Academic literature on the topic 'Muscle activation pattern'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Muscle activation pattern.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Muscle activation pattern"

1

Ravari, Reihaneh, and Hamid Reza Kobravi. "Identifying the Dynamics of Leg Muscle Activation During Human Gait Using Neural Oscillator and Fuzzy Compensator." International Clinical Neuroscience Journal 5, no. 3 (September 30, 2018): 106–12. http://dx.doi.org/10.15171/icnj.2018.21.

Full text
Abstract:
Background: The goal of this study is to design a model in order to predict the muscle activation pattern because the muscle activation patterns contain valuable information about the muscle dynamics and movement patterns. Therefore, the goal of the presentation of this neural model is to identify the desired muscle activation patterns by Hopf chaotic oscillator during walking. Since the knee muscles activation has a significant effect on the movement pattern during walking, the main concentration of this study is to identify the knee muscles activation dynamics using a modeling technique. Methods: The electromyography (EMG) recording obtained from 5 healthy subjects that electrodes positioned on the tibialis-anterior (TA) and rectus femoris muscles on every 2 feet. In the proposed model, along with the chaotic oscillator, a fuzzy compensator was designed to face the unmolded dynamics. In fact, on the condition, the observed difference between the desired and actual activation patterns violate some specific quantitative ranges, the fuzzy compensator based on predefined rules modify the activity pattern produced by the Hopf oscillator. Results: Some quantitative measures used to evaluate the results. According to the achieved results, the proposed model could generate the trajectories, dynamics of which are similar to the muscle activation dynamics of the studied muscles. In this model, the generated activity pattern by the proposed model cannot follow the desired activity of the TA muscle as well as rectus femoris muscle. Conclusion: The similarity between the generated activity pattern by the model and the activation dynamics of Rectus- Femoris muscle was more in comparison with the similarity observed between activation pattern of Tibialis- Anterior and the pattern generated by the model. In other words, based on the recorded human data, the activation pattern of the Rectus- Femoris is more similar to a rhythmic pattern.
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Jian-Zhi, Wen-Yu Chiu, Wei-Hsun Tai, Yu-Xiang Hong, and Chung-Yu Chen. "Ankle Muscle Activations during Different Foot-Strike Patterns in Running." Sensors 21, no. 10 (May 14, 2021): 3422. http://dx.doi.org/10.3390/s21103422.

Full text
Abstract:
This study analysed the landing performance and muscle activity of athletes in forefoot strike (FFS) and rearfoot strike (RFS) patterns. Ten male college participants were asked to perform two foot strikes patterns, each at a running speed of 6 km/h. Three inertial sensors and five EMG sensors as well as one 24 G accelerometer were synchronised to acquire joint kinematics parameters as well as muscle activation, respectively. In both the FFS and RFS patterns, according to the intraclass correlation coefficient, excellent reliability was found for landing performance and muscle activation. Paired t tests indicated significantly higher ankle plantar flexion in the FFS pattern. Moreover, biceps femoris (BF) and gastrocnemius medialis (GM) activation increased in the pre-stance phase of the FFS compared with that of RFS. The FFS pattern had significantly decreased tibialis anterior (TA) muscle activity compared with the RFS pattern during the pre-stance phase. The results demonstrated that the ankle strategy focused on controlling the foot strike pattern. The influence of the FFS pattern on muscle activity likely indicates that an athlete can increase both BF and GM muscles activity. Altered landing strategy in cases of FFS pattern may contribute both to the running efficiency and muscle activation of the lower extremity. Therefore, neuromuscular training and education are required to enable activation in dynamic running tasks.
APA, Harvard, Vancouver, ISO, and other styles
3

Wohlert, Amy B., and Lisa Goffman. "Human Perioral Muscle Activation Patterns." Journal of Speech, Language, and Hearing Research 37, no. 5 (October 1994): 1032–40. http://dx.doi.org/10.1044/jshr.3705.1032.

Full text
Abstract:
Task-dependent human motor organization in the perioral region was examined in eight normal adults who performed oral tasks including lip protrusion, chewing, and speech. Zero phase-lag correlations among EMG signals recorded from quadrants surrounding the lips were calculated in order to determine patterns of motor coupling. Results indicated that the perioral musculature is flexible in output organization. Activv in all quadrants was highly positively correlated during the protrusion task. During the chewing task, correlations were moderate, with a stronger pattern bilaterally across the upper and lower lips. The speech tasks showed lower levels of correlation among the quadrants, but again the pattern was more highly correlated bilaterally than ipsilaterally. Results are compared to studies of oral muscle innervation in humans and animals and also are related to hypotheses of cortical control patterns for oral movement.
APA, Harvard, Vancouver, ISO, and other styles
4

Rosati, Samanta, Marco Ghislieri, Gregorio Dotti, Daniele Fortunato, Valentina Agostini, Marco Knaflitz, and Gabriella Balestra. "Evaluation of Muscle Function by Means of a Muscle-Specific and a Global Index." Sensors 21, no. 21 (October 29, 2021): 7186. http://dx.doi.org/10.3390/s21217186.

Full text
Abstract:
Gait analysis applications in clinics are still uncommon, for three main reasons: (1) the considerable time needed to prepare the subject for the examination; (2) the lack of user-independent tools; (3) the large variability of muscle activation patterns observed in healthy and pathological subjects. Numerical indices quantifying the muscle coordination of a subject could enable clinicians to identify patterns that deviate from those of a reference population and to follow the progress of the subject after surgery or completing a rehabilitation program. In this work, we present two user-independent indices. First, a muscle-specific index (MFI) that quantifies the similarity of the activation pattern of a muscle of a specific subject with that of a reference population. Second, a global index (GFI) that provides a score of the overall activation of a muscle set. These two indices were tested on two groups of healthy and pathological children with encouraging results. Hence, the two indices will allow clinicians to assess the muscle activation, identifying muscles showing an abnormal activation pattern, and associate a functional score to every single muscle as well as to the entire muscle set. These opportunities could contribute to facilitating the diffusion of surface EMG analysis in clinics.
APA, Harvard, Vancouver, ISO, and other styles
5

Torres, Gonzalo, David Chorro, Archit Navandar, Javier Rueda, Luís Fernández, and Enrique Navarro. "Assessment of Hamstring: Quadriceps Coactivation without the Use of Maximum Voluntary Isometric Contraction." Applied Sciences 10, no. 5 (February 29, 2020): 1615. http://dx.doi.org/10.3390/app10051615.

Full text
Abstract:
This study aimed to study the coactivation patterns of the hamstring and quadriceps muscle groups during submaximal strength exercises commonly used in injury prevention in soccer without the use of maximum voluntary isometric contraction testing. This was used to compare: (i) the inter-limb differences in muscle activation; (ii) the intra-muscular group activation pattern and (iii) the activation pattern during different phases of the exercise. Muscle activation was recorded by surface electromyography in 19 elite, male, youth soccer players. Participants performed the following: Bulgarian squat, lunge and squat. Electrical activity was recorded for the rectus femoris, vastus medialis, vastus lateralis, biceps femoris and semitendinosus. No significant inter-limb differences were found (F1, 13 = 619; p = 0.82; η2 = 0.045). Significant differences were found in the muscle activation between individual muscles within the quadriceps and hamstrings muscle group for each of the exercises: Bulgarian squat (F1,18 = 331: p < 0.001; η2 = 0.80), lunge (F4,72 = 114.5; p < 0.001; η2 = 0.86) and squat (F1,16 = 247.31; p < 0.001; η2 = 0.93). Differences were found between the different phases of each of the exercises (F2,26 = 52.27; p = 0.02; η2 = 0.80). The existence of an activation pattern of each of the muscles in the three proposed exercises could be used for muscle assessment and as a tool for reconditioning post-injury.
APA, Harvard, Vancouver, ISO, and other styles
6

Silva, Natália Sanches, Pedro Henrique Tavares Queiroz de Almeida, Paulo Vinicius Braga Mendes, Caio Sadao Medeiros Komino, José Marques Novo Jùnior, and Daniel Marinho Cezar Da Cruz. "Electromyographic Activity of the Upper Limb in Three Hand Function Tests." Hong Kong Journal of Occupational Therapy 29, no. 1 (February 16, 2017): 10–18. http://dx.doi.org/10.1016/j.hkjot.2016.11.003.

Full text
Abstract:
Objective/Background Occupational therapists usually assess hand function through standardised tests, however, there is no consensus on how the scores assigned to hand dexterity can accurately measure hand function required for daily activities and few studies evaluate the movement patterns of the upper limbs during hand function tests. This study aimed to evaluate the differences in muscle activation patterns during the performance of three hand dexterity tests. Methods Twenty university students underwent a surface electromyographic (sEMG) assessment of eight upper limb muscles during the performance of the box and blocks test (BEST), nine-hole peg test (9HPT), and functional dexterity test (FDT). The description and comparison of each muscle activity during the test performance, gender differences, and the correlation between individual muscles’ sEMG activity were analysed through appropriate statistics. Results Increased activity of proximal muscles was found during the performance of BEST (p < .001). While a higher activation of the distal muscles occurred during the FDT and 9HPT performance, no differences were found between them. Comparisons of the sEMG activity revealed a significant increase in the muscle activation among women (p = .05). Strong and positive correlations (r > .5; p < .05) were observed between proximal and distal sEMG activities, suggesting a coordinate pattern of muscle activation during hand function tests. Conclusion The results suggested the existence of differences in the muscle activation pattern during the performance of hand function evaluations. Occupational therapists should be aware of unique muscle requirements and its impact on the results of dexterity tests during hand function evaluation.
APA, Harvard, Vancouver, ISO, and other styles
7

Torres, Gonzalo, Estrella Armada-Cortés, Javier Rueda, Alejandro F. San Juan, and Enrique Navarro. "Comparison of Hamstrings and Quadriceps Muscle Activation in Male and Female Professional Soccer Players." Applied Sciences 11, no. 2 (January 14, 2021): 738. http://dx.doi.org/10.3390/app11020738.

Full text
Abstract:
(1) Background: this study aimed to determine if there are differences in quadriceps and hamstring muscle activation in professional male and female soccer players. (2) Methods: muscle activation was recorded by surface electromyography in 27 professional soccer players (19 male and 8 female). The players performed the Bulgarian squat and lunge exercises. Vastus medialis, vastus lateralis, rectus femoris, semitendinosus, and biceps femoris were the muscles analyzed. (3) Results: The statistical analysis of the hamstring:quadriceps ratio showed no significant differences (p > 0.05). Significant differences were found in the vastus medialis:vastus lateralis ratio for both the lunge exercise (t20 = 3.35; p = 0.001; d = 1.42) and the Bulgarian squat (t23 = 4.15; p < 0.001; d = 1.76). For the intragroup muscular pattern in the lunge and Bulgarian squat exercises, the female players showed higher activation for the vastus lateralis muscle (p < 0.001) than the male players and lower muscle activation in the vastus medialis. No significant differences were found in the rectus femoris, biceps remoris, and semitendinosus muscles (p > 0.05). (4) Conclusions: Differences were found in the medial ratio (vastus medialis: vastus lateralis). Moreover, regarding the intramuscular pattern, very consistent patterns have been found. In the quadriceps muscle: VM>VL>RF; in the hamstring muscle: ST>BF. These patterns could be very useful in the recovery process from an injury to return players to their highest performance.
APA, Harvard, Vancouver, ISO, and other styles
8

Vidhya, L., S. Saranya, and S. Poonguzhali. "Analysis of Lower Extremity Muscle Activation Using EMG." Applied Mechanics and Materials 573 (June 2014): 797–802. http://dx.doi.org/10.4028/www.scientific.net/amm.573.797.

Full text
Abstract:
Electromyography (EMG) has been widely used as a tool to understand and distinguish between normal and pathological gait. This study aims at understanding the activation patterns of lower limb muscles viz. Gastrocnemius and Tibialis Anterior in the dominant leg of subjects with normal (n=5) as well as pathological (n=2) gait patterns. The paper presents a normative pattern of these muscles during normal walking condition from which the deviation of affected group from the control group is observed. For this analysis, Surface EMG signals along with Force Sensitive Resistor values are acquired. These surface EMG signals picked up during the muscle activity are interfaced with a PC via EMG acquisition system. The acquired signals were processed and analyzed which can be used for rehabilitative therapy planning.
APA, Harvard, Vancouver, ISO, and other styles
9

Dai, Chenyun, and Xiaogang Hu. "Extracting and Classifying Spatial Muscle Activation Patterns in Forearm Flexor Muscles Using High-Density Electromyogram Recordings." International Journal of Neural Systems 29, no. 01 (January 10, 2019): 1850025. http://dx.doi.org/10.1142/s0129065718500259.

Full text
Abstract:
The human hand is capable of producing versatile yet precise movements largely owing to the complex neuromuscular systems that control our finger movement. This study seeks to quantify the spatial activation patterns of the forearm flexor muscles during individualized finger flexions. High-density (HD) surface electromyogram (sEMG) signals of forearm flexor muscles were obtained, and individual motor units were decomposed from the sEMG. Both macro-level spatial patterns of EMG activity and micro-level motor unit distributions were used to systematically characterize the forearm flexor activation patterns. Different features capturing the spatial patterns were extracted, and the unique patterns of forearm flexor activation were then quantified using pattern recognition approaches. We found that the forearm flexor spatial activation during the ring finger flexion was mostly distinct from other fingers, whereas the activation patterns of the middle finger were least distinguishable. However, all the different activation patterns can still be classified in high accuracy (94–100%) using pattern recognition. Our findings indicate that the partial overlapping of neural activation can limit accurate identification of specific finger movement based on limited recordings and sEMG features, and that HD sEMG recordings capturing detailed spatial activation patterns at both macro- and micro-levels are needed.
APA, Harvard, Vancouver, ISO, and other styles
10

Roh, Jinsook, William Z. Rymer, Eric J. Perreault, Seng Bum Yoo, and Randall F. Beer. "Alterations in upper limb muscle synergy structure in chronic stroke survivors." Journal of Neurophysiology 109, no. 3 (February 1, 2013): 768–81. http://dx.doi.org/10.1152/jn.00670.2012.

Full text
Abstract:
Previous studies in neurologically intact subjects have shown that motor coordination can be described by task-dependent combinations of a few muscle synergies, defined here as a fixed pattern of activation across a set of muscles. Arm function in severely impaired stroke survivors is characterized by stereotypical postural and movement patterns involving the shoulder and elbow. Accordingly, we hypothesized that muscle synergy composition is altered in severely impaired stroke survivors. Using an isometric force matching protocol, we examined the spatial activation patterns of elbow and shoulder muscles in the affected arm of 10 stroke survivors (Fugl-Meyer <25/66) and in both arms of six age-matched controls. Underlying muscle synergies were identified using non-negative matrix factorization. In both groups, muscle activation patterns could be reconstructed by combinations of a few muscle synergies (typically 4). We did not find abnormal coupling of shoulder and elbow muscles within individual muscle synergies. In stroke survivors, as in controls, two of the synergies were comprised of isolated activation of the elbow flexors and extensors. However, muscle synergies involving proximal muscles exhibited consistent alterations following stroke. Unlike controls, the anterior deltoid was coactivated with medial and posterior deltoids within the shoulder abductor/extensor synergy and the shoulder adductor/flexor synergy in stroke was dominated by activation of pectoralis major, with limited anterior deltoid activation. Recruitment of the altered shoulder muscle synergies was strongly associated with abnormal task performance. Overall, our results suggest that an impaired control of the individual deltoid heads may contribute to poststroke deficits in arm function.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Muscle activation pattern"

1

Doede, Aubrey L. "Electromyographic Analysis of Trunk Muscle Activation During a Throwing Pattern Following Rotator Cuff Mobilization." Scholarship @ Claremont, 2010. http://scholarship.claremont.edu/cmc_theses/90.

Full text
Abstract:
Correct muscular activation of the body segments during an overhand throw is achieved when movement originates in the larger and more proximal legs and trunk and moves sequentially to the smaller, distal segments of the shoulder and arm. This sequence permits angular velocity to transfer progressively through the throw as part of an open kinetic chain. The athlete can summate angular velocity and segmental forces only if he is able to create a separation between the body segments during the movement pattern, and this separation is thus essential to effective segmental sequencing for activation of the trunk muscles to occur separately from distal segment motion. Limited mobility of the shoulder and scapula during the kinematic sequence will limit the ability of that segment to receive and contribute to the angular velocity of its proximal neighbors and to apply its own muscle torque to the throwing implement. This may result in compensatory motion of the proximal muscle groups to meet the demands placed on the body. To establish a link between compensatory activation of the trunk muscles and mobility in the rotator cuff and to apply this relationship to the pattern of the overhand throw, activity in the latissimus dorsi and external oblique/quadratus lumborum muscles was measured using surface electromyography in 40 college-age participants during arm flexion and lateral shoulder rotation. Muscle activation was recorded both before and after mobilization of relevant throwing muscles through targeted functional exercise. Results showed no significant change but suggested a general decrease in the level of peak muscle activation after participants engaged shoulder exercises. This is indicative of a downward trend in compensatory trunk activation during the initiation of shoulder motion. An increase in overall trunk muscle activity was also observed after exercise, which may imply a simultaneous engagement of the proximal throwing muscles in response to shoulder motion.
APA, Harvard, Vancouver, ISO, and other styles
2

Fung, Joyce. "The muscle activation and reflex modulation pattern during locomotion in normal and spastic paretic subjects." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39327.

Full text
Abstract:
The lower limb electromyographic (EMG) patterns of 5 normal and 8 spastic paretic subjects during walking were compared. A dynamic EMG profile index, proposed to quantify spastic locomotor dysfunction, was found to be homogeneously low in normal subjects and abnormally high in spastic subjects. In another study, the normally phase-dependent modulation of the soleus H-reflex during walking was found to be decreased or absent in 21 spastic paretic subjects, suggesting the possibility of defective reflex gating mechanisms. The conditioning effects of plantar cutaneomuscular stimulation were further examined in 10 normal and 10 spastic paretic subjects. The conditioned H-reflex was inhibited in a task and phase-dependent manner, such that the effects were most marked during early stance and swing, restoring a near normal modulation pattern during walking in the severely spastic subjects who showed no modulation previously. The possible underlying mechanisms and implications for rehabilitation are discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Lucas, Karen Rae, and karen lucas@rmit edu au. "The Effects of Latent Myofascial Trigger Points on Muscle Activation Patterns During Scapular Plane Elevation." RMIT University. Health Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080408.144402.

Full text
Abstract:
Despite a paucity of experimental evidence, clinical opinion remains that though LTrPs allow pain-free movement, they are primarily associated with deleterious motor effects and occur commonly in 'healthy' muscles. The primary aim of this study was to investigate the effects of LTrPs on the muscle activation patterns (MAPs) of key shoulder girdle muscles during scapular plane elevation of the arm in the unloaded, loaded and fatigued states. In connection with the main aim, a preliminary study was carried out to examine the frequency with which LTrPs occur in the scapular positioning muscles in a group of normal subjects. After establishing intra-examiner reliability for the clinical examination process, 154 healthy subjects volunteered to be screened for normal shoulder girdle function, then undergo a physical examination for LTrPs in the trapezius, rhomboids, levator scapulae, serratus anterior and the pectoralis minor muscles bilaterally. Of these 'healthy' subjects, 89.8% had at least one LTrP in the scapular positioning muscles (mean=10.65 ± 6.8, range=1-27), with serratus anterior and upper trapezius harbouring the most LTrPs on average (2.46 ± 1.8 and 2.36 ± 1.3 respectively). Consistent with clinical opinion, this study found that LTrPs occur commonly in the scapular positioning muscles. To investigate the motor effects of LTrPs, surface electromyography (sEMG) was used to measure the timing of muscle activation of the upper and lower trapezius and serratus anterior (upward scapular rotators), the infraspinatus (rotator cuff) and middle deltoid (arm abductor). These studies found that LTrPs housed in the scapular upward rotator muscles affected the timing of activation and increased the variability of the activation times of this muscle group and were also associated with altered timing of activation in the functionally related but LTrP-free infraspinatus and middle deltoid. Compared with the control group (all muscles LTrP-free), the MAPs of the LTrP group appeared to be sub-optimal, particularly in relation to preserving the subacromial space and the loading of the rotator cuff muscles. After the initial sEMG evaluations, the LTrP subjects were randomly assigned to one of two interventions: superficial dry needling (SDN) followed by post-isometric relaxation (PIR) stretching to remove LTrP s or sham ultrasound, to act as a placebo treatment where LTrPs remained. Where LTrPs were removed, a subsequent sEMG evaluation found MAPs to be similar to the control group in most of the experimental conditions investigated. Of particular note, when LTrPs had been treated and the subjects repeated the fatiguing protocol, the resultant MAP showed no significant difference with that of the control group in the rested state, suggesting treating LTrPs was associated with an improved response to fatigue induced by repetitive overhead movements. In conclusion, the findings indicate that LTrPs commonly occur in scapular positioning muscles and have deleterious effects on MAPs employed to perform scapular plane elevation and thus affect motor control mechanisms. Treating LTrPs with SDN and PIR stretching increases pressure-pain thresholds, removes associated taut bands and at least transiently optimises the MAP during scapular plane elevation. Discussion includes possible neuromuscular pathophysiology that might explain these results.
APA, Harvard, Vancouver, ISO, and other styles
4

Davenport, Mary Jo. "The Effect of Sternocleidomastoid Muscle Activation Pattern and Feedback Condition on the Vestibular Evoked Myogenic Potential." Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etd/1776.

Full text
Abstract:
The vestibular evoked myogenic potential (VEMP) has been shown to be clinically useful in providing diagnostic information regarding the function of the otolith receptors, inferior vestibular nerve, and vestibulospinal pathways. The VEMP is a biphasic response elicited by loud clicks or tone bursts and recorded from the tonically contracted sternocleidomastoid (SCM) muscle. Because the VEMP is an inhibitory response, it is important to investigate stimulus and parameter characteristics in order to determine the optimal test protocol and maximize clinical usefulness. The aims of this study were 1) to evaluate the effects of 4 different methods of SCM muscle activation and the effect of visual biofeedback on VEMP latency, amplitude, asymmetry ratio, mean rectified EMG level, and difficulty ratings, and 2) to determine the influence of SCM muscle activation pattern and visual biofeedback level on test-retest reliability. Forty-eight healthy volunteers between the ages of 18 and 50 underwent VEMP testing using each of the following muscle activation patterns: supine with the head raised (SE), supine with the head turned away from the test ear (SR), supine with the head raised and turned away from the test ear (SER), and sitting with the head turned away from the test ear (SitR). Testing subjects with the SER method yielded the most robust amplitude response and sternocleidomastoid EMG activity. No statistically significant differences were found in interaural asymmetry ratios among the 4 methods of SCM activation. Subjects rated the SE and SER methods as more difficult than the SE and SitR methods at each of the 3 target levels. Test-retest reliability was high for P1/N1 amplitude and mean rectified EMG levels when subjects were provided visual biofeedback to monitor the level of tonic SCM muscle activity. The study demonstrates the importance of providing patients a means of monitoring and maintaining the amplitude of the rectified EMG at a constant target level during SCM muscle activation. Although no evidence to reject or strongly favor a specific method was found, monaural-ipsilateral recording with the SitR method was found to be advantageous for individuals with weakness or decreased endurance for sustained muscle contraction.
APA, Harvard, Vancouver, ISO, and other styles
5

BURNS, Jack, and jack burns@ecu edu au. "Does training with PowerCranks(tm) affect economy of motion, cycling efficiency, oxygen uptake and muscle activation patterns in trained cyclists?" Edith Cowan University. Computing, Health And Science: School Of Exercise, Biomedical & Health Science, 2008. http://adt.ecu.edu.au/adt-public/adt-ECU2008.0017.html.

Full text
Abstract:
PowerCranks(tm) are claimed to increase economy of motion and cycling efficiency by reducing the muscular recruitment patterns that contribute to the resistive forces occurring during the recovery phase of the pedal stroke. However, scientific research examining the efficacy of training with PowerCranks(tm) is lacking. Therefore, the purpose of this study was to determine if five weeks of training with PowerCranks(tm) improves economy of motion (EOM), gross efficiency (GE), oxygen uptake (V.O2) and muscle activation patterns in trained cyclists. Sixteen trained cyclists were matched and paired into either a PowerCranks(tm) (PC) or Normal Cranks (NC) training group. Prior to training, all subjects completed a graded exercise test (GXT) using normal bicycle cranks. Additionally, on a separate day the PC group performed a modified GXT using PowerCranks? and cycled only until the end of the 200W stage (PCT). During the GXT and PCT, FeO2, FeCO2 and V.E were measured to determine EOM, GE and V.O2max. Integrated electromyography (iEMG) was also used to examine selected muscular activation patterns. Subjects then repeated the tests following the completion of training on their assigned cranks.
APA, Harvard, Vancouver, ISO, and other styles
6

Burns, Jack. "Does training with PowerCranks™ affect economy of motion, cycling efficiency, oxygen uptake and muscle activation patterns in trained cyclists?" Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2008. https://ro.ecu.edu.au/theses/17.

Full text
Abstract:
PowerCranks™ are claimed to increase economy of motion and cycling efficiency by reducing the muscular recruitment patterns that contribute to the resistive forces occurring during the recovery phase of the pedal stroke. However, scientific research examining the efficacy of training with PowerCranks™ is lacking. Therefore, the purpose of this study was to determine if five weeks of training with PowerCranks™ improves economy of motion (EOM), gross efficiency (GE), oxygen uptake (V.O2) and muscle activation patterns in trained cyclists. Sixteen trained cyclists were matched and paired into either a PowerCranks™ (PC) or Normal Cranks (NC) training group. Prior to training, all subjects completed a graded exercise test (GXT) using normal bicycle cranks. Additionally, on a separate day the PC group performed a modified GXT using PowerCranks™ and cycled only until the end of the 200W stage (PCT). During the GXT and PCT, FeO2, FeCO2 and V.E were measured to determine EOM, GE and V.O2max. Integrated electromyography (iEMG) was also used to examine selected muscular activation patterns. Subjects then repeated the tests following the completion of training on their assigned cranks.
APA, Harvard, Vancouver, ISO, and other styles
7

Harischandra, Nalin. "Computer Simulation of the Neural Control of Locomotion in the Cat." Licentiate thesis, Stockholm : Numerisk analys och datalogi, Numerical Analysis and Computer Science, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hovorka, Christopher Francis. "Influencing motor behavior through constraint of lower limb movement." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54903.

Full text
Abstract:
Limited knowledge of the neuromechanical response to use of an ankle foot orthosis-footwear combination (AFO-FC) has created a lack of consensus in understanding orthotic motion control as a therapeutic treatment. Lack of consensus may hinder the clinician’s ability to target the motion control needs of persons with movement impairment (e.g., peripheral nerve injury, stroke, etc.). Some evidence suggests a proportional relationship between joint motion and neuromuscular activity based on the notion that use of lower limb orthoses that constrain joint motion may invoke motor slacking and decreasing levels of muscle activity. Use of AFO-FCs likely alters the biomechanical and neuromuscular output as the central control system gradually forms new movement patterns. If there is proportional relationship between muscle activation and joint motion, then it could be examined by quantifying joint motion and subsequent neuromuscular output. Considering principles of neuromechanical adjustment, my general hypothesis examines whether orthotic control of lower limb motion alters neuromuscular output in proportion to the biomechanical output as a representation of the limb’s dynamics are updated by the neural control system. The rationale for this approach is that reference knowledge of the neuromechanical response is needed to inform clinicians about how a person responds to walking with motion controlling devices such as ankle foot orthoses combined with footwear. In the first line of research, I hypothesize that a newly developed AFO which maximizes leverage and stiffness will constrain the talocrural joint and alter joint kinematics and ground reaction force patterns. To answer the hypothesis, I sampled kinematics and kinetics of healthy subjects’ treadmill walking using an AFO-FC in a STOP condition and confirmed that the AFO substantially limited the range of talocrural plantarflexion and dorsiflexion motion to 3.7° and in a FREE condition maintained talocrural motion to 24.2° compared to 27.7° in a CONTROL (no AFO) condition. A follow up controlled static loading study sampled kinematics of matched healthy subjects limbs and cadaveric limbs in the AFO STOP and FREE conditions. Findings revealed healthy and cadaveric limbs in the AFO STOP condition substantially limited their limb segment motion similar to matched healthy subjects walking in the STOP condition and in the AFO FREE condition healthy and cadaveric limbs maintained similar limb segment motion to matched healthy subjects walking in the FREE condition. In a second line of research, I hypothesize that flexibility of a newly developed footwear system will allow normal walking kinetics due to the shape and flexibility of the footwear. To answer the hypothesis, I utilized a curved-flexible footwear system integrated with an AFO in a STOP condition and sampled kinematics and kinetics of healthy subjects during treadmill walking. Results revealed subjects elicited similar cadence, stance and swing duration and effective leg-ankle-foot roll over radius compared to walking in the curved-flexible footwear integrated with the AFO in a FREE condition and a CONTROL (no AFO) condition. To validate rollover dynamics of the curved-flexible footwear system, a follow up study of healthy subjects’ treadmill walking in newly developed flat-rigid footwear system integrated with the AFO in a STOP condition revealed interrupted leg-ankle-foot rollover compared to walking in curved-flexible footwear in STOP, FREE and CONTROL conditions. In a third line of research, I hypothesize that use of an AFO that limits talocrural motion in a STOP condition will proportionally reduce activation of Tibialis Anterior, Soleus, Medial and Lateral Gastrocnemii muscles compared to a FREE and CONTROL condition due to alterations in length dependent representation of the limb’s dynamics undergoing updates to the central control system that modify the pattern of motor output. To answer the question, the same subjects and AFO-footwear presented in the first two lines of research were used in a treadmill walking protocol in STOP, FREE, and CONTROL conditions. Findings revealed the same subjects and ipsilateral AFO-footwear system presented in Aim 1 exhibited an immediate yet moderate 30% decline in EMG activity of ipsilateral Soleus (SOL), Medial Gastrocnemius (MG) and Lateral Gastrocnemius (LG) muscles in the STOP condition compared to the CONTROL condition. The reduction in EMG activity in ipsilateral SOL, MG and LG muscles continued to gradually decline during 15 minutes of treadmill walking. On the contralateral leg, there was an immediate yet small increase of 1% to 14% in EMG activity in SOL, MG, LG muscles above baseline. After 10 minutes of walking, the EMG activity in contralateral SOL, MG and LG declined to a baseline level similar to the EMG activity in the contralateral CONTROL condition. These collective findings provide compelling evidence that the moderate 30% reduction in muscle activation exhibited by subjects as they experience substantial (85%) constraint of total talocrural motion in the AFO STOP condition is not proportionally equivalent. Further, the immediate decrease in muscle activation may be due to a reactive feedback mechanism whereas the continued decline may in part be explained by a feedforward mechanism. The clinical relevance of these findings suggests that short term use of orthotic constraint of talocrural motion in healthy subjects does not substantially reduce muscle activation. These preliminary findings could be used to inform the development of orthoses and footwear as therapeutic motion control treatments in the development of motor rehabilitation protocols.
APA, Harvard, Vancouver, ISO, and other styles
9

Kyle, Natasha Flemming. "Muscle activation patterns during gait initiation." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27147.

Full text
Abstract:
Gait initiation is a temporary movement between upright posture and steady-state gait. The activation of several postural muscles has been identified to precede changes observed in vertical reaction force. Previous research examining gait initiation has concentrated on the electromyographic activity of muscles of the lower limbs. Few studies, however, have looked at recruitment patterns of the muscles of the thigh and trunk. This study was conducted to determine the recruitment patterns and the roles of certain muscles of the trail and lead lower limbs and trunk for the duration from quiet stance to trail leg toe-off. Eleven healthy participants initiated gait with their right leg. Electromyographic data were collected bilaterally from the erector spinae, tensor fasciae latae, adductor magnus and tibialis anterior muscles. In addition, force platform data were recorded for the duration of quiet stance to toe-off of the trail limb. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
10

Gabriel, David Abraham. "Muscle activation patterns for goal-directed multijoint arm movements." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=28748.

Full text
Abstract:
The purpose of this dissertation was to determine if the CNS produces relatively simple alterations in muscle activity to accomplish goal-directed reaching motions of the upper limb under a variety of movement conditions.
To this end, six subjects performed goal-directed arm movements in the horizontal plane. Two movement amplitudes (300 mm and 400 mm) were completed at a moderate speed (1050 mm/s) and as-fast-as possible. The speed and amplitude conditions were repeated for the 45$ sp circ$ and 90$ sp circ$ movement directions. Finally, each of the movement conditions mentioned thus far, were performed within the right and left sections of the work-space. Surface electro-myographic activity was recorded from the pectoralis major, posterior deltoid, biceps brachii short head, brachioradialis, triceps brachii long head, and triceps brachii lateral head. Motion recordings were obtained with a spatial imaging system that monitored the positions of infrared emitting diodes attached to the subject's upper arm and forearm-hand complex.
Several simplification schemes were found to be operative at the level of the electro-myogram. These include: (a) simple timing relationships for agonists between joints and agonist/antagonist intermuscle latencies within each joint; (b) tightly coupled timing between agonists within a single joint; (c) for a particular movement direction, the form and shape of EMG burst activity followed a strategy associated with modulation of pulse height and width; (d) the slope, duration, and onset were further affected by the direction of hand movement which resulted in the greatest RMS-EMG signal amplitude, changing in a predictable manner, and finally (e) there was tuning in which elbow muscles were activated earlier for goal-directed arm movements in the left area of the work-space.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Muscle activation pattern"

1

Badimon, Lina, and Gemma Vilahur. Atherosclerosis and thrombosis. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199687039.003.0040.

Full text
Abstract:
Atherosclerosis is the main underlying cause of heart disease. The continuous exposure to cardiovascular risk factors induces endothelial activation/dysfunction which enhances the permeability of the endothelial layer and the expression of cytokines/chemokines and adhesion molecules. This results in the accumulation of lipids (low-density lipoprotein particles) in the extracellular matrix and the triggering of an inflammatory response. Accumulated low-density lipoprotein particles suffer modifications and become pro-atherogenic, enhancing leucocyte recruitment and further transmigration across the endothelium into the intima. Infiltrated monocytes differentiate into macrophages which acquire a specialized phenotypic polarization (protective or harmful), depending on the stage of the atherosclerosis progression. Once differentiated, macrophages upregulate pattern recognition receptors capable of engulfing modified low-density lipoprotein, leading to foam cell formation. Foam cells release growth factors and cytokines that promote vascular smooth muscle cell migration into the intima, which then internalize low-density lipoprotein via low-density lipoprotein receptor-related protein-1 receptors. As the plaque evolves, the number of vascular smooth muscle cells decline, whereas the presence of fragile/haemorrhagic neovessels increases, promoting plaque destabilization. Disruption of this atherosclerotic lesion exposes thrombogenic surfaces that initiate platelet adhesion, activation, and aggregation, as well as thrombin generation. Both lipid-laden vascular smooth muscle cells and macrophages release the procoagulant tissue factor, contributing to thrombus propagation. Platelets also participate in progenitor cell recruitment and drive the inflammatory response mediating the atherosclerosis progression. Recent data attribute to microparticles a potential modulatory effect in the overall atherothrombotic process. This chapter reviews our current understanding of the pathophysiological mechanisms involved in atherogenesis, highlights platelet contribution to thrombosis and atherosclerosis progression, and provides new insights into how atherothrombosis may be modulated.
APA, Harvard, Vancouver, ISO, and other styles
2

Badimon, Lina, and Gemma Vilahur. Atherosclerosis and thrombosis. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199687039.003.0040_update_001.

Full text
Abstract:
Atherosclerosis is the main underlying cause of heart disease. The continuous exposure to cardiovascular risk factors induces endothelial activation/dysfunction which enhances the permeability of the endothelial layer and the expression of cytokines/chemokines and adhesion molecules. This results in the accumulation of lipids (low-density lipoprotein particles) in the intimal layer and the triggering of an inflammatory response. Accumulated low-density lipoprotein particles attached to the extracellular matrix suffer modifications and become pro-atherogenic, enhancing leucocyte recruitment and further transmigration across the endothelium into the intima. Infiltrated pro-atherogenic monocytes (mainly Mon2) differentiate into macrophages which acquire a specialized phenotypic polarization (protective/M1 or harmful/M2), depending on the stage of the atherosclerosis progression. Once differentiated, macrophages upregulate pattern recognition receptors capable of engulfing modified low-density lipoprotein, leading to foam cell formation. Foam cells release growth factors and cytokines that promote vascular smooth muscle cell migration into the intima, which then internalize low-density lipoproteins via low-density lipoprotein receptor-related protein-1 receptors becoming foam cells. As the plaque evolves, the number of vascular smooth muscle cells decline, whereas the presence of fragile/haemorrhagic neovessels and calcium deposits increases, promoting plaque destabilization. Disruption of this atherosclerotic lesion exposes thrombogenic surfaces rich in tissue factor that initiate platelet adhesion, activation, and aggregation, as well as thrombin generation. Platelets also participate in leucocyte and progenitor cell recruitment are likely to mediate atherosclerosis progression. Recent data attribute to microparticles a modulatory effect in the overall atherothrombotic process and evidence their potential use as systemic biomarkers of thrombus growth. This chapter reviews our current understanding of the pathophysiological mechanisms involved in atherogenesis, highlights platelet contribution to thrombosis and atherosclerosis progression, and provides new insights into how atherothrombosis may be prevented and modulated.
APA, Harvard, Vancouver, ISO, and other styles
3

Badimon, Lina, and Gemma Vilahur. Atherosclerosis and thrombosis. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199687039.003.0040_update_002.

Full text
Abstract:
Atherosclerosis is the main underlying cause of heart disease. The continuous exposure to cardiovascular risk factors induces endothelial activation/dysfunction which enhances the permeability of the endothelial layer and the expression of cytokines/chemokines and adhesion molecules. This results in the accumulation of lipids (low-density lipoprotein particles) in the intimal layer and the triggering of an inflammatory response. Accumulated low-density lipoprotein particles attached to the extracellular matrix suffer modifications and become pro-atherogenic, enhancing leucocyte recruitment and further transmigration across the endothelium into the intima. Infiltrated pro-atherogenic monocytes (mainly Mon2) differentiate into macrophages which acquire a specialized phenotypic polarization (protective/M1 or harmful/M2), depending on the stage of the atherosclerosis progression. Once differentiated, macrophages upregulate pattern recognition receptors capable of engulfing modified low-density lipoprotein, leading to foam cell formation. Foam cells release growth factors and cytokines that promote vascular smooth muscle cell migration into the intima, which then internalize low-density lipoproteins via low-density lipoprotein receptor-related protein-1 receptors becoming foam cells. As the plaque evolves, the number of vascular smooth muscle cells decline, whereas the presence of fragile/haemorrhagic neovessels and calcium deposits increases, promoting plaque destabilization. Disruption of this atherosclerotic lesion exposes thrombogenic surfaces rich in tissue factor that initiate platelet adhesion, activation, and aggregation, as well as thrombin generation. Platelets also participate in leucocyte and progenitor cell recruitment are likely to mediate atherosclerosis progression. Recent data attribute to microparticles a modulatory effect in the overall atherothrombotic process and evidence their potential use as systemic biomarkers of thrombus growth. This chapter reviews our current understanding of the pathophysiological mechanisms involved in atherogenesis, highlights platelet contribution to thrombosis and atherosclerosis progression, and provides new insights into how atherothrombosis may be prevented and modulated.
APA, Harvard, Vancouver, ISO, and other styles
4

Buckley, Bernadette Drew. Comparison of muscle activation pattens in boys and girls during a simple landing task. 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dutto, Darren John. Leg spring model related to muscle activation, force, and kinematic patterns during endurance running to voluntary exhaustion. 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Muscle activation pattern"

1

Sulaiman, Maisarah, Aizreena Azaman, and Azli Yahya. "Influence of Individual Physical Activity on EMG Muscle Activation Pattern." In Enhancing Health and Sports Performance by Design, 215–22. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3270-2_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keshner, Emily A., and John H. J. Allum. "Muscle Activation Patterns Coordinating Postural Stability from Head to Foot." In Multiple Muscle Systems, 481–97. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4613-9030-5_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kunju, Nissan, George Tharion, Suresh R. Devasahayam, and M. Manivannan. "Muscle Activation Pattern and Weight Bearing of Limbs during Wheelchair Transfers in Healthy Individuals– A Step towards Lower Limb FES Assisted Transfer for Paraplegics." In Converging Clinical and Engineering Research on Neurorehabilitation, 197–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34546-3_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

D’Angelo, E. "Patterns of inspiratory muscle activation with changing levels of ventilatory demand." In Respiratory Muscles in Chronic Obstructive Pulmonary Disease, 41–48. London: Springer London, 1988. http://dx.doi.org/10.1007/978-1-4471-3850-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lung, Chi-Wen, Tse-Yu Cheng, Yih-Kuen Jan, Hsin-Chieh Chen, and Ben-Yi Liau. "Electromyographic Assessments of Muscle Activation Patterns During Driving a Power Wheelchair." In Advances in Intelligent Systems and Computing, 705–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41694-6_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mörchen, Fabian, Alfred Ultsch, and Olaf Hoos. "Discovering Interpretable Muscle Activation Patterns with the Temporal Data Mining Method." In Lecture Notes in Computer Science, 512–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30116-5_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Higashihara, Ayako, Takashi Ono, and Toru Fukubayashi. "Differences in Activation Patterns of the Hamstring Muscles During Sprinting." In Sports Injuries and Prevention, 299–309. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55318-2_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ueyama, Yuki. "A Model of Motor Impairment After Stroke for Predicting Muscle Activation Patterns." In Neural Information Processing, 432–39. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26535-3_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lung, Chi-Wen, Chien-Liang Chen, Yih-Kuen Jan, Li-Feng Chao, Wen-Feng Chen, and Ben-Yi Liau. "Activation Sequence Patterns of Forearm Muscles for Driving a Power Wheelchair." In Advances in Intelligent Systems and Computing, 141–47. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60822-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cardarelli, Stefano, Andrea Gentili, Alessandro Mengarelli, Federica Verdini, Sandro Fioretti, Laura Burattini, and Francesco Di Nardo. "Ankle Muscles Co-Activation Patterns During Normal Gait: An Amplitude Evaluation." In EMBEC & NBC 2017, 426–29. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5122-7_107.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Muscle activation pattern"

1

Ueda, Jun, Moiz Hyderabadwala, Ming Ding, Tsukasa Ogasawara, Vijaya Krishnamoorthy, and Minoru Shinohara. "Individual Muscle Control Using an Exoskeleton Robot for Muscle Function Testing." In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2675.

Full text
Abstract:
A functionality test at the level of individual muscles by investigating the activity of a muscle of interest on various tasks may enable muscle-level force grading. This paper proposes a new method for muscle function tests using an exoskeleton robot for obtaining a wider variety of muscle activity data than standard motor tasks, e.g., pushing a handle by his/her hand. A computational algorithm systematically computes control commands to a wearable robot with actuators (an exoskeleton robot, or a power-assisting device) so that a desired muscle activation pattern for target muscle forces is induced. This individual muscle control method enables users (e.g., therapists) to efficiently conduct neuromuscular function tests for target muscles by arbitrarily inducing muscle activation patterns. Simulation results justify the use of an exoskeleton robot for muscle function testing in terms of the variety of muscle activity data.
APA, Harvard, Vancouver, ISO, and other styles
2

Sommacal, Laurent, Pierre Melchior, Jean-Marie Cabelguen, Alain Oustaloup, and Auke Jan Ijspeert. "Fractional Model of a Gastrocnemius Muscle for Tetanus Pattern." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84864.

Full text
Abstract:
This study talks about gastrocnemius muscle identification. During biological activation, every contractile structure is unsynchronized. Likewise, contraction and relaxation phases depend on all contractile elements, the activation type and the state of health. Moreover, gastrocnemius muscle is composed of three fibre types: Fast Fatigable (FF), Fast Resistant (FR) and Slow (S) fibres. Some recent works highlight a fractal structure of the muscle, which consolidate the approach based on the use of a non integer (or fractal) model to characterize its dynamic behavior. A fractional structure model, due to its infinite dimension nature, is particularly adapted to model complex systems with few parameters and to obtain a real time exploitable model. According to its complexity, muscle structure and activation mechanisms, and to these previous considerations, an identification based on fractional model is presented. A model is proposed for the tetanus pattern response in a high tiredness state. It is based on a multi-model structure, which corresponds to the decomposition in contraction and relaxation phases. This multi-model structure is expected to be included subsequently in agonist-antagonist structure.
APA, Harvard, Vancouver, ISO, and other styles
3

Koeppen, Ryan, Meghan E. Huber, Dagmar Sternad, and Neville Hogan. "Controlling Physical Interactions: Humans Do Not Minimize Muscle Effort." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5202.

Full text
Abstract:
Physical interaction with tools is ubiquitous in functional activities of daily living. While tool use is considered a hallmark of human behavior, how humans control such physical interactions is still poorly understood. When humans perform a motor task, it is commonly suggested that the central nervous system coordinates the musculo-skeletal system to minimize muscle effort. In this paper, we tested if this notion holds true for motor tasks that involve physical interaction. Specifically, we investigated whether humans minimize muscle forces to control physical interaction with a circular kinematic constraint. Using a simplified arm model, we derived three predictions for how humans should behave if they were minimizing muscular effort to perform the task. First, we predicted that subjects would exert workless, radial forces on the constraint. Second, we predicted that the muscles would be deactivated when they could not contribute to work. Third, we predicted that when moving very slowly along the constraint, the pattern of muscle activity would not differ between clockwise (CW) and counterclockwise (CCW) motions. To test these predictions, we instructed human subjects to move a robot handle around a virtual, circular constraint at a constant tangential velocity. To reduce the effect of forces that might arise from incomplete compensation of neuro-musculo-skeletal dynamics, the target tangential speed was set to an extremely slow pace (∼1 revolution every 13.3 seconds). Ultimately, the results of human experiment did not support the predictions derived from our model of minimizing muscular effort. While subjects did exert workless forces, they did not deactivate muscles as predicted. Furthermore, muscle activation patterns differed between CW and CCW motions about the constraint. These findings demonstrate that minimizing muscle effort is not a significant factor in human performance of this constrained-motion task. Instead, the central nervous system likely prioritizes reducing other costs, such as computational effort, over muscle effort to control physical interactions.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Ping, and K. H. Low. "Qualitative evaluations of gait rehabilitation via EMG muscle activation pattern: Repetition, symmetry, and smoothness." In 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2009. http://dx.doi.org/10.1109/robio.2009.5420625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thangavel, Pavithra, S. Vidhya, Junhua Li, Effie Chew, Anastasios Bezerianos, and Haoyong Yu. "Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern." In 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, 2017. http://dx.doi.org/10.1109/icorr.2017.8009255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rodrigues, Antenor, Zafeiris Louvaris, Sauwaluk Dacha, Wim Janssens, Rik Gosselink, and Daniel Langer. "Respiratory muscle activation, breathing pattern and respiratory muscle oxygen availability during Tapered Flow Resistive Loading and Normocapnic Hyperpnea in COPD." In ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.pa2205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shahdoost, Shahab, Pedram Mohseni, Shawn Frost, and Randolph Nudo. "A multichannel corticospinal interface IC for intracortical spike recording and distinct muscle pattern activation via intraspinal microstimulation." In 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2014. http://dx.doi.org/10.1109/mwscas.2014.6908414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ogata, Kunihiro, Tomoki Mita, Toshiaki Tsuji, and Yoshio Matsumoto. "Gait training assist system of a lower limb prosthetic visualizing muscle activation pattern using a color-depth sensor." In 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, 2017. http://dx.doi.org/10.1109/icorr.2017.8009249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nashrulloh, Taufiq, Vitriana Biben, Farida A. Santi, Rachmat GZ, Marina A. Moeliono, Dedy HB Wicaksono, and Nabil el Hasnaoui. "Pattern of Muscle Activation During Sit to Stand Task in Feet Forward with 80° Knee Flexion using Surface EMG." In The 11th National Congress and The 18th Annual Scientific Meeting of Indonesian Physical Medicine and Rehabilitation Association. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0009064000820087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ratnakumar, Neethan, and Xianlian Zhou. "Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-71376.

Full text
Abstract:
Abstract The hip muscles account for a great percentage of the total human energy expenditure during walking and many wearable devices have been developed in assisting the hip joint to reduce the metabolic Cost Of Transport (COT) for walking. However, the effectiveness of assisting the hip in only one direction (either flexion or extension) or both directions has not been systematically studied and the underlying muscle mechanics and energetics affected by the assistance are not well understood. In this study, human-exoskeleton simulation based optimizations were performed to find optimized hip assistance torque profiles for (1) unidirectional flexion assistance, (2) unidirectional extension assistance, and (3) bidirectional flexion and extension assistance. Our results show that the bidirectional assistance is the most effective in reducing the COT of walking (22.7% reduction) followed by flexion (19.2%) and extension (11.7%). The flexion assistance resulted in more COT saving than the output of its net work by 35.9%, which indicates that the negative work done (42.2% of its positive counterpart) also played an important role in reducing the COT. The bidirectional assistance also reduced the activations of the hip extensors to a great extent and shifted the activation pattern of the hip flexor (ilipsoas). These results can provide valuable information for optimal hip actuation (timing and profiles) and help exoskeleton designers make informed decisions.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Muscle activation pattern"

1

Volunteer Kinematics and Reaction in Lateral Emergency Maneuver Tests. SAE International, November 2013. http://dx.doi.org/10.4271/2013-22-0013.

Full text
Abstract:
It is important to understand human kinematics and muscle activation patterns in emergency maneuvers for the design of safety systems and for the further development of human models. The objective of this study was to quantify kinematic behavior and muscle activation in simulated steering tests in several realistic conditions. In total 108 tests were performed with 10 volunteers undergoing purely lateral maneuvers at 5 m/s2 deceleration or simulated lane change maneuvers at 5 m/s2 peak acceleration and peak yaw velocity of 25 °/s. Test subjects were seated on a rigid seat and restrained by a 4-point belt with retractor. Driver subjects were instructed to be relaxed or braced and to hold the steering wheel while passenger subjects were instructed to put their hands on their thighs. Subjects were instrumented with photo markers that were tracked with 3D high-speed stereo cameras and with electromyography (EMG) electrodes on 8 muscles. Corridors of head displacement, pitch and roll and displacement of T1, shoulder, elbow, hand and knee were created representing mean response and standard deviation of all subjects. In lane change tests for the passenger configuration significant differences were observed in mean peak of head left lateral displacement between the relaxed and the braced volunteers, i.e. 171 mm (σ=58, n=21) versus 121 mm (σ=46, n=17), respectively. Sitting in a relaxed position led to significantly lower muscle activity of the neck muscles. It was concluded that significantly more upper body motion and lower muscle activity was observed for relaxed subjects than for braced subjects.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography