Academic literature on the topic 'Muscle cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Muscle cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Muscle cells"
Griffin, D. M., H. M. Hudson, A. Belhaj-Saïf, B. J. McKiernan, and P. D. Cheney. "Do Corticomotoneuronal Cells Predict Target Muscle EMG Activity?" Journal of Neurophysiology 99, no. 3 (March 2008): 1169–986. http://dx.doi.org/10.1152/jn.00906.2007.
Full textReyes, Morayma, and Jeffrey S. Chamberlain. "Perivascular CD45−:Sca-1+:CD34− Cells Are Derived from Bone Marrow Cells and Participate in Dystrophic Skeletal Muscle Regeneration." Blood 106, no. 11 (November 16, 2005): 394. http://dx.doi.org/10.1182/blood.v106.11.394.394.
Full textBecker, S., G. Pasca, D. Strumpf, L. Min, and T. Volk. "Reciprocal signaling between Drosophila epidermal muscle attachment cells and their corresponding muscles." Development 124, no. 13 (July 1, 1997): 2615–22. http://dx.doi.org/10.1242/dev.124.13.2615.
Full textYoshimoto, Momoko, Toshio Heike, Mitsutaka Shiota, Hirohiko Kobayashi, Katsutsugu Umeda, and Tatsutoshi Nakahata. "Hematopoietic Stem Cells Can Give Rise to Satellite-Like Cells in Skeletal Muscles." Blood 104, no. 11 (November 16, 2004): 2690. http://dx.doi.org/10.1182/blood.v104.11.2690.2690.
Full textAzab, Azab. "Skeletal Muscles: Insight into Embryonic Development, Satellite Cells, Histology, Ultrastructure, Innervation, Contraction and Relaxation, Causes, Pathophysiology, and Treatment of Volumetric Muscle I." Biotechnology and Bioprocessing 2, no. 4 (May 28, 2021): 01–17. http://dx.doi.org/10.31579/2766-2314/038.
Full textMitchell, Patrick O., and Grace K. Pavlath. "Skeletal muscle atrophy leads to loss and dysfunction of muscle precursor cells." American Journal of Physiology-Cell Physiology 287, no. 6 (December 2004): C1753—C1762. http://dx.doi.org/10.1152/ajpcell.00292.2004.
Full textZhao, Shudong, Jishizhan Chen, Lei Wu, Xin Tao, Naheem Yaqub, and Jinke Chang. "Induced Pluripotent Stem Cells for Tissue-Engineered Skeletal Muscles." International Journal of Molecular Sciences 24, no. 14 (July 15, 2023): 11520. http://dx.doi.org/10.3390/ijms241411520.
Full textChalla, Stalin Reddy, and Swathi Goli. "Differentiation of Human Embryonic Stem Cells into Engrafting Myogenic Precursor Cells." Stem cell Research and Therapeutics International 1, no. 1 (April 16, 2019): 01–05. http://dx.doi.org/10.31579/2643-1912/002.
Full textHeslop, L., J. E. Morgan, and T. A. Partridge. "Evidence for a myogenic stem cell that is exhausted in dystrophic muscle." Journal of Cell Science 113, no. 12 (June 15, 2000): 2299–308. http://dx.doi.org/10.1242/jcs.113.12.2299.
Full textBalch, Ying. "Subculture human skeletal muscle cells to produce the cells with different Culture medium compositions." Clinical Research and Clinical Trials 3, no. 4 (April 30, 2021): 01–03. http://dx.doi.org/10.31579/2693-4779/036.
Full textDissertations / Theses on the topic "Muscle cells"
Leskinen, Markus. "Mast cell-mediated apoptosis of smooth muscle cells and endothelial cells." Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/laa/kliin/vk/leskinen/.
Full textWoodhouse, Samuel. "The role of Ezh2 in adult muscle stem cell fate." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610201.
Full textTomc, Lyn Kathryn. "Role of MEF2 proteins in the activation of the c-jun and MCK genes in skeletal muscle /." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0018/MQ56210.pdf.
Full textPESSINA, PATRIZIA. "Necdin enhances muscle reconstitution of dystrophic muscle by mesoangioblast cells." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7594.
Full textPeden, Ryan Stephen Medical Sciences Faculty of Medicine UNSW. "Activation of vascular smooth muscle cells." Awarded by:University of New South Wales. School of Medical Sciences, 2006. http://handle.unsw.edu.au/1959.4/24925.
Full textSpendiff, Sally. "Mitochondrial myopathies and muscle stem cells." Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1530.
Full textIyer, Dharini. "Generation of epicardium and epicardium-derived coronary-like smooth muscle cells from human pluripotent stem cells." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708997.
Full textIzzard, Tanya. "Extracellular matrix and the cell cycle in vascular smooth muscle cells." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322616.
Full textHolder, Emma L. (Emma Lesley). "Gene expression in muscle tissue and cells." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69755.
Full textHaddad, Mansour Emil Goerge. "GPCRs in rat primary skeletal muscle cells." Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/14176/.
Full textBooks on the topic "Muscle cells"
Perdiguero, Eusebio, and DDW Cornelison, eds. Muscle Stem Cells. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6771-1.
Full textRassier, Dilson E. Muscle biophysics: From molecules to cells. New York: Springer, 2010.
Find full textAsakura, Atsushi, ed. Skeletal Muscle Stem Cells. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3036-5.
Full textA, Sassoon D., ed. Stem cells and cell signalling in skeletel myogenesis. Amsterdam: Elsevier, 2002.
Find full text1933-, Sugi Haruo, and Gordon A. M. 1934-, eds. Muscle contraction and cell motility: Molecular and cellular aspects. Berlin: Springer-Verlag, 1992.
Find full textWang, Yong-Xiao, ed. Calcium Signaling In Airway Smooth Muscle Cells. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01312-1.
Full textDhoot, Gurtej Kaur. Development and differentiation of striated muscle cells. Birmingham: University of Birmingham, 1992.
Find full textM, Carlson Bruce, ed. Growth and hyperplasia of cardiac muscle cells. London, U.K: Harwood Academic Publishers, 1991.
Find full textD, Huizinga Jan, ed. Pacemaker activity and intercellular communication. Boca Raton: CRC Press, 1995.
Find full textKaba, Nubia Kristen. Effect of urea on cell volume regulation in smooth muscle cells. [s.l.]: [s.n.], 1998.
Find full textBook chapters on the topic "Muscle cells"
Bagshaw, Clive R. "Muscle cells." In Muscle Contraction, 21–32. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-6839-5_3.
Full textGooch, Keith J., and Christopher J. Tennant. "Muscle Cells." In Mechanical Forces: Their Effects on Cells and Tissues, 101–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03420-0_5.
Full textGayford, Chris. "Muscle Contraction." In Energy and Cells, 154–65. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-08159-2_10.
Full textSaucedo, Leslie. "Muscle." In Getting to Know Your Cells, 43–47. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30146-9_8.
Full textCanale, Enrico D., Gordon R. Campbell, Joseph J. Smolich, and Julie H. Campbell. "Cardiac Muscle Cells in Culture." In Cardiac Muscle, 195–221. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-50115-9_10.
Full textKuang, Shihuan, and Michael A. Rudnicki. "Muscle Stem Cells." In Cell Cycle Regulation and Differentiation in Cardiovascular and Neural Systems, 105–20. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-60327-153-0_6.
Full textLynch, Gordon S., David G. Harrison, Hanjoong Jo, Charles Searles, Philippe Connes, Christopher E. Kline, C. Castagna, et al. "Stem Cells, Muscle." In Encyclopedia of Exercise Medicine in Health and Disease, 814–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_257.
Full textStewart, Alastair G., Darren J. Fernandes, Valentina Koutsoubos, Aurora Messina, Claire E. Ravenhall, Ross Vlahos, and Kai-Feng Xu. "Airway smooth muscle cells." In Cellular Mechanisms in Airways Inflammation, 263–302. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8476-1_10.
Full textRiascos-Bernal, Dario F., and Nicholas E. S. Sibinga. "Vascular Smooth Muscle Cells." In Atherosclerosis, 117–28. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118828533.ch10.
Full textHalayko, Andrew J., and Pawan Sharma. "Airway Smooth Muscle Cells." In Inflammation and Allergy Drug Design, 163–71. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444346688.ch12.
Full textConference papers on the topic "Muscle cells"
Sorrentino, Carmela, Giulia Gentile, Rosa D’Angiolo, Carmela Barra, Ferdinando De Stefano, Fabrizio Licitra, Emilia Sabbatino, et al. "The Role of the Androgen Receptor in Skeletal Muscle and Its Utility as a Target for Restoring Muscle Functions." In Cells 2023. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/blsf2023021005.
Full textBLAES, N., and C. COVACHO. "PLATELET AGGREGATION INDUCED BY TUMORIGENIC ARTERIAL SMOOTH MUSCLE CELLS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643413.
Full textSoker, Shay, Dawn Delo, Samira Neshat, and Anthony Atala. "Amniotic Fluid Derived Stem Cells for Cardiac Muscle Therapies." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192492.
Full textSuzuki, YJ, L. Liu, and A. Park. "Differential Mechanisms of Apoptosis in Pulmonary Artery Smooth Muscle Cells and in Cardiac Muscle Cells." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5359.
Full textAhsan, Taby, Adele M. Doyle, Garry P. Duffy, Frank Barry, and Robert M. Nerem. "Stem Cells and Vascular Regenerative Medicine." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193591.
Full textDeClerck, Y. A., R. Bock, and W. E. Laug. "PRODUCTION OF A TISSUE INHIBITOR OF METALLOPROTEINASES BY BOVINE VASCULAR CELLS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644603.
Full textCassino, Theresa R., Masaho Okada, Lauren Drowley, Johnny Huard, and Philip R. LeDuc. "Mechanical Stimulation Improves Muscle-Derived Stem Cell Transplantation for Cardiac Repair." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192941.
Full textHsiao, Amy Y., Teru Okitsu, Hiroaki Onoe, Mahiro Kiyosawa, Hiroki Teramae, Shintaroh Iwanaga, Shigenori Miura, Tomohiko Kazama, Taro Matsumoto, and Shoji Takeuchi. "Self-assembly of cell springs using smooth muscle-like cells differentiated from multipotent cells." In 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2013. http://dx.doi.org/10.1109/memsys.2013.6474179.
Full textTsvankin, Vadim, Dmitry Belchenko, Devon Scott, and Wei Tan. "Anisotropic Strain Effects on Vascular Smooth Muscle Cell Physiology." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176284.
Full textMcKeon-Fischer, K. D., D. H. Flagg, J. H. Rossmeisl, A. R. Whittington, and J. W. Freeman. "Electroactive, Multi-Component Scaffolds for Skeletal Muscle Regeneration." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93197.
Full textReports on the topic "Muscle cells"
Halevy, Orna, Sandra Velleman, and Shlomo Yahav. Early post-hatch thermal stress effects on broiler muscle development and performance. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7597933.bard.
Full textC. Uy, Genevieve, Raymond L. Rosales, and Satish Khadilkar. Myopathies in Clinical Care: A Focus on Treatable Causes. Progress in Neurobiology, February 2024. http://dx.doi.org/10.60124/j.pneuro.2024.10.01.
Full textRobson, Richard M., and Ted W. Huiatt. Properties of Synemin, a Protein Important in Maintaining the Structural Integrity of Muscle Cells. Ames (Iowa): Iowa State University, January 2004. http://dx.doi.org/10.31274/ans_air-180814-956.
Full textFunkenstein, Bruria, and Shaojun (Jim) Du. Interactions Between the GH-IGF axis and Myostatin in Regulating Muscle Growth in Sparus aurata. United States Department of Agriculture, March 2009. http://dx.doi.org/10.32747/2009.7696530.bard.
Full textShani, Moshe, and C. P. Emerson. Genetic Manipulation of the Adipose Tissue via Transgenesis. United States Department of Agriculture, April 1995. http://dx.doi.org/10.32747/1995.7604929.bard.
Full textZhang, Zhibing, Qian Huang, Yonghong Man, Wei Li, Qi Zhou, Shuo Yuan, Yi Tian Yap, et al. Inactivation of Cops5 in smooth muscle cells causes abnormal reproductive hormone homeostasis and development in mice. Peeref, June 2023. http://dx.doi.org/10.54985/peeref.2306p3662949.
Full textTran, Emily, Jasmine J. Park, Nandini N. Kulkarni, and Vinay S. Gundlapalli. Left Facial Primary Leiomyosarcoma Misdiagnosed as Atypical Fibroxanthoma and Immunochemical Markers Relevant to Diagnosis: A Case Report. Science Repository, February 2024. http://dx.doi.org/10.31487/j.ajscr.2023.04.03.
Full textKanatous, Shane B. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada573541.
Full textKanatous, Shane B. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada597966.
Full textKanatous, Shane B. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada617630.
Full text