Academic literature on the topic 'Murray-Darling Basisn'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Murray-Darling Basisn.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Murray-Darling Basisn"

1

Musyl, MK, and CP Keenan. "Population genetics and zoogeography of Australian freshwater golden perch, Macquaria ambigua (Richardson 1845) (Teleostei: Percichthyidae), and electrophoretic identification of a new species from the Lake Eyre basin." Marine and Freshwater Research 43, no. 6 (1992): 1585. http://dx.doi.org/10.1071/mf9921585.

Full text
Abstract:
Populations of golden perch (Macquaria ambigua) were sampled from both sides of the Great Dividing Range (GDR): from the Murray-Darling drainage basin (Murray R., L. Keepit and Condamine R.), the L. Eyre internal drainage basin (Barcoo R. and Diamantina R.), and the internal drainage basin of the Bulloo R.-all to the west of the GDR-and from the Fitzroy drainage basin (Dawson R. and Nogoa R.) east of the GDR. Starch-gel and polyacrylamide electrophoresis of 12 enzyme systems plus two general muscle proteins was used to estimate the genetic variation within and between populations. Of the 18 presumed genetic loci examined, nine were either polymorphic at the P0.99 criterion level or exhibited fixed allelic differences between some of the populations. Within the Murray-Darling drainage basin, there was little indication of heterogeneity. Contingency Χ2 analyses of allelic distributions among drainage basins indicated significant levels of heterogeneity at six variable loci. The isolated L. Eyre population exhibited diagnostic alleles at four loci when compared with the Murray- Darling and Fitzroy populations. The genetic distance of the L. Eyre population (Nei's D=0.23) from these two populations indicates that the L. Eyre golden perch is most probably a previously unrecognized allopatric species. The level of divergence (0 = 0.06) between Fitzroy and Murray-Darling golden perch indicates differentiation at the subspecies level, with no fixed differences observed between these two populations. Finally, golden perch from the Bulloo R. represent either (i) an intermediate evolutionary unit between the presumed ancestral L. Eyre population and the derived Murray-Darling and Fitzroy populations or (ii) a complex hybrid between these populations. Average gene-flow statistics, FST = 0.760 and Nem=0.08, suggest that the populations in each of the four basins can be regarded as separate gene pools that have been isolated for different, and considerable, periods of time.
APA, Harvard, Vancouver, ISO, and other styles
2

Crabb, Peter. "Managing the Murray‐Darling Basin." Australian Geographer 19, no. 1 (May 1988): 64–88. http://dx.doi.org/10.1080/00049188808702951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Faulks, Leanne K., Dean M. Gilligan, and Luciano B. Beheregaray. "Phylogeography of a threatened freshwater fish (Mogurnda adspersa) in eastern Australia: conservation implications." Marine and Freshwater Research 59, no. 1 (2008): 89. http://dx.doi.org/10.1071/mf07167.

Full text
Abstract:
Phylogeography is a field that has the potential to provide an integrative approach to the conservation of threatened species. The southern purple spotted gudgeon, Mogurnda adspersa, is a small freshwater fish that was once common and widely distributed throughout south-eastern Australia. However, habitat alteration has dramatically reduced the size and the range of Murray–Darling Basin populations, which are now classified as endangered. Here patterns of genetic structure and evolutionary history of M. adspersa in southern Queensland and the Murray–Darling Basin are elucidated using three regions of the mitochondrial DNA, the ATPase 6 and 8 and the control region. Murray–Darling Basin populations are characterised by lineages with highly localised endemism, very low genetic diversity and restricted gene flow. Phylogenetic reconstructions show that Murray–Darling Basin populations comprise a monophyletic clade that possibly originated by range expansion from the coast around 1.6 million years ago. It is proposed that the divergent Murray–Darling Basin clade is of high conservation priority and requires separate management. The present study further exemplifies the role of drainage rearrangement in driving evolutionary diversification in Australian freshwater fishes, an historical process with profound implications for conservation management.
APA, Harvard, Vancouver, ISO, and other styles
4

Goss, K. "Report Card - Murray-Darling Basin - 2001." Water Science and Technology 45, no. 11 (June 1, 2002): 133–44. http://dx.doi.org/10.2166/wst.2002.0388.

Full text
Abstract:
Ongoing deterioration of the riverine environments of the Murray-Darling Basin led the Murray-Darling Basin Ministerial Council to introduce a Cap in 1995 to halt the growth in diversions of water for consumptive use. This initiative recognised the finite nature of water resources in the Basin and sought to introduce a balance between off-stream use of water and protection of the riverine environment. But the cap is only one step, albeit a fundamental one, in restoring the Basin's rivers - it is a “stake in the ground”. Parties to the Murray-Darling Basin Initiative recognise the need to reverse decades of creeping decline if the Basin's rivers and riverine environments are to return to a more ecologically sustainable condition. In the last 12 months, Council and Commission have taken far-reaching decisions designed to restore the Basin's Rivers. Many of these decisions, even 10 years ago, would have been unimaginable. The Report Card will explain the need for a number of recent decisions that will impact on the future of the Basin's rivers. For example, Council's decision to establish an Environmental Manager function in the Office of the Commission was made in the context of the recently agreed Integrated Catchment Management (ICM) Policy, and supporting Sustainable Rivers Audit. The role of targets and accountabilities under the ICM Policy will also be discussed. The Report Card will also present a snapshot of the state of the Basin's rivers and the actions being taken at a range of scales and locations in response to identified problems. Because some of the key initiatives are still in development, this Report Card will set the scene by describing where our attention is being focused and why.
APA, Harvard, Vancouver, ISO, and other styles
5

Ballard, Clarke. "Management of Murray–Darling Basin, Australia." Irrigation and Drainage 69, no. 4 (July 28, 2020): 504–16. http://dx.doi.org/10.1002/ird.2510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kearney, Robert E., and Melissa A. Kildea. "The Management of Murray Cod in the Murray-Darling Basin." Australasian Journal of Environmental Management 11, no. 1 (January 2004): 42–54. http://dx.doi.org/10.1080/14486563.2004.10648597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grafton, R. Quentin, and James Horne. "Water markets in the Murray-Darling Basin." Agricultural Water Management 145 (November 2014): 61–71. http://dx.doi.org/10.1016/j.agwat.2013.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Draper, Clara, and Graham Mills. "The Atmospheric Water Balance over the Semiarid Murray–Darling River Basin." Journal of Hydrometeorology 9, no. 3 (June 1, 2008): 521–34. http://dx.doi.org/10.1175/2007jhm889.1.

Full text
Abstract:
Abstract The atmospheric water balance over the semiarid Murray–Darling River basin in southeast Australia is analyzed based on a consecutive series of 3- to 24-h NWP forecasts from the Australian Bureau of Meteorology’s Limited Area Prediction System (LAPS). Investigation of the LAPS atmospheric water balance, including comparison of the forecast precipitation to analyzed rain gauge observations, indicates that the LAPS forecasts capture the general qualitative features of the water balance. The key features of the atmospheric water balance over the Murray–Darling Basin are small atmospheric moisture flux divergence (at daily to annual time scales) and extended periods during which the atmospheric water balance terms are largely inactive, with the exception of evaporation, which is consistent and very large in summer. These features present unique challenges for NWP modeling. For example, the small moisture fluxes in the basin can easily be obscured by the systematic errors inherent in all NWP models. For the LAPS model forecasts, there is an unrealistically large evaporation excess over precipitation (associated with a positive bias in evaporation) and unexpected behavior in the moisture flux divergence. Two global reanalysis products (the NCEP Reanalysis I and the 40-yr ECMWF Re-Analysis) also both describe (physically unrealistic) long-term negative surface water budgets over the Murray–Darling Basin, suggesting that the surface water budget cannot be sensibly diagnosed based on output from current NWP models. Despite this shortcoming, numerical models are in general the most appropriate tool for examining the atmospheric water balance over the Murray–Darling Basin, as the atmospheric sounding network in Australia has extremely low coverage.
APA, Harvard, Vancouver, ISO, and other styles
9

Sullivan, Caroline A. "Planning for the Murray-Darling Basin: lessons from transboundary basins around the world." Stochastic Environmental Research and Risk Assessment 28, no. 1 (August 29, 2013): 123–36. http://dx.doi.org/10.1007/s00477-013-0789-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fülöp, R. H., A. T. Codilean, K. M. Wilcken, T. J. Cohen, D. Fink, A. M. Smith, B. Yang, et al. "Million-year lag times in a post-orogenic sediment conveyor." Science Advances 6, no. 25 (June 2020): eaaz8845. http://dx.doi.org/10.1126/sciadv.aaz8845.

Full text
Abstract:
Understanding how sediment transport and storage will delay, attenuate, and even erase the erosional signal of tectonic and climatic forcings has bearing on our ability to read and interpret the geologic record effectively. Here, we estimate sediment transit times in Australia’s largest river system, the Murray-Darling basin, by measuring downstream changes in cosmogenic 26Al/10Be/14C ratios in modern river sediment. Results show that the sediments have experienced multiple episodes of burial and reexposure, with cumulative lag times exceeding 1 Ma in the downstream reaches of the Murray and Darling rivers. Combined with low sediment supply rates and old sediment blanketing the landscape, we posit that sediment recycling in the Murray-Darling is an important and ongoing process that will substantially delay and alter signals of external environmental forcing transmitted from the sediment’s hinterland.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Murray-Darling Basisn"

1

Foster-Thorpe, Frances C. "Accountability interactions : mutliple accountabilities in the Murray-Darling basin plan." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:aac0e39b-f397-4292-baf9-e99c93c98c7d.

Full text
Abstract:
This thesis investigates whether different public accountability forums interact with one another when they oversee the same decision maker. It contributes to the larger study of how decision makers are held to account in constitutional democracies where the simultaneous operation of multiple accountability relationships has become routine. Looking beyond the dominant assumption that multiple forums autonomously assess a decision maker's accountability against different and diverging standards, I aim to understand whether forums can influence the standards against which other forums evaluate the same decision maker. I draw on political and normative understandings of public accountability to answer one central question: do different public accountability forums interact with one another in a way that influences the scope of what a decision maker is obliged to account for and the normative standards against which that account is evaluated? Answering this research question involves examining the mechanisms by which interactions might occur and the motivations of actors to interact. I begin by critically reviewing the literature on multiple accountabilities, arguing that existing approaches can only partially explain how public accountability is constructed in multiple accountability regimes. I argue the focus on typologies of accountability emphasise the attributes of individual forums and overlook the broader dynamics of the accountability regime. I then develop an analytical framework to examine how the interactions between different forums, and other actors, might reshape the accountability dialogue. This framework is used to analyse the case of the Murray-Darling Basin Plan in Australia (2008-2012). By presenting a contextSrich analysis of interactions between forums, and other actors, I find that multiple forums act in concert with one another and other actors to contest and then reshape the standards against which the two decision makers are evaluated. The thesis concludes by discussing the implications of recognising accountability interactions for understanding multiple accountability regimes.
APA, Harvard, Vancouver, ISO, and other styles
2

Dwyer, Brian James, University of Western Sydney, College of Social and Health Sciences, and School of Natural Sciences. "Aspects of governance and public participation in remediation of the Murray-Darling Basin." THESIS_CSHS_NS_Dwyer_B.xml, 2004. http://handle.uws.edu.au:8081/1959.7/776.

Full text
Abstract:
This thesis addresses the question “What is the essence of the Murray Darling river system conundrum that is usually posed as an issue of environmental remediation?”- following perceptions of problems in catchment strategy formulation regarding project selection and public consultation. The question is initially seen as having four facets – governance, public, participation and remediation. An initial literature review indicated that previous examination of these topics seemed insufficiently radical or comprehensive for the enquiry’s purposes, seeming not to attribute full humanness to members of the public. A fieldwork program of quasi-anthropological nature was conducted. Interpretation of the fieldwork reports focuses primarily on the lack of attribution of full humanness to members of the public. Interpretive techniques including a phenomenological-style process was applied and found that the district houses a number of unrecognised people “nexors’ occupying linking or nexus roles who exercise personal skills and initiatives to underpin effective remediation outcomes. Towards the end of the fieldwork program, further literature indicated that the initial four-facet nature of the enquiry should be reformulated, to include the overall nature of western society as it appears in the district (in place of participation), to reconstitute the concept of remediation more radically. Governance as a topic is broader than the ways in which it appears in the examined district, and suitable hybridizing of competing world view concepts remains unresolved in this thesis
Doctor of Philosophy (PhD)
APA, Harvard, Vancouver, ISO, and other styles
3

Baumgartner, Lee Jason, and n/a. "Effects of weirs on fish movements in the Murray-Darling Basin." University of Canberra. Resource, Environmental & Heritage Sciences, 2005. http://erl.canberra.edu.au./public/adt-AUC20051129.142046.

Full text
Abstract:
Dams and weirs are widely implicated in large-scale declines in both the range and abundance of aquatic fauna. Although many factors are involved, such declines are commonly attributed to the prevention or reduction of migration, reductions in available habitat, alteration of natural flow regimes and changes to physicochemical characteristics. In Australia, studies into the ecological effects of these impacts are limited, and have concentrated mainly on species of recreational and commercial importance. Subsequently, the adverse effects of dams and weirs, and suitable methods of mitigation, remain largely unknown for many other taxa. Therefore, the major aim of this thesis is to investigate the ecological effects of dam and weir construction on previously unstudied migratory assemblages of fish and macroinvertebrates in the Murray-Darling Basin. It is anticipated that the results of these studies will feed back into improved management strategies that help arrest the previously observed declines of aquatic fauna. Initially, fish communities were sampled, by boat electrofishing, from both reference sites and downstream of Balranald and Redbank weirs on the lower reaches of the Murrumbidgee River, Australia. Sampling was stratified over large spatial and temporal scales to gain a comprehensive understanding of species most affected by the presence of these two barriers. In general, the weirs obstructed fish migrations during summer and autumn and many species of small-bodied fish such as Australian smelt, western carp gudgeon, fly-specked hardyhead and crimson-spotted rainbowfish accumulated downstream of Balranald Weir. In addition, downstream accumulations of juveniles of larger-bodied species such as bony herring, common carp and goldfish were also detected. Although many previous studies had either documented or hypothesised that upstream migrating fish accumulate downstream of migration barriers, none attempted to quantify the size of such populations. Therefore, a simple but efficient method to estimate the size of migratory populations was assessed at the Balranald Weir site. The application of two commonly used estimation techniques yielded relatively reliable results for seven species that accumulated downstream of the weir. Population size estimates were greatest for most species during summer and autumn, where accumulations as high as 800 fish per day were detected. The largest calculated population size estimates, in addition to the greatest temporal variation, of any individual species was observed in bony herring. Given the simplicity of the technique and the relative accuracy of population estimates, it was concluded that these methods could easily be applied to other weirs where the size of migratory populations is of particular interest. A study investigating the effects of Yanco Weir on the diets of three migratory percichthyid species, Murray cod, trout cod and golden perch was also conducted. Observed spatial variation in a number of trophic processes strongly implicated Yanco Weir as a major contributor to increased competition among percichthyid species on the Murrumbidgee River. The greater relative abundance of percichthyids from downstream samples, combined with increases in dietary overlap and a greater percentage of empty stomachs, also suggested percichthyids may be significantly affecting the relative abundance of potential prey items such as freshwater prawns and Australian smelt. These significant changes in dietary composition were likely related to migratory behaviour, as these species accumulated downstream of the weir, and could be readily expected at other sites where passage is obstructed. It was suggested that the construction of suitable fish passage facilities would effectively reduce the probability of migratory fish accumulating and, subsequently, potential effects of dams and weirs on trophic processes. Since it was established that dams and weirs of the Murrumbidgee River were significantly affecting migratory fish communities, an innovative but relatively inexpensive fishway design, the Deelder fish lock (after Deelder, 1958), was constructed and assessed for wider application throughout the Murray-Darling Basin. The Deelder lock was effective at mitigating the effects of Balranald Weir by providing passage for a wide range of size classes and species of fish; but importantly, the structure enabled the passage of most species previously observed to accumulate downstream of the structure. Most significant was the ability of the fish lock to pass substantial numbers of small-bodied fish, which were previously not considered migratory, suggesting that these species should be considered when developing options to mitigate the effects of other dams and weirs throughout the Murray-Darling Basin. A significant finding of this study was the realisation that substantially more species and size classes of Australian native fish are migratory than previously thought. Subsequently, it is recommended that, when designing facilities to mitigate the effects of a dam or weir, the structure of the entire migratory community is considered when developing operating parameters. Various options for mitigating the effects of dams and weirs are discussed, but it was concluded that the construction of effective fishways would be the most appropriate means of restoring migration pathways to Australian native fish. A strategic approach for assessing and adaptively mitigating the effects of dams and weirs is presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

King, Alison Jane 1974. "Recruitment ecology of fish in floodplain rivers of the southern Murray-Darling Basin, Australia." Monash University, Dept. of Biological Sciences, 2002. http://arrow.monash.edu.au/hdl/1959.1/8391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dwyer, Brian James. "Aspects of governance and public participation in remediation of the Murray-Darling Basin /." View thesis, 2004. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20060517.130206/index.html.

Full text
Abstract:
Thesis (Ph.D.) -- University of Western Sydney, 2004.
"A thesis submitted for the degree of Doctor of Philosophy of the University of Western Sydney, Sydney, January 2004." Includes bibliography : leaves 359 - 369.
APA, Harvard, Vancouver, ISO, and other styles
6

Boys, Craig Ashley, and n/a. "Fish-Habitat Associations in a Large Dryland River of the Murray-Darling Basin, Australia." University of Canberra. Resource, Environmental & Heritage Sciences, 2007. http://erl.canberra.edu.au./public/adt-AUC20070807.112943.

Full text
Abstract:
Many aspects concerning the association of riverine fish with in-channel habitat remain poorly understood, greatly hindering the ability of researchers and managers to address declines in fish assemblages. Recent insights gained from landscape ecology suggest that small, uni-scalar approaches are unlikely to effectively determine those factors that influence riverine structure and function and mediate fish-habitat associations. There appears to be merit in using multiple-scale designs built upon a geomorphologically-derived hierarchy to bridge small, intermediate and large spatial scales in large rivers. This thesis employs a hierarchical design encompassing functional process zones (referred to hereafter as zones), reaches and mesohabitats to investigate fish-habitat associations as well as explore patterns of in-channel habitat structure in one of Australia's largest dryland river systems; the Barwon-Darling River. In this thesis, empirical evidence is presented showing that large dryland rivers are inherently complex in structure and different facets of existing conceptual models of landscape ecology must be refined when applied to these systems. In-channel habitat and fish exist within a hierarchical arrangement of spatial scales in the riverscape, displaying properties of discontinuities, longitudinal patterns and patch mosaics. During low flows that predominate for the majority of time in the Barwon-Darling River there is a significant difference in fish assemblage composition among mesohabitats. There is a strong association between large wood and golden perch, Murray cod and carp, but only a weak association with bony herring. Golden perch and Murray cod are large wood specialists, whereas carp are more general in there use of mesohabitats. Bony herring are strongly associated with smooth and irregular banks but are ubiquitous in most mesohabitats. Open water (mid-channel and deep pool) mesohabitats are characterised by relatively low abundances of all species and a particularly weak association with golden perch, Murray cod and carp. Murray cod are weakly associated with matted bank, whereas carp and bony herring associate with this mesohabitat patch in low abundance. Nocturnal sampling provided useful information on size-related use of habitat that was not evident from day sampling. Both bony herring and carp exhibited a variety of habitat use patterns throughout the die1 period and throughout their lifetime, with temporal partitioning of habitat use by juvenile bony herring and carp evident. Much of the strong association between bony herring and smooth and irregular banks was due to the abundance of juveniles (<100mm in length) in these mesohabitats. Adult bony herring (>100mm length) occupied large wood more than smooth and irregular banks. At night, juvenile bony herring were not captured, suggesting the use of deeper water habitats. Adult bony herring were captured at night and occupjed large wood, smooth bank and irregular bank. Juvenile carp (<200mm length) were more abundant at night and aggregated in smooth and irregular banks more than any other mesohabitat patch. Adult carp (>200mm length) occupied large wood during both day and night. There is a downstream pattern of change in the fish assemblage among river zones, with reaches in Zone 2 containing a larger proportion of introduced species (carp and goldfish) because of a significantly lower abundance of native species (bony herring, golden perch and Murray cod) than all other zones. In comparison, the fish assemblage of Zone 3 was characterised by a comparatively higher abundance of the native species bony herring, golden perch and Murray cod. A significant proportion of the amongreach variability in fish assemblage composition was explained at the zone scale, suggesting that geomorphological influences may impose some degree of top-down constraint over fish assemblage distribution. Although mesohabitat composition among reaches in the Barwon-Darling River also changed throughout the study area, this pattern explained very little of the large-scale distribution of the fish assemblage, with most of the variability in assemblage distribution remaining unexplained. Therefore, although mesohabitat patches strongly influence the distribution of species within reaches, they explain very little of assemblage composition at intermediate zone and larger river scales. These findings suggest that small scale mesohabitat rehabilitation projects within reaches are unlikely to produce measurable benefits for the fish assemblage over intermediate and large spatial scales in the Barwon-Darling River. This indicates the importance taking a holistic approach to river rehabilitation that correctly identifies and targets limiting processes at the correct scales. The variable nature of flow-pulse dynamics in the Barwon-Darling River creates a shifting habitat mosaic that serves to maintain an ever-changing arrangement of habitat patches. The inundation dynamics of large wood habitat described in this thesis highlights the fragmented nature of mesohabitat patches, with the largest proportion of total in-channel large wood remaining unavailable to fish for the majority of the time. At low flows there is a mosaic of large wood habitat and with increasing discharge more potential large wood habitat becomes available and does so in a complex spatial manner. What results in this dryland river is a dynamic pattern of spatio-temporal patchiness in large wood habitat availability that is seen both longitudinally among different river zones and vertically among different heights in the river channel. Water resource development impacts on this shifting habitat mosaic. Projects undertaking both fish habitat assessment and rehabilitation need to carefully consider spatial scale since the drivers of fish assemblage structure can occur at scales well beyond that of the reach. Fish-habitat associations occurring at small spatial scales can become decoupled by process occurring across large spatial scales, making responses in the fish assemblage hard to predict. As rivers become increasingly channelised, there is an urgent need to apply research such as that conducted in this thesis to better understand the role that in-channel habitats play in supporting fish and other ecosystem processes. Habitat rehabilitation projects need to be refined to consider the appropriate scales at which fish assemblages associate with habitat. Failure to do so risks wasting resources and forgoes valuable opportunities for addressing declines in native fish populations. Adopting multi-scalar approaches to understanding ecological processes in aquatic ecosystems, as developed in this thesis, should be a priority of research and management. To do so will enable more effective determination of those factors that influence riverine structure and function at the approariate scale.
APA, Harvard, Vancouver, ISO, and other styles
7

Burdack, Doreen. "Water management policies and their impact on irrigated crop production in the Murray-Darling Basin, Australia." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7224/.

Full text
Abstract:
The economic impact analysis contained in this book shows how irrigation farming is particularly susceptible when applying certain water management policies in the Australian Murray-Darling Basin, one of the world largest river basins and Australia’s most fertile region. By comparing different pricing and non-pricing water management policies with the help of the Water Integrated Market Model, it is found that the impact of water demand reducing policies is most severe on crops that need to be intensively irrigated and are at the same time less water productive. A combination of increasingly frequent and severe droughts and the application of policies that decrease agricultural water demand, in the same region, will create a situation in which the highly water dependent crops rice and cotton cannot be cultivated at all.
Die ökonomische Folgenanalyse in diesem Buch zeigt, dass insbesondere Landwirte, die stark auf Bewässerung angewiesen sind, von Wasserregulierungsstrategien im Australischen Murray-Darling Becken betroffen sind. Dieses Gebiet ist eines der größten Flussbecken weltweit und zugleich Australiens fruchtbarste Region. Durch den Vergleich von verschiedenen Preisstrategien und anderen Ansätzen konnte mit Hilfe des Water Integrated Market Models herausgefunden werden, dass die Auswirkungen auf hochgradig wasserabhängige Feldfrüchte mit geringeren Wasserproduktivitäten am stärksten sind. Die Kombination von häufigeren und intensiveren Trockenzeiten und einer Regulierungspolitik mit dem Ziel, die Nachfrage nach Wasser zu verringern, führt dazu, dass in ein und derselben Region hochgradig wasserabhängige Feldfrüchte wie Reis und Baumwolle mit geringeren Wasserproduktivitäten nicht mehr angebaut werden können.
APA, Harvard, Vancouver, ISO, and other styles
8

Allen, David Andrew. "Electrical conductivity imaging of aquifers connected to watercourses : a thesis focused on the Murray Darling Basin, Australia." University of Technology, Sydney. Faculty of Science, 2007. http://hdl.handle.net/2100/428.

Full text
Abstract:
Electrical imaging of groundwater that interacts with surface watercourses provides detail on the extent of intervention needed to accurately manage both resources. It is particularly important where one resource is saline or otherwise polluted, where spatial quantification of the interacting resources is critical to water use planning and where losses from surface waterways need to be minimized in order to transport water long distances. Geo-electric arrays or transient electromagnetic devices can be towed along watercourses to image electrical conductivity (EC) at multiple depths within and beneath those watercourses. It has been found that in such environments, EC is typically related primarily to groundwater salinity and secondarily to clay content. Submerged geo-electric arrays can detect detailed canal-bottom variations if correctly designed. Floating arrays pass obstacles easily and are good for surveying constricted rivers and canals. Transient electromagnetic devices detect saline features clearly but have inferior ability to detect fine changes just below beds of watercourses. All require that water depth be measured by sonar or pressure sensors for successful elimination of effects of the water layer on the data. The meandering paths of rivers and canals, combined with the sheer volume of data typically acquired in waterborne surveys, results in a geo-referencing dilemma that cannot be accommodated using either 2D imaging or 3D voxel imaging. Because of this, software was developed by the author which allows users to view vertical section images wrapped along meandering paths in 3D space so that they resemble ribbons. Geo-electric arrays suitable for simultaneous imaging of both shallow and deep strata need exponentially spread receiver electrodes and elongated transmitter electrodes. In order to design and facilitate such arrays, signed monopole notation for arrays with iv segmented elongated electrodes was developed. The new notation greatly simplified generalized geo-electric array equations and led to processing efficiency. It was used in the development of new array design software and automated inversion software including a new technique for stable inversion of datasets including data with values below noise level. The Allen Exponential Bipole (AXB) array configuration was defined as a collinear arrangement of 2 elongated transmitter electrodes followed by receiver electrodes spaced exponentially from the end of the second transmitter electrode. A method for constructing such geo-electric arrays for use in rivers and canals was developed and the resulting equipment was refined during the creation of an extensive set of EC imaging case studies distributed across canals and rivers of the Australian Murray- Darling Basin. Man made and natural variations in aquifers connected to those canals and rivers have been clearly and precisely identified in more than 1000 kilometres of EC imagery.
APA, Harvard, Vancouver, ISO, and other styles
9

Black, Richard, and richard black@rmit edu au. "Site Knowledge: in Dynamic Contexts." RMIT University. Architecture and Design, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091028.095536.

Full text
Abstract:
The PhD is concerned with the construction of site knowledge and how this is transformed into knowing where and how to intervene in a river system close to ecological collapse. It involves three overlapping topics: • Site knowledge and its impact upon the design process • Development of tools and techniques appropriate for working on a particular type of site condition: the threshold between land and water • Transitory: the impact of dynamic processes and events on inhabitation Site knowledge emerges from a process of investigating a location. It is generated by on-site and off-site operations. This involves the architect in a dynamic set of relationships - between encounters on the ground in the here and now, with more remote encounters with the site from the studio and archive. This mode of site study amplifies the impact of scale shift and it exposes the variable and provisional status of a location, while also providing a way of operating in environments that can be considered dynamic. The PhD is premised upon the need for a work to relate to its surrounding environment. The hinged meaning between the terms a site and to site have relevance to the design process. A site, as a noun, suggests a specific place, such as a plot of land, whereas the verb to site, suggests that a work will be placed in relation to other things. Site knowledge is thus generated through the act of describing a place, through the act of making drawings and other descriptions of that place. It generates ways of conceptualising a site and leads to action: knowing how and where to intervene in a location. The River Murray provided a context for the project work of the PhD. Research led to tools for recording (on site) and interpreting (off site) the impacts of flood events on the settlements on the riverbanks that were protected by levees that worked against the natural forces of the system. The research culminated in a range of designs that demonstrated how to integrate town and tourist developments into the re-established cyclical flows necessary for the health of the system.
APA, Harvard, Vancouver, ISO, and other styles
10

Judge, David, and n/a. "The Ecology of the polytopic freshwater turtle species, Emydura macquarii macquarii." University of Canberra. Resource, Environmental and Heritage Sciences, 2001. http://erl.canberra.edu.au./public/adt-AUC20050418.151350.

Full text
Abstract:
An ecological study of Emydura macquarii macquarii in the south-east region of Australia was conducted between October 1995 and March 1998. E. m. macquarii is an abundant and widespread species of short-necked turtle that is highly variable in morphology and related life history attributes. No study in Australia had previously looked at geographic variation in biological traits in freshwater turtles, hence the level of variation in E. m. macquarii had been poorly documented. The principal aims of this study were to investigate the plasticity of life history traits across populations of E. m. macquarii and to speculate on possible causes. A more intensive study was also conducted on a rare and suspected declining population of E. m. macquarii in the Nepean River to determine whether relevant management and conservation measures; were required. The study involved comparing various life history attributes between five populations of E. m. macquarii (Brisbane River, Macleay River, Hunter River, Nepean River and Murray River). The populations were specifically chosen to account for the range of variation in body size within this subspecies. Body size (maximum size, size at maturity, growth rates), population structures (sex ratios, age and size structures), reproductive traits (clutch mass, clutch size, egg size, egg content, etc.) and other attributes were collected for each population. Patterns of life history traits, both within and among populations, were explored so that causes of variation could be sought. Geographic variation in Body Size and other Related Life History Traits Body size in E. m. macquarii differed markedly between populations. Females ranged in maximum sizes (carapace length) of 180 mm in the Macleay River to over 300 mm in the Murray River. E. m. macquarii was sexually dimorphic across all populations with females larger than males in all cases. Maximum body size was positively related to the size at which a turtle matures. The size at maturity in turn was positively related to juvenile growth rates. Age was a more important factor for males in terms of timing of maturity whereas in females it was body size. Morphological variation was not only great between populations, but also within populations. Maximum body size was unrelated to latitude; hence it was inferred that habitat productivity had the most important influence on geographic variation in body size. Population structures also differed between populations. Sex ratios did not differ in the Brisbane, Macleay and Murray Rivers. However, a male bias was present in the Nepean River population and a female bias in the Hunter River. Juveniles were scarce in the Brisbane and Macleay Rivers but numerous in the Nepean and Hunter Rivers. Geographic Variation in Reproduction There was large variation in reproductive traits across populations of E. m. macquarii. Nesting season began as early as mid-September in the Brisbane River and as late as December in the Hunter River, and continued until early January. Populations in the Hunter and Murray Rivers are likely to produce only one clutch per season while populations from the Macleay and Nepean Rivers can produce two, and on some occasions, three clutches annually. The majority of females would appear to reproduce every year. Clutch mass, clutch size, and egg size varied greatly both within and among populations. A large proportion of variation in reproductive traits was due to the effects of body size. E. m. macquarii from large-bodied populations such as in the Brisbane and Murray Rivers produced bigger eggs than small-bodied populations. Within a population, clutch mass, clutch size, and egg size were all correlated with body size, except the Nepean River. The variability of egg size was smaller in large-bodied populations where egg size was more constant. Not all variation in reproductive traits was due to body size. Some of this variation was due to annual differences within a population. Reproductive traits within a population are relatively plastic, most likely a result of changing environmental conditions. Another source is the trade-off between egg size and clutch size. A negative relationship was found between egg size and clutch size (except the Brisbane River). Reproductive variation was also influenced by latitudinal effects. Turtles at lower latitudes produces more clutches, relatively smaller clutch sizes, clutch mass and larger eggs than populations at higher latitudes. Annual reproductive output is greater in tropical populations because they can produce more clutches per year in an extended breeding season. Eggs that were incubated at warmer temperatures hatched faster and produced smaller hatchlings. Incubation temperatures above 30�C increased egg mortality and hatchling deformities, suggesting this is above the optimum developmental temperature for E. m. macquarii. Hatchling size was positively related to egg size, hence hatchling sizes was on average larger in the Murray and Brisbane rivers. However, population differences remained in hatchling size after adjustments were made for egg size. For example, hatchlings from the Hunter River were smaller than those from the Macleay River despite the egg size being the same. These differences were most likely due to the shorter incubation periods of hatchlings from the Hunter River. Nepean River The Nepean River population of E. m. macquarii is at the southern coastal limit of its range. This is a locally rare population, which is believed to be declining. This study aimed at determining the distribution, abundance, and population dynamics to assess whether any conservation management actions were required. E. m. macquarii in the Nepean River was mainly concentrated between Penrith and Nortons Basin, although even here it was found at a very low density (10.6 - 12.1 per hectare). The largest male caught was 227 mm while the largest female was 260.4 mm. Males generally mature between 140 - 150 mm in carapace length and at four or five years of age. Females mature at 185 -195 mm and at six to seven years of age. Compared with other populations of E. macquarii, Nepean River turtles grow rapidly, mature quickly, are dominated by juveniles, have a male bias and have a high reproductive output. Far from being a population on the decline, the life history traits suggest a population that is young and expanding. There are considered to be two possible scenarios as to why the Nepean River population is at such a low density when it appears to be thriving. The first scenario is that the distribution of the population on the edge of its range may mean that a small and fluctuating population size may be a natural feature due to sub-optimal environmental conditions. A second scenario is that the population in the Nepean River has only recently become established from dumped pet turtles.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Murray-Darling Basisn"

1

Connell, Daniel. Basin Futures: Water reform in the Murray-Darling Basin. Canberra: ANU Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Powell, J. M. The emergence of bioregionalism in the Murray-Darling Basin. Canberra: Murray-Darling Basin Commission, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hammer, Chris. The river: A journey through the Murray-Darling Basin. Carlton, Vic: Melbourne University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

J, Taylor. Indigenous people in the Murray-Darling Basin: A statistical profile. Canberra, ACT, Australia: Center for Aboriginal Economic Policy Research, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Water policy reform: Lessons in sustainability from the Murray Darling Basin. Cheltenham: Edward Elgar, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rothenburg, Daniel. Irrigation, Salinity, and Rural Communities in Australia's Murray-Darling Basin, 1945–2020. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18451-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Murray-Darling Basin, Australia. Elsevier, 2021. http://dx.doi.org/10.1016/c2018-0-01363-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saintilan, Neil, and Ian Overton, eds. Ecosystem Response Modelling in the Murray-Darling Basin. CSIRO Publishing, 2010. http://dx.doi.org/10.1071/9780643100213.

Full text
Abstract:
Ecosystem Response Modelling in the Murray-Darling Basin provides an overview of the status of science in support of water management in Australia’s largest and most economically important river catchment, and brings together the leading ecologists working in the rivers and wetlands of the Basin. It introduces the issues in ecosystem response modelling and how this area of science can support environmental watering decisions. The declining ecological condition of the internationally significant wetlands of the Murray-Darling Basin has been a prominent issue in Australia for many years. Several high profile government programs have sought to restore the flow conditions required to sustain healthy wetlands, and this book documents the scientific effort that is underpinning this task. In the Southern Murray-Darling Basin, the River Murray, the Murrumbidgee River and their associated wetlands and floodplains have been the focus of the Murray-Darling Basin Authority’s ‘The Living Murray’ program, and the NSW Rivers Environmental Restoration Program. The book documents research aimed at informing environmental water use in a number of iconic wetlands including those along the Murray – the Barmah-Millewa Forest; the Chowilla Floodplain and Lindsay-Wallpolla Islands; the Coorong and Murray mouth; and the Murrumbidgee – the Lowbidgee Floodplain. Within the Northern Murray-Darling Basin, research conducted in support of the Wetland Recovery Plan and the NSW Rivers Environmental Restoration Program has improved our knowledge of the Gwydir Wetlands and the Macquarie Marshes, and the water regimes required to sustain their ecology.
APA, Harvard, Vancouver, ISO, and other styles
9

Rogers, Kerrylee, and Timothy J. Ralph, eds. Floodplain Wetland Biota in the Murray-Darling Basin. CSIRO Publishing, 2010. http://dx.doi.org/10.1071/9780643100992.

Full text
Abstract:
Floodplain wetlands of the Murray-Darling Basin provide critical habitat for numerous species of flora and fauna, yet the ecology of these wetlands is threatened by a range of environmental issues. This book addresses the urgent need for an improved ecohydrological understanding of the biota of Australian freshwater wetlands. It synthesises key water and habitat requirements for 35 species of plants, 48 species of waterbirds, 17 native and four introduced species of fish, 15 species of frogs, and 16 species of crustaceans and molluscs found in floodplain wetlands of the Murray-Darling Basin. Each species profile includes: the influence of water regimes on the survival, health and condition of the species; key stimuli for reproduction and germination; habitat and dietary preferences; as well as major knowledge gaps for the species. Floodplain Wetland Biota in the Murray-Darling Basin also provides an overview of the likely impacts of hydrological change on wetland ecosystems and biota, in the context of climate change and variability, with implications for environmental management. This important book provides an essential baseline for further education, scientific research and management of floodplain wetland biota in the Murray-Darling Basin.
APA, Harvard, Vancouver, ISO, and other styles
10

Swan, Michael. Frogs and Reptiles of the Murray–Darling Basin. CSIRO Publishing, 2020. http://dx.doi.org/10.1071/9781486311330.

Full text
Abstract:
The Murray–Darling Basin spans more than 1 million square kilometres across the lower third of Queensland, most of New South Wales, the Australian Capital Territory, northern Victoria and the south-eastern corner of South Australia. Wildlife habitats range from the floodplains of the Basin to alpine areas, making the region of special ecological and environmental interest. This book is the first comprehensive guide to the 310 species of frogs and reptiles living in the Murray–Darling Basin. An overview of each of the 22 catchment areas introduces the unique and varied climates, topography, vegetation and fauna. Comprehensive species accounts include diagnostic features, conservation ratings, photographs and distribution maps for all frogs, freshwater turtles, lizards and snakes recorded in this important region.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Murray-Darling Basisn"

1

Pittock, Jamie. "Murray–Darling River Basin (Australia)." In The Wetland Book, 1–11. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6173-5_102-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pittock, Jamie. "Murray-Darling River Basin (Australia)." In The Wetland Book, 1887–96. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pittock, Jamie. "Murray-Darling Basin: Conservation and Law." In The Wetland Book, 1–9. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6172-8_136-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pittock, Jamie. "Murray-Darling Basin: Conservation and Law." In The Wetland Book, 561–69. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-90-481-9659-3_136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thomas, Rachael F., and Joanne F. Ocock. "Macquarie Marshes: Murray-Darling River Basin (Australia)." In The Wetland Book, 1–12. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6173-5_209-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gell, Peter. "The Coorong: Murray-Darling River Basin (Australia)." In The Wetland Book, 1–11. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-6173-5_210-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thomas, Rachael F., and Joanne F. Ocock. "Macquarie Marshes: Murray-Darling River Basin (Australia)." In The Wetland Book, 1897–908. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gell, Peter. "The Coorong: Murray-Darling River Basin (Australia)." In The Wetland Book, 1909–19. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Booth, Trevor H. "Forest Landscape Restoration in Australia’s Murray-Darling Basin." In A Goal-Oriented Approach to Forest Landscape Restoration, 355–71. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5338-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Powell, Joseph M. "Interregional Environmental Policy in Australia’s Murray-Darling Basin." In The GeoJournal Library, 55–73. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4888-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Murray-Darling Basisn"

1

Marohasy, J., and J. Abbot. "Deconstructing the native fish strategy for Australia’s Murray Darling catchment." In RIVER BASIN MANAGEMENT 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/rbm130281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, L., N. Okello, M. Pham, S. K. Saleem, W. Qiu, R. Evans, and I. Mareels. "Model predictive control of Murray-darling basin networks." In 2011 23rd Chinese Control and Decision Conference (CCDC). IEEE, 2011. http://dx.doi.org/10.1109/ccdc.2011.5968277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Governance and drought in the murray darling basin." In 2011 GEOSS Workshop XL - Managing Drought Through Earth Observation. IEEE, 2011. http://dx.doi.org/10.1109/geoss.2011.5948943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"A sediment budget for the Queensland Murray Darling Basin." In 22nd International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2017. http://dx.doi.org/10.36334/modsim.2017.l23.davidson.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doody, T., and I. Overton. "Environmental management of riparian tree health in the Murray-Darling Basin, Australia." In RIVER BASIN MANAGEMENT 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/rm090181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Exploring post 2011–12 drought in the Murray–Darling Basin." In 23rd International Congress on Modelling and Simulation (MODSIM2019). Modelling and Simulation Society of Australia and New Zealand, 2019. http://dx.doi.org/10.36334/modsim.2019.k22.nahar.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abbot, J., and J. Marohasy. "Forecasting of monthly rainfall in the Murray Darling Basin, Australia: Miles as a case study." In RIVER BASIN MANAGEMENT 2015. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/rm150141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"An ecological trajectories architecture for use in the Murray–Darling Basin." In 22nd International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2017. http://dx.doi.org/10.36334/modsim.2017.g6.stratford.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Forghani, Alan, and Jason Alexandra. "Managing water resources in the murray-darling basin using earth observation." In 2011 GEOSS Workshop XL - Managing Drought Through Earth Observation. IEEE, 2011. http://dx.doi.org/10.1109/geoss.2011.5948944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Generating two-monthly surface water images for the Murray-Darling Basin." In 24th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, 2021. http://dx.doi.org/10.36334/modsim.2021.g5.ticehurst.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Murray-Darling Basisn"

1

Grafton, R. Quentin, Clay Landry, Gary Libecap, and Robert O'Brien. Water Markets: Australia's Murray-Darling Basin and the US Southwest. Cambridge, MA: National Bureau of Economic Research, March 2010. http://dx.doi.org/10.3386/w15797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Melrose, Rachel, Jeff Kingwell, Leo Lymburner, and Rohan Coghlan. Murray-Darling Basin vegetation monitoring project : using time series Landsat Satellite data for the assessment of vegetation control. Geoscience Australia, 2013. http://dx.doi.org/10.11636/record.2013.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography