Short-tem1 exposure to heat stress during the first week of life (37.5+1°C; 70-80% rh; for 24 h at 3 days of age) resulted in growth retardation followed immediately by compensatory growth" which resulted in complete compensation for the loss of weight gain, so that the conditioned chickens achieved higher body weight than that of the controls at 42 days of age. The compensatory growth was partially explained by its dramatic positive effect on the proliferation of muscle satellite cells which are necessary for further muscle hypertrophy. By its significant effect of the morphology and functioning of the gastrointestinal tract during and after using thermal conditioning. The significant effect of thermal conditioning on the chicken thermoregulation was found to be associated with a reduction in heat production and evaporative heat loss, and with an increase in sensible heat loss. It was further accompanied by changes in hormones regulating growth and metabolism These physiological responses may result from possible alterations in PO/AH gene expression patterns (14-3-3e), suggesting a more efficient mechanism to cope with heat stress. Understanding the physiological mechanisms behind thermal conditioning step us forward to elucidate the molecular mechanism behind the PO/AH response, and response of other major organs. The thermal conditioning technique is used now in many countries including Israel, South Korea, Australia, France" Ecuador, China and some places in the USA. The improvement in growth perfom1ance (50-190 g/chicken) and thermotolerance as a result of postnatal thermal conditioning, may initiate a dramatic improvement in the economy of broiler's production.
APA, Harvard, Vancouver, ISO, and other styles
10

Rafaeli, Ada, and Russell Jurenka. Molecular Characterization of PBAN G-protein Coupled Receptors in Moth Pest Species: Design of Antagonists. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7593390.bard.

Full text
Abstract:
The proposed research was directed at determining the activation/binding domains and gene regulation of the PBAN-R’s thereby providing information for the design and screening of potential PBAN-R-blockers and to indicate possible ways of preventing the process from proceeding to its completion. Our specific aims included: (1) The identification of the PBAN-R binding domain by a combination of: (a) in silico modeling studies for identifying specific amino-acid side chains that are likely to be involved in binding PBAN with the receptor and; (b) bioassays to verify the modeling studies using mutant receptors, cell lines and pheromone glands (at tissue and organism levels) against selected, designed compounds to confirm if compounds are agonists or antagonists. (2) The elucidation ofthemolecular regulationmechanisms of PBAN-R by:(a) age-dependence of gene expression; (b) the effect of hormones and; (c) PBAN-R characterization in male hair-pencil complexes. Background to the topic Insects have several closely related G protein-coupled receptors (GPCRs) belonging to the pyrokinin/PBAN family, one with the ligand pheromone biosynthesis activating neuropeptide or pyrokinin-2 and another with diapause hormone or pyrokinin-1 as a ligand. We were unable to identify the diapause hormone receptor from Helicoverpa zea despite considerable effort. A third, related receptor is activated by a product of the capa gene, periviscerokinins. The pyrokinin/PBAN family of GPCRs and their ligands has been identified in various insects, such as Drosophila, several moth species, mosquitoes, Triboliumcastaneum, Apis mellifera, Nasoniavitripennis, and Acyrthosiphon pisum. Physiological functions of pyrokinin peptides include muscle contraction, whereas PBAN regulates pheromone production in moths plus other functions indicating the pleiotropic nature of these ligands. Based on the alignment of annotated genomic sequences, the primary and secondary structures of the pyrokinin/PBAN family of receptors have similarity with the corresponding structures of the capa or periviscerokinin receptors of insects and the neuromedin U receptors found in vertebrates. Major conclusions, solutions, achievements Evolutionary trace analysisof receptor extracellular domains exhibited several class-specific amino acid residues, which could indicate putative domains for activation of these receptors by ligand recognition and binding. Through site-directed point mutations, the 3rd extracellular domain of PBAN-R was shown to be critical for ligand selection. We identified three receptors that belong to the PBAN family of GPCRs and a partial sequence for the periviscerokinin receptor from the European corn borer, Ostrinianubilalis. Functional expression studies confirmed that only the C-variant of the PBAN-R is active. We identified a non-peptide agonist that will activate the PBAN-receptor from H. zea. We determined that there is transcriptional control of the PBAN-R in two moth species during the development of the pupa to adult, and we demonstrated that this transcriptional regulation is independent of juvenile hormone biosynthesis. This transcriptional control also occurs in male hair-pencil gland complexes of both moth species indicating a regulatory role for PBAN in males. Ultimate confirmation for PBAN's function in the male tissue was revealed through knockdown of the PBAN-R using RNAi-mediated gene-silencing. Implications, both scientific and agricultural The identification of a non-peptide agonist can be exploited in the future for the design of additional compounds that will activate the receptor and to elucidate the binding properties of this receptor. The increase in expression levels of the PBAN-R transcript was delineated to occur at a critical period of 5 hours post-eclosion and its regulation can now be studied. The mysterious role of PBAN in the males was elucidated by using a combination of physiological, biochemical and molecular genetics techniques.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography