To see the other types of publications on this topic, follow the link: Muon Spin Relaxation spectroscopy.

Journal articles on the topic 'Muon Spin Relaxation spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Muon Spin Relaxation spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tesi, Lorenzo, Zaher Salman, Irene Cimatti, Fabrice Pointillart, Kevin Bernot, Matteo Mannini, and Roberta Sessoli. "Isotope effects on the spin dynamics of single-molecule magnets probed using muon spin spectroscopy." Chemical Communications 54, no. 56 (2018): 7826–29. http://dx.doi.org/10.1039/c8cc04703k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McKenzie, Iain. "Radical addition to ruthenocene at low temperatures: characterization of ruthenocenyl radicals by μSR spectroscopy." Canadian Journal of Chemistry 96, no. 3 (March 2018): 358–62. http://dx.doi.org/10.1139/cjc-2017-0207.

Full text
Abstract:
The radicals formed by muonium (Mu) addition to ruthenocene at low temperature (4–200 K) have been characterized by transverse field muon spin rotation (TF-μSR) and avoided level crossing muon spin resonance (ALC-μSR) spectroscopy. The structures of the muoniated radicals have been identified by comparing the experimentally measured muon hyperfine coupling constants with values obtained from DFT calculations (UB3LYP/DGDZVP). Mu addition was observed at the ruthenium and at the cyclopentadiene (Cp) rings, both from the exterior and interior directions. Closer agreement between the DFT calculations and the experimental values are obtained if it is assumed the structures of the Mu adducts of the Cp rings are distorted due to interactions with neighbouring molecules. Changes in the ALC-μSR spectra with temperature indicated that the electron spin relaxation rate of the Cp adducts increases with temperature; however, the specific spin relaxation mechanism is unknown.
APA, Harvard, Vancouver, ISO, and other styles
3

Mitchell, P. C. H., D. A. Green, E. Payen, and C. A. Scott. "Modelling hydrogen transport in molybdenum disulfide catalysts with muon spin relaxation spectroscopy." Magnetic Resonance in Chemistry 38, no. 13 (2000): S43—S48. http://dx.doi.org/10.1002/1097-458x(200006)38:13<::aid-mrc697>3.0.co;2-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McClelland, Innes, Beth Johnston, Peter J. Baker, Marco Amores, Edmund J. Cussen, and Serena A. Corr. "Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials." Annual Review of Materials Research 50, no. 1 (July 1, 2020): 371–93. http://dx.doi.org/10.1146/annurev-matsci-110519-110507.

Full text
Abstract:
We review recent applications of positive muon spin relaxation (μSR) spectroscopy as an active probe of ion diffusion in energy storage materials. μSR spectroscopy allows the study of ionic diffusion in solid-state materials on a time scale between 10−5 and 10−8 s where most long-range and consecutive short-range jumps of ions between interstitial sites occur. μSR also allows one to probe and model ionic diffusion in materials that contain magnetic ions, since both electronic and nuclear contributions to the muon depolarization can be separated, making μSR an excellent technique for the microscopic study of the ionic motions in crystalline materials. We highlight a series of battery materials for which μSR has provided insight into intrinsic ionic conduction and magnetic properties without interference of external factors, such as the presence of magnetic ions, macroscopic particle morphologies, or elaborate measurement setups.
APA, Harvard, Vancouver, ISO, and other styles
5

Nishimura, Katsuhiko, Kenji Matsuda, Takahiro Namiki, Seungwon Lee, Norio Nunomura, Teiichiro Matsuzaki, Isao Watanabe, and Francis L. Pratt. "Solute-vacancy clustering in Al–Mg–Si alloy studied by muon spin relaxation spectroscopy." Journal of Japan Institute of Light Metals 67, no. 5 (2017): 151–55. http://dx.doi.org/10.2464/jilm.67.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gupta, Anu, A. D. Hillier, M. T. F. Telling, and S. K. Srivastava. "Local magnetic behaviour of highly disordered undoped and Co-doped Bi2Se3 nanoplates: a muon spin relaxation study." Nanotechnology 33, no. 21 (February 28, 2022): 215701. http://dx.doi.org/10.1088/1361-6528/ac5285.

Full text
Abstract:
Abstract Magnetism induced by defects in nominally non-magnetic solids has attracted intense scientific interest in recent years. The local magnetism in highly disordered undoped and Co-doped topological insulator (TI) Bi2Se3 nanoplates has been investigated by muon spin relaxation (μSR). Using μSR spectroscopy, together with other macroscopic characterizations, we find that these nanoplates are composed of a core with both static fields and dynamically fluctuating moments, and a shell with purely dynamically fluctuating moments. The fluctuations in the core die out at low temperatures, while those in the shell continue till 2 K. When Bi2Se3 is doped with Co, the static magnetic component increases, whilst keeping the dual (static-plus-dynamic) nature intact. The findings indicate that highly disordered TI’s could constitute a new class of promising magnetic materials that can be engineered by magnetic impurity doping.
APA, Harvard, Vancouver, ISO, and other styles
7

Angel, Julia, Retno Asih, Hironori Nomura, Tomoya Taniguchi, Kazuyuki Matsuhira, Muhammad Redo Ramadhan, Irwan Ramli, et al. "Magnetic Properties of Hole-Doped Pyrochlore Iridate (Y1-x-yCuxCay)2Ir2O7." Materials Science Forum 966 (August 2019): 269–76. http://dx.doi.org/10.4028/www.scientific.net/msf.966.269.

Full text
Abstract:
We report the results of studies on the electronic state of the hole-doped Y-based pyrochlore iridate, (Y1-x-yCuxCay)2Ir2O7. We carried out the resistivity, Muon Spin Relaxation (μSR), X-ray Photoemission Spectroscopy (XPS) measurements and Density Functional Theory (DFT) calculations on the non-doped (x=y=0) and doped (x=0.05, y=0.15) systems. We found in the non-doped system that the magnetic ordering of Ir spins which was accompanied by the metal-insulator transition (MIT) occurred at around 157 K and disappeared in the doped system in which MIT seems to disappear or smeared out. We suggest from the current study that a quantum critical point which shows a change in the electronic ground state from insulating to metallic to exist between those two systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Kajiwara, Takashi, Hiroki Tanaka, and Masahiro Yamashita. "Single-chain magnets constructed with a twisting arrangement of the easy-plane of iron(II) ions." Pure and Applied Chemistry 80, no. 11 (January 1, 2008): 2297–308. http://dx.doi.org/10.1351/pac200880112297.

Full text
Abstract:
A novel class of single-chain magnets (SCMs), catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4 and its derivative, were synthesized using the spin-carrier components possessing hard-axis anisotropy (or easy-plane anisotropy, D > 0). The easy-axis-type anisotropy of whole molecules of these compounds, which is essential for the formation of SCMs, arises from the twisted arrangement of easy-planes of Fe(II) along the chain axis. Alternating high-spin Fe(II) and low-spin Fe(III) chain complexes behave as an SCM with a typical frequency-dependent ac susceptibility which obeys Arrhenius law. Below 7 K, catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4 showed a short-range spin-ordering even in zero external field in a time range of Mössbauer spectroscopy as well as the muon-spin-relaxation (μSR) spectroscopy. Since the easy-axis-type magnetic anisotropy originated from the structural motif of the twisting arrangement of Fe(II) ions, the overall magnetic property was very sensitive to the small structural changes arising from adsorption/desorption of the crystal solvents, and catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4 showed a reversible change in magnetism that has been referred to as "a magnetic sponge". In its derivative, controls of the molecular structure, the arrangement of chains in the crystal, and magnetic properties both in dc and ac susceptibility have been achieved by the introduction of methyl group on a bpca- ligand, which bridges and mediates the magnetic interaction of the adjoining Fe(II)/Fe(III) ions.
APA, Harvard, Vancouver, ISO, and other styles
9

Goldman, Maurice. "Anatole Abragam. 15 December 1914 — 8 June 2011." Biographical Memoirs of Fellows of the Royal Society 63 (January 2017): 7–21. http://dx.doi.org/10.1098/rsbm.2017.0026.

Full text
Abstract:
Anatole Abragam, a French physicist of Russian origin, made a profound and lasting impact on the field of magnetic resonance, both electronic and nuclear, through his discoveries, contributions and his eminent educational role. In nuclear magnetic resonance (NMR) especially, he brought to the field theoretical rigour and clarity. Many of the most distinguished scientists in the field consider themselves to be his students, and he is known by many as a ‘giant of magnetic resonance’. Among his main contributions are: theories of the spin Hamiltonian and of core polarization in electron paramagnetic resonance (EPR); the theory of perturbed angular correlations of radioactive emissions in condensed matter; a new theoretical formalism of spin relaxation; the invention of an Earth magnetometer; basic studies of spin temperature; dynamic nuclear polarization in solids and production of polarized targets; nuclear dipolar magnetic ordering studied both by NMR and by neutron diffraction; the discovery of nuclear pseudo-magnetism and its use for measuring the spin-dependent neutron–nucleus scattering amplitudes; and a new spectroscopic technique for muon spin rotation ( μ SR).
APA, Harvard, Vancouver, ISO, and other styles
10

Lucas, Irene, Noelia Marcano, Thomas Prokscha, César Magén, Rubén Corcuera, Luis Morellón, José M. De Teresa, M. Ricardo Ibarra, and Pedro A. Algarabel. "Spin Glass State in Strained La2/3Ca1/3MnO3 Thin Films." Nanomaterials 12, no. 20 (October 18, 2022): 3646. http://dx.doi.org/10.3390/nano12203646.

Full text
Abstract:
Epitaxial strain modifies the physical properties of thin films deposited on single-crystal substrates. In a previous work, we demonstrated that in the case of La2/3Ca1/3MnO3 thin films the strain induced by the substrate can produce the segregation of a non-ferromagnetic layer (NFL) at the top surface of ferromagnetic epitaxial La2/3Ca1/3MnO3 for a critical value of the tetragonality τ, defined as τ = |c − a|a, of τC ≈ 0.024. Although preliminary analysis suggested its antiferromagnetic nature, to date a complete characterization of the magnetic state of such an NFL has not been performed. Here, we present a comprehensive magnetic characterization of the strain-induced segregated NFL. The field-cooled magnetic hysteresis loops exhibit an exchange bias mechanism below T ≈ 80 K, which is well below the Curie temperature of the ferromagnetic La2/3Ca1/3MnO3 layer. The exchange bias and coercive fields decay exponentially with temperature, which is commonly accepted to describe spin-glass (SG) behavior. The signatures of slow dynamics were confirmed by slow spin relaxation over a wide temperature regime. Low-energy muon spectroscopy experiments directly evidence the slowing down of the magnetic moments below ~100 K in the NFL. The experimental results indicate the SG nature of the NFL. This SG state can be understood within the context of the competing ferromagnetic and antiferromagnetic interactions of similar energies.
APA, Harvard, Vancouver, ISO, and other styles
11

Baker, Michael L., Tom Lancaster, Alessandro Chiesa, Giuseppe Amoretti, Peter J. Baker, Claire Barker, Stephen J. Blundell, et al. "Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn." Chemistry - A European Journal 22, no. 5 (January 8, 2016): 1779–88. http://dx.doi.org/10.1002/chem.201503431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Luke, G. M., A. Keren, L. P. Le, W. D. Wu, Y. J. Uemura, D. A. Bonn, L. Taillefer, and J. D. Garrett. "Muon spin relaxation inUPt3." Physical Review Letters 71, no. 9 (August 30, 1993): 1466–69. http://dx.doi.org/10.1103/physrevlett.71.1466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Aoyama, Y., and M. Tanaka. "Muon Spin Relaxation in Spin Systems." physica status solidi (b) 166, no. 1 (July 1, 1991): K49—K52. http://dx.doi.org/10.1002/pssb.2221660144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Noakes, D. R., E. J. Ansaldo, J. H. Brewer, D. R. Harshman, C. Y. Huang, M. S. Torikachvili, S. E. Lambert, and M. B. Maple. "Muon spin relaxation in ErRh4B4." Journal of Applied Physics 57, no. 8 (April 15, 1985): 3197–99. http://dx.doi.org/10.1063/1.335148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Reid, I. D., S. F. J. Cox, U. A. Jayasooriya, and U. Zimmermann. "Muon-spin relaxation in sulfur." Physica B: Condensed Matter 374-375 (March 2006): 408–11. http://dx.doi.org/10.1016/j.physb.2005.11.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Latroche, M., H. Figiel, G. Wiesinger, Cz Kapusta, P. Mietniowski, V. Paul-Boncour, A. Percheron-Guegan, and R. Cywinski. "Muon spin relaxation in deuterides." Journal of Physics: Condensed Matter 8, no. 25 (June 17, 1996): 4603–15. http://dx.doi.org/10.1088/0953-8984/8/25/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Aïn, M. "Muon spin relaxation in NaV2O5." Physica B: Condensed Matter 284-288 (July 2000): 1633–34. http://dx.doi.org/10.1016/s0921-4526(99)02754-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Krasnoperov, E., E. E. Meilikhov, C. Baines, D. Herlach, G. Solt, U. Zimmermann, and D. Eshchenko. "Muon spin relaxation in solid3He." Hyperfine Interactions 97-98, no. 1 (December 1996): 347–55. http://dx.doi.org/10.1007/bf02150184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Uemura, Y. J., T. Yamazaki, D. R. Harshman, M. Senba, and E. J. Ansaldo. "Muon-spin relaxation inAuFe andCuMn spin glasses." Physical Review B 31, no. 1 (January 1, 1985): 546–63. http://dx.doi.org/10.1103/physrevb.31.546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fudamoto, Y., K. M. Kojima, M. I. Larkin, G. M. Luke, J. Merrin, B. Nachumi, Y. J. Uemura, M. Isobe, and Y. Ueda. "Static Spin Freezing inNaV2O5Detected by Muon Spin Relaxation." Physical Review Letters 83, no. 16 (October 18, 1999): 3301–4. http://dx.doi.org/10.1103/physrevlett.83.3301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bermejot, F. J., S. F. J. Cox, F. J. Mompeán, M. García-Hernández, M. L. Senent, and J. L. Martínez. "Muon spin relaxation in condensed oxygen." Philosophical Magazine B 73, no. 4 (April 1996): 689–705. http://dx.doi.org/10.1080/13642819608239145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Crook, M. R., and R. Cywinski. "Voigtian Kubo - Toyabe muon spin relaxation." Journal of Physics: Condensed Matter 9, no. 5 (February 3, 1997): 1149–58. http://dx.doi.org/10.1088/0953-8984/9/5/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Soetratmo, M., R. Hempelmann, O. Hartmann, R. Wäppling, and M. Ekström. "Muon spin relaxation in hydrogen-loaded." Journal of Physics: Condensed Matter 9, no. 7 (February 17, 1997): 1671–77. http://dx.doi.org/10.1088/0953-8984/9/7/028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Vorob’ev, S. I., E. I. Golovenchits, V. P. Koptev, E. N. Komarov, S. A. Kotov, V. A. Sanina, and G. V. Shcherbakov. "Muon-spin-relaxation investigation of EuMn2O5." JETP Letters 91, no. 10 (May 2010): 512–17. http://dx.doi.org/10.1134/s002136401010005x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lam, J., Xiaohong Zhang, R. L. Havill, and J. M. Titman. "Muon spin relaxation in niobium-hydrogen." Journal of Alloys and Compounds 253-254 (May 1997): 423–24. http://dx.doi.org/10.1016/s0925-8388(96)02890-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Merrin, J., Y. Fudamoto, K. M. Kojima, M. Larkin, G. M. Luke, B. Nachumi, Y. J. Uemura, S. Kondo, and D. C. Johnston. "Muon spin relaxation measurements of LiV2O4." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 799–800. http://dx.doi.org/10.1016/s0304-8853(97)00635-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yaouanc, A., P. Dalmas de Réotier, P. C. M. Gubbens, F. Kayzel, P. Bonville, J. J. M. Franse, and A. M. Mulders. "Muon spin relaxation in uniaxial ferromagnets." Journal of Magnetism and Magnetic Materials 140-144 (February 1995): 1949–50. http://dx.doi.org/10.1016/0304-8853(94)01223-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Reid, I. D., S. F. J. Cox, U. A. Jayasooriya, and G. A. Hopkins. "Muon-spin spectroscopy in selenium." Magnetic Resonance in Chemistry 38, no. 13 (2000): S3—S8. http://dx.doi.org/10.1002/1097-458x(200006)38:13<::aid-mrc691>3.0.co;2-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ryan, D. H., J. van Lierop, M. E. Pumarol, M. Roseman, and J. M. Cadogan. "Muon spin relaxation examination of transverse spin freezing (invited)." Journal of Applied Physics 89, no. 11 (June 2001): 7039–43. http://dx.doi.org/10.1063/1.1358338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Guo, Hanjie, Hui Xing, Jun Tong, Qian Tao, Isao Watanabe, and Zhu-an Xu. "Possible spin frustration in Nd2Ti2O7probed by muon spin relaxation." Journal of Physics: Condensed Matter 26, no. 43 (October 9, 2014): 436002. http://dx.doi.org/10.1088/0953-8984/26/43/436002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lovesey, S. W., E. B. Karlsson, and K. N. Trohidou. "Muon spin relaxation in ferromagnets. I. Spin-wave fluctuations." Journal of Physics: Condensed Matter 4, no. 8 (February 24, 1992): 2043–60. http://dx.doi.org/10.1088/0953-8984/4/8/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Morozov, Aleksandr I., and Aleksandr S. Sigov. "Muon spin relaxation in crystals with defects." Uspekhi Fizicheskih Nauk 163, no. 9 (1993): 75. http://dx.doi.org/10.3367/ufnr.0163.199309c.0075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lancaster, T., S. J. Blundell, P. J. Baker, F. L. Pratt, W. Hayes, I. Yamada, M. Azuma, and M. Takano. "A muon-spin relaxation study of BiMnO3." Journal of Physics: Condensed Matter 19, no. 37 (August 22, 2007): 376203. http://dx.doi.org/10.1088/0953-8984/19/37/376203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Morozov, A. I., and Aleksandr S. Sigov. "Muon spin relaxation in crystals with defects." Physics-Uspekhi 36, no. 9 (September 30, 1993): 828–40. http://dx.doi.org/10.1070/pu1993v036n09abeh002308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cooke, D. W., J. K. Hoffer, M. Maez, W. A. Steyert, and R. H. Heffner. "Dilution refrigerator for muon spin relaxation experiments." Review of Scientific Instruments 57, no. 3 (March 1986): 336–40. http://dx.doi.org/10.1063/1.1138941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Esposito, Serena, Nigel J. Clayden, and Stephen P. Cottrell. "Muon spin relaxation study of phosphosilicate gels." Solid State Ionics 348 (May 2020): 115287. http://dx.doi.org/10.1016/j.ssi.2020.115287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

GUBBENS, P., M. WAGEMAKER, S. SAKARYA, M. BLAAUW, A. YAOUANC, P. DALMASDEREOTIER, and S. COTTRELL. "Muon spin relaxation in Li0.6TiO2 anode material." Solid State Ionics 177, no. 1-2 (January 16, 2006): 145–47. http://dx.doi.org/10.1016/j.ssi.2005.09.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mihara, M., K. Shimomura, I. Watanabe, Y. Ishii, T. Suzuki, T. Kawamata, J. Komurasaki, et al. "Muon spin relaxation in hydrogen tungsten bronze." Physica B: Condensed Matter 404, no. 5-7 (April 2009): 801–3. http://dx.doi.org/10.1016/j.physb.2008.11.169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lord, J. S., S. P. Cottrell, and W. G. Williams. "Muon spin relaxation in strongly coupled systems." Physica B: Condensed Matter 289-290 (August 2000): 495–98. http://dx.doi.org/10.1016/s0921-4526(00)00444-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Strydom, A. M., A. D. Hillier, D. T. Adroja, S. Paschen, and F. Steglich. "Low-temperature muon spin relaxation measurements on." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 377–79. http://dx.doi.org/10.1016/j.jmmm.2006.10.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Luke, G. M., A. Keren, L. P. Le, Y. J. Uemura, W. D. Wu, D. Bonn, L. Taillefer, J. D. Garrett, and Y. Ōnuki. "Muon spin relaxation in heavy fermion systems." Hyperfine Interactions 85, no. 1 (December 1994): 397–409. http://dx.doi.org/10.1007/bf02069451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Degueldre, C., A. Amato, and G. Bart. "Muon spin relaxation measurements on zirconia samples." Scripta Materialia 54, no. 6 (March 2006): 1211–16. http://dx.doi.org/10.1016/j.scriptamat.2005.11.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Turner, Ralph Eric, and R. F. Snider. "Theory of muon spin relaxation of gaseousC2H4Mu." Physical Review A 54, no. 6 (December 1, 1996): 4815–29. http://dx.doi.org/10.1103/physreva.54.4815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Baker, P. J., T. Lancaster, S. J. Blundell, W. Hayes, F. L. Pratt, M. Itoh, S. Kuroiwa, and J. Akimitsu. "Muon spin relaxation study of LaTiO3and YTiO3." Journal of Physics: Condensed Matter 20, no. 46 (October 21, 2008): 465203. http://dx.doi.org/10.1088/0953-8984/20/46/465203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Svare, Ivar. "Muon tunneling and spin relaxation in iron." Physical Review B 40, no. 13 (November 1, 1989): 8641–53. http://dx.doi.org/10.1103/physrevb.40.8641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tallon, Jeffery L., Christian Bernhard, and Christof Niedermayer. "Muon spin relaxation studies of superconducting cuprates." Superconductor Science and Technology 10, no. 7A (July 1, 1997): A38—A51. http://dx.doi.org/10.1088/0953-2048/10/7a/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Krasnoperov, E. P. "Muon spin relaxation and superconducting critical currents." Hyperfine Interactions 61, no. 1-4 (August 1990): 1155–58. http://dx.doi.org/10.1007/bf02407594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ferreira, L. P., A. Baudry, and P. Boyer. "Muon spin relaxation study of amorphous Hf2Co." Journal of Alloys and Compounds 210, no. 1-2 (August 1994): 287–90. http://dx.doi.org/10.1016/0925-8388(94)90151-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Boekema, C., K. C. Chan, R. L. Lichti, A. B. Denison, D. W. Cooke, R. H. Heffner, R. L. Hutson, and M. E. Schillaci. "Muon bonding versus muonium formation: Muon-Spin-Relaxation in α-Al2O3." Hyperfine Interactions 32, no. 1-4 (December 1986): 667–75. http://dx.doi.org/10.1007/bf02394971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yamazaki, Toshimitsu. "Probing electronically driven nuclear relaxation muon-nuclear-spin double relaxation." Hyperfine Interactions 65, no. 1-4 (February 1991): 757–65. http://dx.doi.org/10.1007/bf02397726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography