Academic literature on the topic 'Murray cod Murray-Darling Basin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Murray cod Murray-Darling Basin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Murray cod Murray-Darling Basin"

1

Kearney, Robert E., and Melissa A. Kildea. "The Management of Murray Cod in the Murray-Darling Basin." Australasian Journal of Environmental Management 11, no. 1 (January 2004): 42–54. http://dx.doi.org/10.1080/14486563.2004.10648597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Koehn, John D., and D. J. Harrington. "Collection and distribution of the early life stages of the Murray cod (Maccullochella peelii peelii) in a regulated river." Australian Journal of Zoology 53, no. 3 (2005): 137. http://dx.doi.org/10.1071/zo04086.

Full text
Abstract:
The Murray cod (Maccullochella peelii peelii) is a large fish species keenly sought by anglers. However, this species has declined in distribution and abundance and is now listed nationally as vulnerable. This study was undertaken in the Ovens and Murray rivers, to collect larvae and age-0 Murray cod and determine the distribution of larval Murray cod around the mid-Murray River irrigation storage of Lake Mulwala. Murray cod larvae were collected from 17 of 18 sites: main channels and flowing anabranch channels of regulated and unregulated rivers, sites upstream and downstream of the lake, in the upper and lower reaches of the lake, and in the outflowing Yarrawonga irrigation channel. Larval Murray cod were collected only by methods that sampled drift in flowing waters. Age-0 Murray cod were collected by electrofishing in the main river, but not in off-channel waters, suggesting that cod are likely to settle into habitats in the main channel at a post-larval stage. The widespread occurrence of drifting larvae suggests that this species may be subject to previously unrecognised threats as they pass through hydro-electric power stations or become stranded in anabranch and irrigation channels. Results of this study are likely to be applicable to other species with drifting larval stages, and are relevant to other locations in the Murray–Darling Basin.
APA, Harvard, Vancouver, ISO, and other styles
3

Leigh, Sandra J., and Brenton P. Zampatti. "Movement and mortality of Murray cod, Maccullochella peelii, during overbank flows in the lower River Murray, Australia." Australian Journal of Zoology 61, no. 2 (2013): 160. http://dx.doi.org/10.1071/zo12124.

Full text
Abstract:
Conservation of Murray cod (Maccullochella peelii), a large endangered fish species of Australia’s Murray–Darling Basin, relies on a detailed understanding of life history, including movement patterns and habitat use. We used radio-tracking to investigate the movement of 36 Murray cod in main channel and anabranch habitats of the lower River Murray during a flood and associated hypoxic blackwater event. During a flood peak of ~93 000 ML day–1, dissolved oxygen decreased to 1.2 mg L–1. Four movement types were observed: (1) localised small-scale movement, (2) broad-scale movement within anabranch habitats, (3) movement between anabranch and main channel habitats, and (4) large-scale riverine movement. Murray cod exhibited high fidelity to anabranch habitats but also moved extensively between anabranches and the main channel. Fish were consistently located in the main channel or permanent anabranches, suggesting that use of ephemeral floodplain habitats is limited, and highlighting the importance of connectivity between off-channel and main channel habitats. Mortality of radio-tagged fish was considerable (25%) in association with low dissolved oxygen concentrations, indicating that hypoxic blackwater may have had a substantial impact on Murray cod populations in the lower River Murray.
APA, Harvard, Vancouver, ISO, and other styles
4

Couch, Alan J., Peter J. Unmack, Fiona J. Dyer, and Mark Lintermans. "Who’s your mama? Riverine hybridisation of threatened freshwater Trout Cod and Murray Cod." PeerJ 4 (October 27, 2016): e2593. http://dx.doi.org/10.7717/peerj.2593.

Full text
Abstract:
Rates of hybridization and introgression are increasing dramatically worldwide because of translocations, restocking of organisms and habitat modifications; thus, determining whether hybridization is occuring after reintroducing extirpated congeneric species is commensurately important for conservation. Restocking programs are sometimes criticized because of the genetic consequences of hatchery-bred fish breeding with wild populations. These concerns are important to conservation restocking programs, including those from the Australian freshwater fish family, Percichthyidae. Two of the better known Australian Percichthyidae are the Murray Cod,Maccullochella peeliiand Trout Cod,Maccullochella macquariensiswhich were formerly widespread over the Murray Darling Basin. In much of the Murrumbidgee River, Trout Cod and Murray Cod were sympatric until the late 1970s when Trout Cod were extirpated. Here we use genetic single nucleotide polymorphism (SNP) data together with mitochondrial sequences to examine hybridization and introgression between Murray Cod and Trout Cod in the upper Murrumbidgee River and consider implications for restocking programs. We have confirmed restocked riverine Trout Cod reproducing, but only as inter-specific matings, in the wild. We detected hybrid Trout Cod–Murray Cod in the Upper Murrumbidgee, recording the first hybrid larvae in the wild. Although hybrid larvae, juveniles and adults have been recorded in hatcheries and impoundments, and hybrid adults have been recorded in rivers previously, this is the first time fertile F1 have been recorded in a wild riverine population. The F1 backcrosses with Murray cod have also been found to be fertile. All backcrosses noted were with pure Murray Cod. Such introgression has not been recorded previously in these two species, and the imbalance in hybridization direction may have important implications for restocking programs.
APA, Harvard, Vancouver, ISO, and other styles
5

Hamilton, Serena H., Carmel A. Pollino, and Keith F. Walker. "Regionalisation of freshwater fish assemblages in the Murray–Darling Basin, Australia." Marine and Freshwater Research 68, no. 4 (2017): 629. http://dx.doi.org/10.1071/mf15359.

Full text
Abstract:
Regionalisations based on species assemblages are a useful framework for characterising ecological communities and revealing patterns in the environment. In the present study, multivariate analyses are used to discern large-scale patterns in fish assemblages in the Murray–Darling Basin, based on information from the Murray–Darling Basin Authority’s first Sustainable Rivers Audit (SRA), conducted in 2004–2007. The Basin is classified into nine regions with similar historical fish assemblages (i.e. without major human intervention), using data that combine expert opinion, museum collections and historical records. These regions are (1) Darling Basin Plains, (2) Northern Uplands, (3) Murray Basin Plains, (4) Northern Alps, (5) Central East, (6) Avoca Lowland, (7) Southern Slopes, (8) Southern Alps and (9) South-Western Slopes. Associations between assemblages and physical variables (catchment area, elevation, hydrology, precipitation, temperature) are identified and used to reinforce the definitions of regions. Sustainable Rivers Audit data are compared with the historical assemblages, highlighting species whose range and abundance have changed since the early 19th century. Notable changes include declines in native species such as silver perch, river blackfish, mountain galaxias, Macquarie perch, trout cod and freshwater catfish, and the advent of alien species including common carp, eastern gambusia, goldfish, redfin perch, brown trout and rainbow trout. Less significant declines are evident for native carp gudgeons, golden perch, two-spined blackfish, bony herring and flathead gudgeon. Changes are evident even in regions where habitats have been little disturbed in the past 200 years.
APA, Harvard, Vancouver, ISO, and other styles
6

Anderson, JR, AK Morison, and DJ Ray. "Age and growth of Murray Cod, Maccullochella peelii (Perciformes: Percichthyidae), in the Lower Murray-Darling Basin, Australia, from thin-sectioned Otoliths." Marine and Freshwater Research 43, no. 5 (1992): 983. http://dx.doi.org/10.1071/mf9920983.

Full text
Abstract:
Transverse thin sections (0.5 mm thick) of sagittal otoliths from 290 Murray cod up to 1400 mm in total length and 47.3 kg in weight were used to establish the age and growth of cod in the lower Murray-Darling Basin, including comparisons of recent (1986-91) and past (1949-51) growth rates and growth in different waters. The maximum estimated age was 48 years. Quantitative and qualitative analysis of the seasonal changes in otolith marginal increments showed that annuli in fish of all ages were laid down each spring, and 1 October was assigned as the birthday. The thin-sectioning method was validated by comparing age estimates for 55 Murray cod from Lake Charlegrark (age 0-21 years), which had been validated by using burnt and polished half-otoliths. The new method had an accuracy of 96.4% and it offers major advantages in ease of preparation, reading, and batch-handling of large numbers of otoliths. The precision of the method, estimated as an average error for four readers, was 5.4% (3.0% after ignoring discrepancies in relation to annuli on otolith edges). There was a linear relationship between otolith weight and fish age and an exponential relationship between otolith weight and fish length. Both otolith length and otolith width reached an asymptote at about 15 years, when fish length also approached its maximum. However, otolith thickness continued to increase throughout the life of the fish and, after about 15 years, contributed most to the increase in otolith weight. This confirmed that otoliths continued to grow in thickness and that annuli were laid down throughout life, and that cod could be aged reliably to the maximum age. The annulus pattern is very clear and distinct, and the reading techniques are fully described, including recognition of 'larval' and 'false' rings. Various differences were found in the growth rates, and the length-weight relationships for males and females, for cod caught in 1986-91 and those caught in 1949-51, and various subpopulations are discussed. The von Bertalanffy growth parameters (all individuals combined) were estimated at L∞ = 1202 mm, k=0.108 and t0= -0.832. The availability of a reliable ageing method provides the first opportunity to determine year of birth and thus to examine the age structure of populations and to effectively manage cod populations that have declined in abundance.
APA, Harvard, Vancouver, ISO, and other styles
7

Nock, Catherine J., Martin S. Elphinstone, Stuart J. Rowland, and Peter R. Baverstock. "Phylogenetics and revised taxonomy of the Australian freshwater cod genus, Maccullochella (Percichthyidae)." Marine and Freshwater Research 61, no. 9 (2010): 980. http://dx.doi.org/10.1071/mf09145.

Full text
Abstract:
Determining the phylogenetic and taxonomic relationships among allopatric populations can be difficult, especially when divergence is recent and morphology is conserved. We used mitochondrial sequence data from the control region and three protein-coding genes (1253 bp in total) and genotypes determined at 13 microsatellite loci to examine the evolutionary relationships among Australia’s largest freshwater fish, the Murray cod, Maccullochella peelii peelii, from the inland Murray–Darling Basin, and its allopatric sister taxa from coastal drainages, the eastern freshwater cod, M. ikei, and Mary River cod, M. peelii mariensis. Phylogenetic analyses provided strong support for taxon-specific clades, with a clade containing both of the eastern taxa reciprocally monophyletic to M. peelii peelii, suggesting a more recent common ancestry between M. ikei and M. peelii mariensis than between the M. peelii subspecies. This finding conflicts with the existing taxonomy and suggests that ancestral Maccullochella crossed the Great Dividing Range in the Pleistocene and subsequently diverged in eastern coastal drainages. Evidence from the present study, in combination with previous morphological and allozymatic data, demonstrates that all extant taxa are genetically and morphologically distinct. The taxonomy of Maccullochella is revised, with Mary River cod now recognised as a species, Maccullochella mariensis, a sister species to eastern freshwater cod, M. ikei. As a result of the taxonomic revision, Murray cod is M. peelii.
APA, Harvard, Vancouver, ISO, and other styles
8

Whiterod, Nick S. "The swimming capacity of juvenile Murray cod (Maccullochella peelii): an ambush predator endemic to the Murray-Darling Basin, Australia." Ecology of Freshwater Fish 22, no. 1 (September 25, 2012): 117–26. http://dx.doi.org/10.1111/eff.12009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Svozil, D. P., R. K. Kopf, R. J. Watts, and A. O. Nicholls. "Temperature-dependent larval survival and growth differences among populations of Murray cod (Maccullochella peelii)." Marine and Freshwater Research 70, no. 4 (2019): 459. http://dx.doi.org/10.1071/mf18178.

Full text
Abstract:
Different populations of organisms can vary widely in their responses to environmental conditions and this variation is fundamental to the persistence of species. Using a common garden experiment, we examined temperature-specific growth and survival responses of larvae among populations of Murray cod (Maccullochella peelii) from four regions of the Murray–Darling Basin (MDB), Australia. Fish larvae from the four regions differed significantly in their growth and survival responses at high water temperatures ≥26°C. At 30°C, survival rates of larvae by Day 20 ranged from 0% in the Lachlan region to 82% in the southern region. Opposite to the geographical differences in survival, growth of larvae was highest in the Lachlan (14.8–15.4-mm standard length 95% CI) and lowest in the southern region (13.4–13.9-mm standard length 95% CI) at 26°C where sufficient numbers survived for comparison. Geographical differences in growth and survival responses did not follow a consistent latitudinal gradient as observed for other species, but were closely linked with previously described genetic structure. Our results suggest that the upper thermal limit of M. peelii larvae is near common river temperatures in the MDB and that maintaining functional response diversity and underlying genetic diversity will be important for ensuring the resilience of this apex predator under future climate change.
APA, Harvard, Vancouver, ISO, and other styles
10

Gwinn, Daniel C., Paul Brown, Jakob C. Tetzlaff, and Mike S. Allen. "Evaluating mark - recapture sampling designs for fish in an open riverine system." Marine and Freshwater Research 62, no. 7 (2011): 835. http://dx.doi.org/10.1071/mf10217.

Full text
Abstract:
Sampling designs for effective monitoring programs are often specific to individual systems and management needs. Failure to carefully evaluate sampling designs of monitoring programs can lead to data that are ineffective for informing management objectives. We demonstrated the use of an individual-based model to evaluate closed-population mark–recapture sampling designs for monitoring fish abundance in open systems, using Murray cod (Maccullochella peelii (Mitchell, 1838)) in the Murray–Darling River basin, Australia, as an example. The model used home-range, capture-probability and abundance estimates to evaluate the influence of the size of the sampling area and the number of sampling events on bias and precision of mark–recapture abundance estimates. Simulation results indicated a trade-off between the number of sampling events and the size of the sampling reach such that investigators could employ large sampling areas with relatively few sampling events, or smaller sampling areas with more sampling events to produce acceptably accurate and precise abundance estimates. The current paper presents a framework for evaluating parameter bias resulting from migration when applying closed-population mark–recapture models to open populations and demonstrates the use of simulation approaches for informing efficient and effective monitoring-program design.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Murray cod Murray-Darling Basin"

1

Baumgartner, Lee Jason, and n/a. "Effects of weirs on fish movements in the Murray-Darling Basin." University of Canberra. Resource, Environmental & Heritage Sciences, 2005. http://erl.canberra.edu.au./public/adt-AUC20051129.142046.

Full text
Abstract:
Dams and weirs are widely implicated in large-scale declines in both the range and abundance of aquatic fauna. Although many factors are involved, such declines are commonly attributed to the prevention or reduction of migration, reductions in available habitat, alteration of natural flow regimes and changes to physicochemical characteristics. In Australia, studies into the ecological effects of these impacts are limited, and have concentrated mainly on species of recreational and commercial importance. Subsequently, the adverse effects of dams and weirs, and suitable methods of mitigation, remain largely unknown for many other taxa. Therefore, the major aim of this thesis is to investigate the ecological effects of dam and weir construction on previously unstudied migratory assemblages of fish and macroinvertebrates in the Murray-Darling Basin. It is anticipated that the results of these studies will feed back into improved management strategies that help arrest the previously observed declines of aquatic fauna. Initially, fish communities were sampled, by boat electrofishing, from both reference sites and downstream of Balranald and Redbank weirs on the lower reaches of the Murrumbidgee River, Australia. Sampling was stratified over large spatial and temporal scales to gain a comprehensive understanding of species most affected by the presence of these two barriers. In general, the weirs obstructed fish migrations during summer and autumn and many species of small-bodied fish such as Australian smelt, western carp gudgeon, fly-specked hardyhead and crimson-spotted rainbowfish accumulated downstream of Balranald Weir. In addition, downstream accumulations of juveniles of larger-bodied species such as bony herring, common carp and goldfish were also detected. Although many previous studies had either documented or hypothesised that upstream migrating fish accumulate downstream of migration barriers, none attempted to quantify the size of such populations. Therefore, a simple but efficient method to estimate the size of migratory populations was assessed at the Balranald Weir site. The application of two commonly used estimation techniques yielded relatively reliable results for seven species that accumulated downstream of the weir. Population size estimates were greatest for most species during summer and autumn, where accumulations as high as 800 fish per day were detected. The largest calculated population size estimates, in addition to the greatest temporal variation, of any individual species was observed in bony herring. Given the simplicity of the technique and the relative accuracy of population estimates, it was concluded that these methods could easily be applied to other weirs where the size of migratory populations is of particular interest. A study investigating the effects of Yanco Weir on the diets of three migratory percichthyid species, Murray cod, trout cod and golden perch was also conducted. Observed spatial variation in a number of trophic processes strongly implicated Yanco Weir as a major contributor to increased competition among percichthyid species on the Murrumbidgee River. The greater relative abundance of percichthyids from downstream samples, combined with increases in dietary overlap and a greater percentage of empty stomachs, also suggested percichthyids may be significantly affecting the relative abundance of potential prey items such as freshwater prawns and Australian smelt. These significant changes in dietary composition were likely related to migratory behaviour, as these species accumulated downstream of the weir, and could be readily expected at other sites where passage is obstructed. It was suggested that the construction of suitable fish passage facilities would effectively reduce the probability of migratory fish accumulating and, subsequently, potential effects of dams and weirs on trophic processes. Since it was established that dams and weirs of the Murrumbidgee River were significantly affecting migratory fish communities, an innovative but relatively inexpensive fishway design, the Deelder fish lock (after Deelder, 1958), was constructed and assessed for wider application throughout the Murray-Darling Basin. The Deelder lock was effective at mitigating the effects of Balranald Weir by providing passage for a wide range of size classes and species of fish; but importantly, the structure enabled the passage of most species previously observed to accumulate downstream of the structure. Most significant was the ability of the fish lock to pass substantial numbers of small-bodied fish, which were previously not considered migratory, suggesting that these species should be considered when developing options to mitigate the effects of other dams and weirs throughout the Murray-Darling Basin. A significant finding of this study was the realisation that substantially more species and size classes of Australian native fish are migratory than previously thought. Subsequently, it is recommended that, when designing facilities to mitigate the effects of a dam or weir, the structure of the entire migratory community is considered when developing operating parameters. Various options for mitigating the effects of dams and weirs are discussed, but it was concluded that the construction of effective fishways would be the most appropriate means of restoring migration pathways to Australian native fish. A strategic approach for assessing and adaptively mitigating the effects of dams and weirs is presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Chotipuntu, Piyapong, and n/a. "Salinity sensitivity in early life stages of an Australian freshwater fish, Murray cod (Maccullochella peelii peelii Mitchell 1838)." University of Canberra. Resource, Environmental & Heritage Sciences, 2003. http://erl.canberra.edu.au./public/adt-AUC20060331.115030.

Full text
Abstract:
The Murray cod (Maccullochella peelii peelii Mitchell 1838) is Australia�s largest freshwater fish. Once highly abundant in the Murray-Darling river system, populations have drastically declined in recent decades. Many causes for this decline have been proposed, including over-fishing, habitat loss and altered river flow regimes. This study hypothesised that elevated salinities have led to selective mortality in some developmental stages, which have in turn depleted stock recruitment and adult populations. The objectives of this study were to determine the optimal, threshold, upper sublethal and lethal salinities for development of eggs, yolk-sac larvae, fry and fingerlings of M. peelii peelii. Investigation the impact of salinity on fertilisation utilised gametes of trout cod (M. macquariensis, Cuvier 1829) instead of M. peelii peelii. Studies were carried out in a controlled laboratory environment using test media prepared from commercial sea salt. The results showed that the eggs of the trout cod hatched only when fertilised and incubated in freshwater, and only larvae hatched in freshwater survived through the yolk absorption period of 12 days. Yolk utilisation efficiencies were not significantly different among the salinities of 0-0.30 g/L. There was no effect of pre- or post- fertilising processes on the salinity tolerances of yolk-sac larvae. No larvae survived at salinities higher than 0.30 g/L during the yolk utilisation period. Lethal salinity concentration in Trout cod and Murray cod larvae was exposure time dependent. The 1 day LC50 of the larvae was 1.97 and 2.33 g/L respectively, compared with the 12 day LC50 values of 0.50 and 0.35 g/L respectively. The threshold (no effect level) salinities of larvae of Trout cod and Murray cod were 0.46 and 0.34 g/L respectively at 12 days exposure. The salinity sensitivities of fry of Murray cod were moderated by increasing pH between pH 6.2 and 8.8, and stimulated by increasing temperatures from 15 to 30°C. The optimal salinity was only slightly affected by temperature. The threshold and upper sublethal salinities varied slightly depending on feeding regime. The salinity sensitivities of fingerlings of Murray cod were: LC50 = 13.7 g/L; optimal salinity from 4.6 to 5.0 g/L ; threshold salinity from 5.9 to 7.4 g/L, and upper sub-lethal salinity from 9.2 to 9.9 g/L � with the range in all cases affected by acclimation period salinity. The blood osmolality at LC50 of the fingerlings was 444 mOsmol/kgH2O or equivalent to 14.2 g/L, and the dehydration rate was 4.8%. The osmolality increased significantly in salinities higher than 9.0 and 6.0 g/L when fish were exposed for a period of 1 day and 41 days respectively. The oxygen consumption increased significantly in salinities higher than 8.0 g/L. Distortion of the notochord and corrosive skin syndrome were major symptoms describing sub-lethal effects found in the embryos, and fry and fingerlings of Murray cod respectively. Noting the risks of extrapolating directly from laboratory to field conditions, it is predicted that when salinity in natural habitats increases above 0.34 g/L a significant impact on Murray cod recruitment will result.
APA, Harvard, Vancouver, ISO, and other styles
3

Foster-Thorpe, Frances C. "Accountability interactions : mutliple accountabilities in the Murray-Darling basin plan." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:aac0e39b-f397-4292-baf9-e99c93c98c7d.

Full text
Abstract:
This thesis investigates whether different public accountability forums interact with one another when they oversee the same decision maker. It contributes to the larger study of how decision makers are held to account in constitutional democracies where the simultaneous operation of multiple accountability relationships has become routine. Looking beyond the dominant assumption that multiple forums autonomously assess a decision maker's accountability against different and diverging standards, I aim to understand whether forums can influence the standards against which other forums evaluate the same decision maker. I draw on political and normative understandings of public accountability to answer one central question: do different public accountability forums interact with one another in a way that influences the scope of what a decision maker is obliged to account for and the normative standards against which that account is evaluated? Answering this research question involves examining the mechanisms by which interactions might occur and the motivations of actors to interact. I begin by critically reviewing the literature on multiple accountabilities, arguing that existing approaches can only partially explain how public accountability is constructed in multiple accountability regimes. I argue the focus on typologies of accountability emphasise the attributes of individual forums and overlook the broader dynamics of the accountability regime. I then develop an analytical framework to examine how the interactions between different forums, and other actors, might reshape the accountability dialogue. This framework is used to analyse the case of the Murray-Darling Basin Plan in Australia (2008-2012). By presenting a contextSrich analysis of interactions between forums, and other actors, I find that multiple forums act in concert with one another and other actors to contest and then reshape the standards against which the two decision makers are evaluated. The thesis concludes by discussing the implications of recognising accountability interactions for understanding multiple accountability regimes.
APA, Harvard, Vancouver, ISO, and other styles
4

Dwyer, Brian James, University of Western Sydney, College of Social and Health Sciences, and School of Natural Sciences. "Aspects of governance and public participation in remediation of the Murray-Darling Basin." THESIS_CSHS_NS_Dwyer_B.xml, 2004. http://handle.uws.edu.au:8081/1959.7/776.

Full text
Abstract:
This thesis addresses the question “What is the essence of the Murray Darling river system conundrum that is usually posed as an issue of environmental remediation?”- following perceptions of problems in catchment strategy formulation regarding project selection and public consultation. The question is initially seen as having four facets – governance, public, participation and remediation. An initial literature review indicated that previous examination of these topics seemed insufficiently radical or comprehensive for the enquiry’s purposes, seeming not to attribute full humanness to members of the public. A fieldwork program of quasi-anthropological nature was conducted. Interpretation of the fieldwork reports focuses primarily on the lack of attribution of full humanness to members of the public. Interpretive techniques including a phenomenological-style process was applied and found that the district houses a number of unrecognised people “nexors’ occupying linking or nexus roles who exercise personal skills and initiatives to underpin effective remediation outcomes. Towards the end of the fieldwork program, further literature indicated that the initial four-facet nature of the enquiry should be reformulated, to include the overall nature of western society as it appears in the district (in place of participation), to reconstitute the concept of remediation more radically. Governance as a topic is broader than the ways in which it appears in the examined district, and suitable hybridizing of competing world view concepts remains unresolved in this thesis
Doctor of Philosophy (PhD)
APA, Harvard, Vancouver, ISO, and other styles
5

King, Alison Jane 1974. "Recruitment ecology of fish in floodplain rivers of the southern Murray-Darling Basin, Australia." Monash University, Dept. of Biological Sciences, 2002. http://arrow.monash.edu.au/hdl/1959.1/8391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dwyer, Brian James. "Aspects of governance and public participation in remediation of the Murray-Darling Basin /." View thesis, 2004. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20060517.130206/index.html.

Full text
Abstract:
Thesis (Ph.D.) -- University of Western Sydney, 2004.
"A thesis submitted for the degree of Doctor of Philosophy of the University of Western Sydney, Sydney, January 2004." Includes bibliography : leaves 359 - 369.
APA, Harvard, Vancouver, ISO, and other styles
7

Boys, Craig Ashley, and n/a. "Fish-Habitat Associations in a Large Dryland River of the Murray-Darling Basin, Australia." University of Canberra. Resource, Environmental & Heritage Sciences, 2007. http://erl.canberra.edu.au./public/adt-AUC20070807.112943.

Full text
Abstract:
Many aspects concerning the association of riverine fish with in-channel habitat remain poorly understood, greatly hindering the ability of researchers and managers to address declines in fish assemblages. Recent insights gained from landscape ecology suggest that small, uni-scalar approaches are unlikely to effectively determine those factors that influence riverine structure and function and mediate fish-habitat associations. There appears to be merit in using multiple-scale designs built upon a geomorphologically-derived hierarchy to bridge small, intermediate and large spatial scales in large rivers. This thesis employs a hierarchical design encompassing functional process zones (referred to hereafter as zones), reaches and mesohabitats to investigate fish-habitat associations as well as explore patterns of in-channel habitat structure in one of Australia's largest dryland river systems; the Barwon-Darling River. In this thesis, empirical evidence is presented showing that large dryland rivers are inherently complex in structure and different facets of existing conceptual models of landscape ecology must be refined when applied to these systems. In-channel habitat and fish exist within a hierarchical arrangement of spatial scales in the riverscape, displaying properties of discontinuities, longitudinal patterns and patch mosaics. During low flows that predominate for the majority of time in the Barwon-Darling River there is a significant difference in fish assemblage composition among mesohabitats. There is a strong association between large wood and golden perch, Murray cod and carp, but only a weak association with bony herring. Golden perch and Murray cod are large wood specialists, whereas carp are more general in there use of mesohabitats. Bony herring are strongly associated with smooth and irregular banks but are ubiquitous in most mesohabitats. Open water (mid-channel and deep pool) mesohabitats are characterised by relatively low abundances of all species and a particularly weak association with golden perch, Murray cod and carp. Murray cod are weakly associated with matted bank, whereas carp and bony herring associate with this mesohabitat patch in low abundance. Nocturnal sampling provided useful information on size-related use of habitat that was not evident from day sampling. Both bony herring and carp exhibited a variety of habitat use patterns throughout the die1 period and throughout their lifetime, with temporal partitioning of habitat use by juvenile bony herring and carp evident. Much of the strong association between bony herring and smooth and irregular banks was due to the abundance of juveniles (<100mm in length) in these mesohabitats. Adult bony herring (>100mm length) occupied large wood more than smooth and irregular banks. At night, juvenile bony herring were not captured, suggesting the use of deeper water habitats. Adult bony herring were captured at night and occupjed large wood, smooth bank and irregular bank. Juvenile carp (<200mm length) were more abundant at night and aggregated in smooth and irregular banks more than any other mesohabitat patch. Adult carp (>200mm length) occupied large wood during both day and night. There is a downstream pattern of change in the fish assemblage among river zones, with reaches in Zone 2 containing a larger proportion of introduced species (carp and goldfish) because of a significantly lower abundance of native species (bony herring, golden perch and Murray cod) than all other zones. In comparison, the fish assemblage of Zone 3 was characterised by a comparatively higher abundance of the native species bony herring, golden perch and Murray cod. A significant proportion of the amongreach variability in fish assemblage composition was explained at the zone scale, suggesting that geomorphological influences may impose some degree of top-down constraint over fish assemblage distribution. Although mesohabitat composition among reaches in the Barwon-Darling River also changed throughout the study area, this pattern explained very little of the large-scale distribution of the fish assemblage, with most of the variability in assemblage distribution remaining unexplained. Therefore, although mesohabitat patches strongly influence the distribution of species within reaches, they explain very little of assemblage composition at intermediate zone and larger river scales. These findings suggest that small scale mesohabitat rehabilitation projects within reaches are unlikely to produce measurable benefits for the fish assemblage over intermediate and large spatial scales in the Barwon-Darling River. This indicates the importance taking a holistic approach to river rehabilitation that correctly identifies and targets limiting processes at the correct scales. The variable nature of flow-pulse dynamics in the Barwon-Darling River creates a shifting habitat mosaic that serves to maintain an ever-changing arrangement of habitat patches. The inundation dynamics of large wood habitat described in this thesis highlights the fragmented nature of mesohabitat patches, with the largest proportion of total in-channel large wood remaining unavailable to fish for the majority of the time. At low flows there is a mosaic of large wood habitat and with increasing discharge more potential large wood habitat becomes available and does so in a complex spatial manner. What results in this dryland river is a dynamic pattern of spatio-temporal patchiness in large wood habitat availability that is seen both longitudinally among different river zones and vertically among different heights in the river channel. Water resource development impacts on this shifting habitat mosaic. Projects undertaking both fish habitat assessment and rehabilitation need to carefully consider spatial scale since the drivers of fish assemblage structure can occur at scales well beyond that of the reach. Fish-habitat associations occurring at small spatial scales can become decoupled by process occurring across large spatial scales, making responses in the fish assemblage hard to predict. As rivers become increasingly channelised, there is an urgent need to apply research such as that conducted in this thesis to better understand the role that in-channel habitats play in supporting fish and other ecosystem processes. Habitat rehabilitation projects need to be refined to consider the appropriate scales at which fish assemblages associate with habitat. Failure to do so risks wasting resources and forgoes valuable opportunities for addressing declines in native fish populations. Adopting multi-scalar approaches to understanding ecological processes in aquatic ecosystems, as developed in this thesis, should be a priority of research and management. To do so will enable more effective determination of those factors that influence riverine structure and function at the approariate scale.
APA, Harvard, Vancouver, ISO, and other styles
8

Burdack, Doreen. "Water management policies and their impact on irrigated crop production in the Murray-Darling Basin, Australia." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7224/.

Full text
Abstract:
The economic impact analysis contained in this book shows how irrigation farming is particularly susceptible when applying certain water management policies in the Australian Murray-Darling Basin, one of the world largest river basins and Australia’s most fertile region. By comparing different pricing and non-pricing water management policies with the help of the Water Integrated Market Model, it is found that the impact of water demand reducing policies is most severe on crops that need to be intensively irrigated and are at the same time less water productive. A combination of increasingly frequent and severe droughts and the application of policies that decrease agricultural water demand, in the same region, will create a situation in which the highly water dependent crops rice and cotton cannot be cultivated at all.
Die ökonomische Folgenanalyse in diesem Buch zeigt, dass insbesondere Landwirte, die stark auf Bewässerung angewiesen sind, von Wasserregulierungsstrategien im Australischen Murray-Darling Becken betroffen sind. Dieses Gebiet ist eines der größten Flussbecken weltweit und zugleich Australiens fruchtbarste Region. Durch den Vergleich von verschiedenen Preisstrategien und anderen Ansätzen konnte mit Hilfe des Water Integrated Market Models herausgefunden werden, dass die Auswirkungen auf hochgradig wasserabhängige Feldfrüchte mit geringeren Wasserproduktivitäten am stärksten sind. Die Kombination von häufigeren und intensiveren Trockenzeiten und einer Regulierungspolitik mit dem Ziel, die Nachfrage nach Wasser zu verringern, führt dazu, dass in ein und derselben Region hochgradig wasserabhängige Feldfrüchte wie Reis und Baumwolle mit geringeren Wasserproduktivitäten nicht mehr angebaut werden können.
APA, Harvard, Vancouver, ISO, and other styles
9

Allen, David Andrew. "Electrical conductivity imaging of aquifers connected to watercourses : a thesis focused on the Murray Darling Basin, Australia." University of Technology, Sydney. Faculty of Science, 2007. http://hdl.handle.net/2100/428.

Full text
Abstract:
Electrical imaging of groundwater that interacts with surface watercourses provides detail on the extent of intervention needed to accurately manage both resources. It is particularly important where one resource is saline or otherwise polluted, where spatial quantification of the interacting resources is critical to water use planning and where losses from surface waterways need to be minimized in order to transport water long distances. Geo-electric arrays or transient electromagnetic devices can be towed along watercourses to image electrical conductivity (EC) at multiple depths within and beneath those watercourses. It has been found that in such environments, EC is typically related primarily to groundwater salinity and secondarily to clay content. Submerged geo-electric arrays can detect detailed canal-bottom variations if correctly designed. Floating arrays pass obstacles easily and are good for surveying constricted rivers and canals. Transient electromagnetic devices detect saline features clearly but have inferior ability to detect fine changes just below beds of watercourses. All require that water depth be measured by sonar or pressure sensors for successful elimination of effects of the water layer on the data. The meandering paths of rivers and canals, combined with the sheer volume of data typically acquired in waterborne surveys, results in a geo-referencing dilemma that cannot be accommodated using either 2D imaging or 3D voxel imaging. Because of this, software was developed by the author which allows users to view vertical section images wrapped along meandering paths in 3D space so that they resemble ribbons. Geo-electric arrays suitable for simultaneous imaging of both shallow and deep strata need exponentially spread receiver electrodes and elongated transmitter electrodes. In order to design and facilitate such arrays, signed monopole notation for arrays with iv segmented elongated electrodes was developed. The new notation greatly simplified generalized geo-electric array equations and led to processing efficiency. It was used in the development of new array design software and automated inversion software including a new technique for stable inversion of datasets including data with values below noise level. The Allen Exponential Bipole (AXB) array configuration was defined as a collinear arrangement of 2 elongated transmitter electrodes followed by receiver electrodes spaced exponentially from the end of the second transmitter electrode. A method for constructing such geo-electric arrays for use in rivers and canals was developed and the resulting equipment was refined during the creation of an extensive set of EC imaging case studies distributed across canals and rivers of the Australian Murray- Darling Basin. Man made and natural variations in aquifers connected to those canals and rivers have been clearly and precisely identified in more than 1000 kilometres of EC imagery.
APA, Harvard, Vancouver, ISO, and other styles
10

Judge, David, and n/a. "The Ecology of the polytopic freshwater turtle species, Emydura macquarii macquarii." University of Canberra. Resource, Environmental and Heritage Sciences, 2001. http://erl.canberra.edu.au./public/adt-AUC20050418.151350.

Full text
Abstract:
An ecological study of Emydura macquarii macquarii in the south-east region of Australia was conducted between October 1995 and March 1998. E. m. macquarii is an abundant and widespread species of short-necked turtle that is highly variable in morphology and related life history attributes. No study in Australia had previously looked at geographic variation in biological traits in freshwater turtles, hence the level of variation in E. m. macquarii had been poorly documented. The principal aims of this study were to investigate the plasticity of life history traits across populations of E. m. macquarii and to speculate on possible causes. A more intensive study was also conducted on a rare and suspected declining population of E. m. macquarii in the Nepean River to determine whether relevant management and conservation measures; were required. The study involved comparing various life history attributes between five populations of E. m. macquarii (Brisbane River, Macleay River, Hunter River, Nepean River and Murray River). The populations were specifically chosen to account for the range of variation in body size within this subspecies. Body size (maximum size, size at maturity, growth rates), population structures (sex ratios, age and size structures), reproductive traits (clutch mass, clutch size, egg size, egg content, etc.) and other attributes were collected for each population. Patterns of life history traits, both within and among populations, were explored so that causes of variation could be sought. Geographic variation in Body Size and other Related Life History Traits Body size in E. m. macquarii differed markedly between populations. Females ranged in maximum sizes (carapace length) of 180 mm in the Macleay River to over 300 mm in the Murray River. E. m. macquarii was sexually dimorphic across all populations with females larger than males in all cases. Maximum body size was positively related to the size at which a turtle matures. The size at maturity in turn was positively related to juvenile growth rates. Age was a more important factor for males in terms of timing of maturity whereas in females it was body size. Morphological variation was not only great between populations, but also within populations. Maximum body size was unrelated to latitude; hence it was inferred that habitat productivity had the most important influence on geographic variation in body size. Population structures also differed between populations. Sex ratios did not differ in the Brisbane, Macleay and Murray Rivers. However, a male bias was present in the Nepean River population and a female bias in the Hunter River. Juveniles were scarce in the Brisbane and Macleay Rivers but numerous in the Nepean and Hunter Rivers. Geographic Variation in Reproduction There was large variation in reproductive traits across populations of E. m. macquarii. Nesting season began as early as mid-September in the Brisbane River and as late as December in the Hunter River, and continued until early January. Populations in the Hunter and Murray Rivers are likely to produce only one clutch per season while populations from the Macleay and Nepean Rivers can produce two, and on some occasions, three clutches annually. The majority of females would appear to reproduce every year. Clutch mass, clutch size, and egg size varied greatly both within and among populations. A large proportion of variation in reproductive traits was due to the effects of body size. E. m. macquarii from large-bodied populations such as in the Brisbane and Murray Rivers produced bigger eggs than small-bodied populations. Within a population, clutch mass, clutch size, and egg size were all correlated with body size, except the Nepean River. The variability of egg size was smaller in large-bodied populations where egg size was more constant. Not all variation in reproductive traits was due to body size. Some of this variation was due to annual differences within a population. Reproductive traits within a population are relatively plastic, most likely a result of changing environmental conditions. Another source is the trade-off between egg size and clutch size. A negative relationship was found between egg size and clutch size (except the Brisbane River). Reproductive variation was also influenced by latitudinal effects. Turtles at lower latitudes produces more clutches, relatively smaller clutch sizes, clutch mass and larger eggs than populations at higher latitudes. Annual reproductive output is greater in tropical populations because they can produce more clutches per year in an extended breeding season. Eggs that were incubated at warmer temperatures hatched faster and produced smaller hatchlings. Incubation temperatures above 30�C increased egg mortality and hatchling deformities, suggesting this is above the optimum developmental temperature for E. m. macquarii. Hatchling size was positively related to egg size, hence hatchling sizes was on average larger in the Murray and Brisbane rivers. However, population differences remained in hatchling size after adjustments were made for egg size. For example, hatchlings from the Hunter River were smaller than those from the Macleay River despite the egg size being the same. These differences were most likely due to the shorter incubation periods of hatchlings from the Hunter River. Nepean River The Nepean River population of E. m. macquarii is at the southern coastal limit of its range. This is a locally rare population, which is believed to be declining. This study aimed at determining the distribution, abundance, and population dynamics to assess whether any conservation management actions were required. E. m. macquarii in the Nepean River was mainly concentrated between Penrith and Nortons Basin, although even here it was found at a very low density (10.6 - 12.1 per hectare). The largest male caught was 227 mm while the largest female was 260.4 mm. Males generally mature between 140 - 150 mm in carapace length and at four or five years of age. Females mature at 185 -195 mm and at six to seven years of age. Compared with other populations of E. macquarii, Nepean River turtles grow rapidly, mature quickly, are dominated by juveniles, have a male bias and have a high reproductive output. Far from being a population on the decline, the life history traits suggest a population that is young and expanding. There are considered to be two possible scenarios as to why the Nepean River population is at such a low density when it appears to be thriving. The first scenario is that the distribution of the population on the edge of its range may mean that a small and fluctuating population size may be a natural feature due to sub-optimal environmental conditions. A second scenario is that the population in the Nepean River has only recently become established from dumped pet turtles.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Murray cod Murray-Darling Basin"

1

Connell, Daniel. Basin Futures: Water reform in the Murray-Darling Basin. Canberra: ANU Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Powell, J. M. The emergence of bioregionalism in the Murray-Darling Basin. Canberra: Murray-Darling Basin Commission, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hammer, Chris. The river: A journey through the Murray-Darling Basin. Carlton, Vic: Melbourne University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

J, Taylor. Indigenous people in the Murray-Darling Basin: A statistical profile. Canberra, ACT, Australia: Center for Aboriginal Economic Policy Research, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Water policy reform: Lessons in sustainability from the Murray Darling Basin. Cheltenham: Edward Elgar, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rothenburg, Daniel. Irrigation, Salinity, and Rural Communities in Australia's Murray-Darling Basin, 1945–2020. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18451-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Murray-Darling Basin, Australia. Elsevier, 2021. http://dx.doi.org/10.1016/c2018-0-01363-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Council, Murray-Darling Basin Ministerial, ed. Murray-Darling Basin natural resources management strategy. [N.S.W., Australia?]: The Council, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Murray-Darling basin natural resources management strategy. [Australia]: Murray-Darling Basin Ministerial Council, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dragonflies (odonata) of the Murray-Darling Basin. Independently Published, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Murray cod Murray-Darling Basin"

1

Pittock, Jamie. "Murray–Darling River Basin (Australia)." In The Wetland Book, 1–11. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6173-5_102-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pittock, Jamie. "Murray-Darling River Basin (Australia)." In The Wetland Book, 1887–96. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pittock, Jamie. "Murray-Darling Basin: Conservation and Law." In The Wetland Book, 1–9. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6172-8_136-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pittock, Jamie. "Murray-Darling Basin: Conservation and Law." In The Wetland Book, 561–69. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-90-481-9659-3_136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thomas, Rachael F., and Joanne F. Ocock. "Macquarie Marshes: Murray-Darling River Basin (Australia)." In The Wetland Book, 1–12. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6173-5_209-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gell, Peter. "The Coorong: Murray-Darling River Basin (Australia)." In The Wetland Book, 1–11. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-6173-5_210-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thomas, Rachael F., and Joanne F. Ocock. "Macquarie Marshes: Murray-Darling River Basin (Australia)." In The Wetland Book, 1897–908. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gell, Peter. "The Coorong: Murray-Darling River Basin (Australia)." In The Wetland Book, 1909–19. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Booth, Trevor H. "Forest Landscape Restoration in Australia’s Murray-Darling Basin." In A Goal-Oriented Approach to Forest Landscape Restoration, 355–71. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5338-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Powell, Joseph M. "Interregional Environmental Policy in Australia’s Murray-Darling Basin." In The GeoJournal Library, 55–73. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4888-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Murray cod Murray-Darling Basin"

1

Li, L., N. Okello, M. Pham, S. K. Saleem, W. Qiu, R. Evans, and I. Mareels. "Model predictive control of Murray-darling basin networks." In 2011 23rd Chinese Control and Decision Conference (CCDC). IEEE, 2011. http://dx.doi.org/10.1109/ccdc.2011.5968277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Governance and drought in the murray darling basin." In 2011 GEOSS Workshop XL - Managing Drought Through Earth Observation. IEEE, 2011. http://dx.doi.org/10.1109/geoss.2011.5948943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"A sediment budget for the Queensland Murray Darling Basin." In 22nd International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2017. http://dx.doi.org/10.36334/modsim.2017.l23.davidson.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marohasy, J., and J. Abbot. "Deconstructing the native fish strategy for Australia’s Murray Darling catchment." In RIVER BASIN MANAGEMENT 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/rbm130281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Exploring post 2011–12 drought in the Murray–Darling Basin." In 23rd International Congress on Modelling and Simulation (MODSIM2019). Modelling and Simulation Society of Australia and New Zealand, 2019. http://dx.doi.org/10.36334/modsim.2019.k22.nahar.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Doody, T., and I. Overton. "Environmental management of riparian tree health in the Murray-Darling Basin, Australia." In RIVER BASIN MANAGEMENT 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/rm090181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"An ecological trajectories architecture for use in the Murray–Darling Basin." In 22nd International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2017. http://dx.doi.org/10.36334/modsim.2017.g6.stratford.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Forghani, Alan, and Jason Alexandra. "Managing water resources in the murray-darling basin using earth observation." In 2011 GEOSS Workshop XL - Managing Drought Through Earth Observation. IEEE, 2011. http://dx.doi.org/10.1109/geoss.2011.5948944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Generating two-monthly surface water images for the Murray-Darling Basin." In 24th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, 2021. http://dx.doi.org/10.36334/modsim.2021.g5.ticehurst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dahlin, T., and D. Allen. "EC imaging of aquifers beneath watercourses of the Murray Darling Basin, Australia." In 69th EAGE Conference and Exhibition - Workshop Package. European Association of Geoscientists & Engineers, 2007. http://dx.doi.org/10.3997/2214-4609.201405102.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Murray cod Murray-Darling Basin"

1

Grafton, R. Quentin, Clay Landry, Gary Libecap, and Robert O'Brien. Water Markets: Australia's Murray-Darling Basin and the US Southwest. Cambridge, MA: National Bureau of Economic Research, March 2010. http://dx.doi.org/10.3386/w15797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Melrose, Rachel, Jeff Kingwell, Leo Lymburner, and Rohan Coghlan. Murray-Darling Basin vegetation monitoring project : using time series Landsat Satellite data for the assessment of vegetation control. Geoscience Australia, 2013. http://dx.doi.org/10.11636/record.2013.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography