Academic literature on the topic 'Muscle stem cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Muscle stem cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Muscle stem cell"
Liu, Qi, Su Pan, Shijie Liu, Sui Zhang, James T. Willerson, James F. Martin, and Richard A. F. Dixon. "Suppressing Hippo signaling in the stem cell niche promotes skeletal muscle regeneration." Stem Cells 39, no. 6 (February 18, 2021): 737–49. http://dx.doi.org/10.1002/stem.3343.
Full textWang, Shuaiyu, Bao Zhang, Gregory C. Addicks, Hui Zhang, Keir J. Menzies, and Hongbo Zhang. "Muscle Stem Cell Immunostaining." Current Protocols in Mouse Biology 8, no. 3 (August 14, 2018): e47. http://dx.doi.org/10.1002/cpmo.47.
Full textIshii, Kana, Nobuharu Suzuki, Yo Mabuchi, Naoki Ito, Naomi Kikura, So-ichiro Fukada, Hideyuki Okano, Shin'ichi Takeda, and Chihiro Akazawa. "Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration." STEM CELLS 33, no. 10 (June 28, 2015): 3017–27. http://dx.doi.org/10.1002/stem.2058.
Full textYin, Hang, Feodor Price, and Michael A. Rudnicki. "Satellite Cells and the Muscle Stem Cell Niche." Physiological Reviews 93, no. 1 (January 2013): 23–67. http://dx.doi.org/10.1152/physrev.00043.2011.
Full textKodaka, Yusaku, Gemachu Rabu, and Atsushi Asakura. "Skeletal Muscle Cell Induction from Pluripotent Stem Cells." Stem Cells International 2017 (2017): 1–16. http://dx.doi.org/10.1155/2017/1376151.
Full textZammit, Peter S., and Jonathan R. Beauchamp. "The skeletal muscle satellite cell: stem cell or son of stem cell?" Differentiation 68, no. 4-5 (October 2001): 193–204. http://dx.doi.org/10.1046/j.1432-0436.2001.680407.x.
Full textWagers, Amy J. "Stem Cell Rejuvenation." Blood 124, no. 21 (December 6, 2014): SCI—42—SCI—42. http://dx.doi.org/10.1182/blood.v124.21.sci-42.sci-42.
Full textHeslop, L., J. E. Morgan, and T. A. Partridge. "Evidence for a myogenic stem cell that is exhausted in dystrophic muscle." Journal of Cell Science 113, no. 12 (June 15, 2000): 2299–308. http://dx.doi.org/10.1242/jcs.113.12.2299.
Full textde Morree, Antoine, Julian D. D. Klein, Qiang Gan, Jean Farup, Andoni Urtasun, Abhijnya Kanugovi, Biter Bilen, Cindy T. J. van Velthoven, Marco Quarta, and Thomas A. Rando. "Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function." Science 366, no. 6466 (November 7, 2019): 734–38. http://dx.doi.org/10.1126/science.aax1694.
Full textTorrente, Yuan, Jacques-P. Tremblay, Federica Pisati, Marzia Belicchi, Barbara Rossi, Manuela Sironi, Franco Fortunato, et al. "Intraarterial Injection of Muscle-Derived Cd34+Sca-1+ Stem Cells Restores Dystrophin in mdx Mice." Journal of Cell Biology 152, no. 2 (January 22, 2001): 335–48. http://dx.doi.org/10.1083/jcb.152.2.335.
Full textDissertations / Theses on the topic "Muscle stem cell"
Woodhouse, Samuel. "The role of Ezh2 in adult muscle stem cell fate." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610201.
Full textTheret, Marine. "Cell and non-cell autonomous regulations of metabolism on muscle stem cell fate and skeletal muscle homeostasis." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB120/document.
Full textDuring skeletal muscle regeneration, muscle stem cells activate and recapitulate the myogenic program to repair the damaged myofibers. A subset of these cells does not enter into the myogenesis program but self-renews to return into quiescence for further needs. Control of muscle stem cell fate choice is crucial to maintain homeostasis but molecular and cellular mechanisms controlling this step are poorly understood. A difficulty of understanding muscle stem cell self-renewal is that skeletal muscle regeneration is a coordinated and non-synchronized process. Various and dissociated molecular and cellular mechanisms regulate muscle stem cell fate. Indeed, skeletal muscle regeneration requires the interaction between myogenic cells and other cell types, among which the macrophages. Macrophages infiltrate the muscle and adopt distinct and sequential phenotypes. They act on the sequential phases of muscle regeneration and resolving the inflammation by skewing their inflammatory profile to an anti-inflammatory state. Some in vitro studies suggested a role for the metabolism and the AMP-activated protein Kinase (AMPK), the master metabolic regulator of cells, in both inflammation and stem cell fate. Thus, I investigated the role of metabolism on muscle stem cell fate within the muscle stem cells (cell autonomous regulations) and through the action of macrophages (non-cell autonomous regulations) during skeletal muscle regeneration. To analyze muscle stem cell fate, I used in vitro (macrophages and muscle stem cell primary cultures), ex vivo (isolated myofibers) and in vivo (using specific mice model deleted specifically for AMPK1 in the myeloid lineage, in muscle stem cells or in myofibers) experiments. First, I highlighted that macrophagic AMPK1is required for the resolution of inflammation during skeletal muscle regeneration and for the trophic functions of macrophages on muscle stem cell fate. Moreover, CAMKK-AMPK1 activation regulates phagocytosis, which is the main cellular mechanism inducing macrophage skewing. This work was published in 2013 in Cell Metabolism. Second, I demonstrated that depletion of myogenic AMPK1 tailors muscle stem cell metabolism in a LKB1 independent manner, orients their fate to the self-renewal by promoting metabolic switch from an oxidative to a glycolytic metabolism pathway, through the over activation of a new molecular target, which is a key enzyme for glycolysis: the Lactate Dehydrogenase. To conclude, during my thesis, I established two new crucial roles of AMPK1 in muscle stem cell fate choice, linking for the first time metabolism, inflammation and fate choice
Wang, Yu Xin. "Molecular Regulation of Muscle Stem Cell Self-Renewal." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35207.
Full textVictor, Pedro Sousa. "Skeletal muscle aging: stem cell function and tissue homeostasis." Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/81933.
Full textEl envejecimiento del tejido muscular está caracterizado concretamente por una reducción global de la masa muscular y un empeoramiento de la función de tejido, particularmente prominentes en individuos muy viejos (geriátricos) que padecen sarcopenia. La pérdida muscular asociado a la edad, se acompaña de una reducción en la capacidad de regeneración del músculo y en una reducción del número y la función de las células madre residentes en el músculo (células satélite). Aunque la sarcopenia sea una de las causas principales de la pérdida general de función fisiológica del músculo, los mecanismos implicados en la reducción de la homeostasis muscular y de actividad de las células satélite no han sido completamente caracterizados. Mediante el análisis comparativo del transcriptoma de células madre musculares aisladas de ratones jóvenes y de ratones viejos (geriátricos), hemos encontrado cambios específicos en su perfil de expresión génica que apuntan a los procesos biológicos dominantes y a los marcadores moleculares potencialmente asociados con el envejecimiento de las células satélite, entre los que destaca p16INK4a. Por ello, hemos utilizado ratones deficientes en Bmi1 para explorar más profundamente las implicaciones de la sobreexpresión de p16INK4a en la función de las células satélite. Hemos encontrado que células satélite jóvenes del ratón Bmi1-/- presentan sobrexpresión de p16INK4a, que correlacionan con una reducción en el número de la células, y en su capacidad de proliferación y autorenovación. Además hemos identificado un grupo de procesos biológicos comunes entre las células satélite viejas y las deficientes en Bmi1, sugiriendo que la regulación epigenética mediada por Bmi1 puede ser la base de muchos de los cambios intrínsecos que ocurren en células envejecidas fisiológicamente. Además, demostramos que la pérdida Bmi1 causa defectos en el crecimiento postnatal/adulto del músculo, caracterizado por pérdida de masa muscular con fibras más pequeñas, típico del músculo atrofiado senescente o sarcopénico. Puesto que la expresión de p16 está aumentada específicamente en el músculo de ratones viejos, sarcopénicos y en un modelo del ratón con envejecimiento (senescencia) acelerado (SAMP8), proponemos que el eje Bmi1/p16 puede actuar particularmente en las células madre musculares de los ancianos. La pérdida de masa muscular es una de las consecuencias fisiológicas de la sarcopenia y la identificación de nuevos factores que regulen el crecimiento y atrofia del músculo es de gran importancia para aplicaciones terapéuticas. Hemos descubierto un nuevo papel de las Sestrinas como factores promotores del crecimiento del músculo esquelético en el adulto. Hemos encontrado que la expresión de las Sestrinas se regula en modelos del ratón de atrofia y de hipertrofia muscular y en miopatías humanas. Mediante experimentos de ganacia de función hemos demostrado que las Sestrinas inducen el crecimiento del músculo esquelético, activando el ruta de señalización de IGF1/PI3K/AKT
Richards-Malcolm, Sonia Angela. "THE ROLE OF STEM CELL ANTIGEN-1(Sca-1) IN MUSCLE AGING." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_theses/519.
Full textFeige, Peter. "Molecular Regulation of Satellite Cell Fate." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40804.
Full textPannerec, Alice. "The skeletal muscle stem cell niche : defining hierarchies based upon the stem cell marker PW1 to identify therapeutic target cells." Paris 6, 2012. http://www.theses.fr/2012PA066440.
Full textSatellite cells are considered the major source of muscle progenitors, however, other populations with myogenic popential have been discovered. We have identified a new muscle-resident non-satellite cell population, termed PICs, which can differentiate into three different lineages, skeletal muscle, smooth muscle and fat. PICs rescue satellite cells from myostatin inhibition in vitro through follistatin release. When myostatin is inactivated in vivo, PICs number is markedly increased and mice display hypertrophied muscles. While recent studies have demonstrated that muscle regeneration cannot occur without satellite cells, we show that muscle regeneration is restored when mice have been previously treated with a myostatin inhibitor. We postulate that PICs have participated in muscle repair rescue, and thus constitute an interesting population to be targeted for pharmaceutical strategies aimed at improving skeletal muscle mass and function
Pannérec, Alice. "The skeletal muscle stem cell niche : defining hierarchies based upon the stem cell marker PW1 to identify therapeutic target cells." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00833422.
Full textCahill, Kevin Scott. "Enhancement of stem-cell transplantation strategies for muscle regeneration." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0002319.
Full textZhang, Ting [Verfasser]. "Epigenetic regulation of muscle stem cell expansion / Ting Zhang." Gießen : Universitätsbibliothek, 2015. http://d-nb.info/1076980325/34.
Full textBooks on the topic "Muscle stem cell"
A, Sassoon D., ed. Stem cells and cell signalling in skeletel myogenesis. Amsterdam: Elsevier, 2002.
Find full textPerdiguero, Eusebio, and DDW Cornelison, eds. Muscle Stem Cells. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6771-1.
Full textSassoon, D. A. Stem Cells and Cell Signalling in Skeletal Myogenesis (Advances in Developmental Biology and Biochemistry, V. 11). Elsevier Science, 2002.
Find full textBonnie Fagan, Melinda. Individuality, Organisms, and Cell Differentiation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190636814.003.0006.
Full textRudnicki, Michael, and Jeffrey Dilworth. Muscle Stem Cells. Elsevier Science & Technology Books, 2024.
Find full textPerdiguero, Eusebio, and Dawn Cornelison. Muscle Stem Cells: Methods and Protocols. Springer New York, 2017.
Find full textPerdiguero, Eusebio, and D. D. W. Cornelison. Muscle Stem Cells: Methods and Protocols. Springer New York, 2018.
Find full textDouglas, Kenneth. Bioprinting. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190943547.001.0001.
Full textPinheiro, Carlos Hermano J., and Lucas Guimarães-Ferreira, eds. Frontiers in Skeletal Muscle Wasting, Regeneration and Stem Cells. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-832-0.
Full textMuñoz-Cánoves, Pura, Jaime J. Carvajal, Adolfo Lopez de Munain, and Ander Zeta, eds. Role of Stem Cells in Skeletal Muscle Development, Regeneration, Repair, Aging and Disease. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-866-5.
Full textBook chapters on the topic "Muscle stem cell"
Kuang, Shihuan, and Michael A. Rudnicki. "Muscle Stem Cells." In Cell Cycle Regulation and Differentiation in Cardiovascular and Neural Systems, 105–20. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-60327-153-0_6.
Full textAbou-Khalil, Rana, Fabien Le Grand, and Bénédicte Chazaud. "Human and Murine Skeletal Muscle Reserve Cells." In Stem Cell Niche, 165–77. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-508-8_14.
Full textNegroni, Elisa, Maximilien Bencze, Stéphanie Duguez, Gillian Butler-Browne, and Vincent Mouly. "Skeletal Muscle Stem Cells." In Stem Cell Biology and Regenerative Medicine, 415–28. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339601-19.
Full textBrand-Saberi, Beate, and Eric Bekoe Offei. "Skeletal Muscle Stem Cells." In Essential Current Concepts in Stem Cell Biology, 77–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33923-4_5.
Full textMarra, Kacey G., Candace A. Brayfield, and J. Peter Rubin. "Adipose Stem Cell Differentiation into Smooth Muscle Cells." In Adipose-Derived Stem Cells, 261–68. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-61737-960-4_19.
Full textGoel, Aviva J., and Robert S. Krauss. "Ex Vivo Visualization and Analysis of the Muscle Stem Cell Niche." In Stem Cell Niche, 39–50. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/7651_2018_177.
Full textBoldrin, Luisa, and Jennifer E. Morgan. "Modulation of the Host Skeletal Muscle Niche for Donor Satellite Cell Grafting." In Stem Cell Niche, 179–90. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-508-8_15.
Full textMcKay, Bryon R., and Gianni Parise. "Aging of Muscle Stem Cells." In Stem Cell Aging: Mechanisms, Consequences, Rejuvenation, 195–226. Vienna: Springer Vienna, 2015. http://dx.doi.org/10.1007/978-3-7091-1232-8_10.
Full textSambasivan, Ramkumar, and Shahragim Tajbakhsh. "Adult Skeletal Muscle Stem Cells." In Results and Problems in Cell Differentiation, 191–213. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44608-9_9.
Full textDuelen, Robin, Domiziana Costamagna, and Maurilio Sampaolesi. "Stem Cell Therapy in Muscle Degeneration." In The Plasticity of Skeletal Muscle, 55–91. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3292-9_3.
Full textConference papers on the topic "Muscle stem cell"
Cassino, Theresa R., Masaho Okada, Lauren Drowley, Johnny Huard, and Philip R. LeDuc. "Mechanical Stimulation Improves Muscle-Derived Stem Cell Transplantation for Cardiac Repair." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192941.
Full textYuste, Yaiza, Juan A. Serrano, Alberto Olmo, Andres Maldonado-Jacobi, Pablo Pérez, Gloria Huertas, Sheila Pereira, Fernando de la Portilla, and Alberto Yúfera. "Monitoring Muscle Stem Cell Cultures with Impedance Spectroscopy." In 11th International Conference on Biomedical Electronics and Devices. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006712300960099.
Full textAhsan, Taby, Adele M. Doyle, Garry P. Duffy, Frank Barry, and Robert M. Nerem. "Stem Cells and Vascular Regenerative Medicine." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193591.
Full textSoker, Shay, Dawn Delo, Samira Neshat, and Anthony Atala. "Amniotic Fluid Derived Stem Cells for Cardiac Muscle Therapies." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192492.
Full textCassino, Theresa R., Masaho Okada, Lauren M. Drowley, Joseph Feduska, Johnny Huard, and Philip R. LeDuc. "Using Mechanical Environment to Enhance Stem Cell Transplantation in Muscle Regeneration." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176545.
Full textTsvankin, Vadim, Dmitry Belchenko, Devon Scott, and Wei Tan. "Anisotropic Strain Effects on Vascular Smooth Muscle Cell Physiology." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176284.
Full textLi, Zhizhong. "Abstract A58: HMGA2 controls muscle stem cell activation and rhabdomyosarcoma progression." In Abstracts: AACR Special Conference: Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; November 3-6, 2013; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.pedcan-a58.
Full textBarğı, Gülşah, Meral Boşnak Güçlü, and Gülsan Türköz Sucak. "Stem cell recipients versus healthy subjects regarding exercise tolerance and muscle strength." In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa1485.
Full textMonteiro, Gary A., and David I. Shreiber. "Guiding Stem Cell Differentiation Into Neural Lineages With Tunable Collagen Biomaterials." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206752.
Full textKallifatidis, Georgios, Diandra K. Smith, Jie Gao, Richard Pearce, Jiemin Li, Vinata Lokeshwar, and Balakrishna L. Lokeshwar. "Abstract 86: Beta-arrestins regulate basal cell and cancer stem cell phenotype in muscle-invasive bladder cancer." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-86.
Full textReports on the topic "Muscle stem cell"
Huard, Johnny, Ira Fox, and David Perlmutter. Muscle Stem Cell Therapy for the Treatment of DMD Associated Cardiomyopathy. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada576384.
Full textGonzalez-Cadavid, Nestor F. Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration After Injury. Addendum. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada586854.
Full textHalevy, Orna, Sandra Velleman, and Shlomo Yahav. Early post-hatch thermal stress effects on broiler muscle development and performance. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7597933.bard.
Full textYahav, Shlomo, John McMurtry, and Isaac Plavnik. Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life. United States Department of Agriculture, 1998. http://dx.doi.org/10.32747/1998.7580676.bard.
Full textFunkenstein, Bruria, and Cunming Duan. GH-IGF Axis in Sparus aurata: Possible Applications to Genetic Selection. United States Department of Agriculture, November 2000. http://dx.doi.org/10.32747/2000.7580665.bard.
Full text