Dissertations / Theses on the topic 'Multivalenza'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Multivalenza.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zaupa, Giovanni. "Sistemi multivalenti e cooperativi per la catalisi biomimetica." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426105.
Full textLa grande efficienza che si può osservare in natura nel riconoscimento molecolare e nella catalisi è il risultato dell’interazione cooperativa tra gruppi funzionali. Sia il processo di riconoscimento sia quello di catalisi si basano su due caratteristiche fondamentali: - Multivalenza. La presenza di numerosi gruppi funzionali aumenta l’affinità di legame per effetto cooperativo. Questo si osserva anche nel sito catalitico degli enzimi. - Diversità di gruppi funzionali. Le proteine sono strutture eterofunzionali che presentano una larga varietà di gruppi funzionali per il riconoscimento di un target o per la conversione di un substrato. Il progetto di ricerca riguarda quindi lo sviluppo di sistemi artificiali basati su queste caratteristiche. Il punto di partenza sono per il progetto sono alcuni risultati ottenuti dal nostro gruppo di ricerca: - Lo sviluppo di un protocollo sintetico per la funzionalizzazione di piattaforme molecolari multivalenti su un supporto solido. - L’osservazione di un forte effetto cooperativo in catalisi tra gruppi funzionali (complessi di zinco) legati alla periferia di dendrimeri o auto-assemblati sulla superficie di nanoparticelle di oro L’obiettivo iniziale sarà l’applicazione di un protocollo sintetico per la funzionalizzazione di dendrimeri di varie generazioni. La possibilità di funzionalizzare dendrimeri su un supporto solido risulta di per sè molto interessante, in quanto faciliterebbe notevolmente la purificazione dei composti, che è la difficoltà maggiore nella sintesi dei dendrimeri. Nella fase successiva i dendrimeri saranno modificati con appropriati gruppi funzionali. La diversità di gruppi funzionali sarà ottenuta introducendo sui dendrimeri miscele di funzionalità. Considerando le loro dimensioni, l’idea è quella di utilizzare questi dendrimeri nel riconoscimento di grandi strutture, come la superficie di proteine. Per gli stessi scopi, ma usando una differente strategia sintetica, la funzionalizzazione e l’applicazione di nanoparticelle d’oro sarà un’alternativa.
ROSSI, LORENZO. "Development of Biomaterials for Translational Medicine Applications: Pancreatic β-cells Imaging, Pseudomonas Aeruginosa Treatment, Tissue Engineering." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402361.
Full textConsidering that the first structured definition of biomaterials was given only 50 years ago and that 100 years ago biomaterials, as we think about them today, did not even exist, we could claim they have been a crucial point in scientific advances, as they revolutionized many aspects of biomedicine. Thinking about the state-of-the-art of many fields in medicine and biotechnologies, biomaterials are widely employed. Many aspects of clinical medicine, including chronic conditions treatment, drug delivery, medical device manufacturing, and tissue engineering would not be the same without all the recent advances in the development of this class of materials. The wide range of applications they can be designed for, the unique characteristics, and the possibility to tune them and adapt the final construct for an extended variety of cases and purposes ensure a still high hype around their development. Even though much progress has been made, the possibility to implement new aspects and technologies and obtain more smart and complex products makes biomaterials valid candidates to face opening challenges in the treatment of multiple pathological conditions and expand the boundaries of modern medicine. In this thesis, the chemical derivatization and formulation of polymers of both synthetic and natural origin for multiple applications are proposed. The combination of different classes of polymers and so of their properties, and the exploitation of the concept of multivalency, underlie all the presented projects. Hence, we show the development of multimodal polymeric nanoparticles, based on a combination of poly-γ-glutamic acid (γ-PGA) and chitosan, for the imaging of porcine pancreatic islet and induced pluripotent stem cell-derived β-cells. This kind of tool might be crucial in the clinical translation of type 1 diabetes regenerative therapies involving bio-artificial pancreas, since it allows the imaging of specific cell types with high sensitivity and therefore the monitoring of β cells viability inside this kind of device. The proposed nanoparticles are highly versatile, and by decorating different targeting and detecting agents it is possible to develop nanotools suitable for monitoring of survival, engraftment, proliferation, function, and whole-body distribution of the cellular transplants and the development and validation of the application of state-of-the-art imaging technologies facilitating the provision of new regenerative therapies to preclinical large animal models and patients. Furthermore, a linear polymeric scaffold based on a synthetic polymer conjugated to an analogue of natural ligand of pancreatic β-cells (exendin-4, Ex4) has been developed, and can lead to new therapeutics and diagnostics agents. Indeed, the polymer displays more available sites for subsequent conjugation of other entities. The synthesized compounds may function per se as Ex4 controlled release carriers. Another polymeric conjugate, together with a library of mannoside-based small molecules, has been designed and studied for the treatment of Pseudomonas Aeruginosa bacterium. In this case, chitosan has been selected as polymeric component, exploiting its mild antimicrobial activity and its capability to serve as a linear scaffold and combining it with the lectin B targeting capability of mannoside-derived sulfonates and sulfoximines. Lastly, a hybrid hydrogel made of hyaluronic acid and gelatin has been developed for 3D bioprinting with U87 cells. The proposed hydrogel is chemically crosslinked and resembles in its features the natural extracellular matrix (ECM) brain composition and characteristics This kind of material may serve as a model of glioblastoma for 3D cell culture and can be used for more reliable and convenient antitumoral drug screening routes, considering the high malignancy, resistance towards antitumoral treatments and the high recurrence rate.
Salvadó, Molero Míriam. "Synthetic glycolipids as modulators of carbohydrate-protein interactions." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/456813.
Full textEl Capítulo 1 presenta una descripción general de la glicobiologia así como el rol de los sistemas multivalentes en la interacción carbohidrato-proteína. En el Capítulo 2 se establecen los objetivos generales. El Capítulo 3, hace referencia a la síntesis de glicolípidos que presentan modificaciones en el anillo de piranosa o en la aglicona. La evaluación tanto de estos glicolípidos como sus correspondientes sistemas multivalentes frente glicosidasas se llevó a cabo. Se encontró, que las modificaciones tanto en el anillo de piranosa como en la algicona jugaban un papel muy importante en la inhibición. A más a más, el glicocluster que presenta 4 glicolipidos dio mejor potencia de inhibición por carbohidrato. En el Capítulo 4 se describe la síntesis de sistemas multivalentes con dos estructuras centrales (polímeros hiperramificados o dendrimeros) que permiten la presentación de los carbohidratos de una manera polidispersa o monodispersa. La unión con una determinada proteína fue estudiada utilizando las técnicas de DLS y SPR. Interacciones mas fuertes en soluciones diluidas de proteína, fueron encontradas para los sistemas multivalentes polidispersos. En el Capítulo 5 se explora una estrategia novel para el diseño de inhibidores multivalentes basados en nanocapsulas. Para encontrar como afecta la diferente arquitectura de los glicodendrimeros en la unión con proteínas, experimentos de BLI fueron llevados a cabo para determinar el valor del IC50. La modificación selectiva a proteína también fue estudiada para una futura formación de las nanocapsulas. En el Capítulo 6 se explora la síntesis de fluoroazúcares como reactivos en la construcción de fluoroglicoproteinas. Una estrategia general para acceder a un amplio abanico de fluoroazúcares, via, ioduros de glicosilo como intermedios, debido a que son reactivos útiles para la modificación selectiva de proteínas se dio a conocer. El Capítulo 7 presenta las observaciones finales i las conclusiones extraídas de los resultados obtenidos.
Chapter 1 contains a general introduction that describes the importance of glycobiology and the role of multivalent systems in the study of carbohydrate-protein interactions. Chapter 2 sets out the general objectives of this thesis. The research in Chapter 3 describes the synthesis of a series of glycolipids that presents modifications either in the pyranose ring or in the aglycone moiety and their evaluation as potent inhibitors, together with multivalent systems that presents glycolipids, against glycosidases. It was found that modifications in the aglycone moiety and in the pyranose ring played important role in potency. Moreover, glycocluster that presents 4 glycolipids monomers gave the best inhibitor potency per sugar. The research in Chapter 4 describes the synthesis of multivalent structures with two different central cores (hyperbranched polymers and dendrimers) that allow the presentation of carbohydrate residues in a polydispers or monodispers manner. Binding was detected using DLS and SPR techniques. Strong interactions in a non-saturated protein concentration, revealed by aggregates formation and binding, were found for polydispers multivalent systems. The research in Chapter 5 explores a novel strategy for the design of multivalent inhibitors based on glycodendriprotein-based nanocapsules. In order to explore how the different glycodendrimer architecture affects the binding properties, BLI experiments were carried out to determine the IC50 of the tested glycodendrimers. The site selective protein modification was also studied for a further glycodendriprotein-based nanocapsules formation. The research in Chapter 6 explores the synthesis of fluorosugar reagents for the construction of well-defined fluoroglycoproteins. A general strategy to access a wide range of fluorosugars, via a glycosyl iodide intermediate, that are useful reagents for chemical-site selective protein glycosylation were disclosed. Chapter 7 presents the final remarks and conclusions extracted from the results obtained in this thesis.
Grillaud, Maxime. "Design and synthesis of multifunctional adamantane-based dendrons for biological applications." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF021.
Full textDendrons (wedge-shaped dendrimer sections) have been investigated as ideal nanoscale carrier molecules for the delivery of bioactive materials into the cells. Molecular engineering of these hyperbranched, monodisperse, well-defined structures can be easily performed using simple organic synthesis. Multivalency constituted by the multiple surface groups at the periphery of a dendron promotes higher binding affinity for ligand/receptor interactions. Adamantane molecule is a rigid structure consisting of four cyclohexane rings fused in chair conformation. The well-defined 3D conformation, the hydrophobicity and the lipophilicity provide to adamantane-based compounds favorable properties for their transport through biological membranes. In this context, the first part of this work was focused on the design and the synthesis of a novel type of polycationic dendrons based on adamantane, which are able to penetrate into cells without triggering cytotoxic effects. The next study of this Thesis concerned the investigation of our polycationic adamantane-based dendrons for gene delivery. We evaluated the capacity of the dendrons to complex a plasmid DNA. Hydrophobic compounds (biotin and cholesterol) were covalently bound to the focal point of the dendrons via “click” chemistry and the effects of the dendron generation, the peripheral cationic groups, and the hydrophobic modifications on the formation and stability of the complexes were studied. Finally, the dendrons constituted of an adamantane core, a focal point and three arms, were synthetized starting from a multifunctional adamantane derivative. We have coupled P140, a therapeutic peptide with protective properties in systemic lupus erythematosus, to an adamantane-based dendron and we have analyzed the biological effects of the resulting trimer compared to the monomer
Bachem, Gunnar. "Investigation of Cooperativity between Statistical Rebinding and the Chelate Effect on DNA Scaffolded Multivalent Binders as a Method for Developing High Avidity Ligands to target the C-type Lectin Langerin." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22787.
Full textTargeting the C-type lectin (CTL) langerin has received increasing attention as a novel immunotherapy strategy due to the capacity of Langerhans cells, which express langerin, to endocytose and cross-present antigens to T-cells. Langerin recognizes pathogens such as viruses, which present carbohydrates in a multivalent fashion to increase avidity as the monovalent carbohydrate ligands only display low affinity for langerin. Inspired by nature, multivalency has therefore been a key tool for overcoming the low affinities of CTL-carbohydrate interactions. In contrast to highly multivalent ligand presentation with undefined arrangements this work strove to optimize ligand economy by designing bivalent ligands that take the distance between the binding sites of the homotrimeric langerin into consideration by precise arrangement of ligands on DNA-based scaffolds. Studying the multivalent mechanisms at work led us to the design of ligands that take both statistical rebinding and the chelate effect into account. The rebinding effect was recognized as a tool that not only increases ligand avidity at a single binding site but in addition can be exploited to amplify the chelate effect. This method provides a solution for overcoming the low or non-existing multivalency effects when bivalently presenting low affinity ligands on a rigid scaffold if high affinity ligands are unavailable. A combination of this arrangement strategy with the development of a first langerin selective glycomimetic ligand led to the most potent molecularly defined langerin binder to date (IC50 = 300 nM). The ligand-PNA-DNA constructs were selectively internalized by langerin expressing cells at nanomolar concentrations and constitute a delivery platform for the future transport of cargo to Langerhans cells.
Azazna, Djamille. "Les bambusurils : molécules-cages pour l'encapsulation d'anions et utilisation comme nouvelles plateformes multivalentes d'intérêt biologique." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS454.
Full textBambusurils, BU[4] and BU[6] are cyclic oligomers that belong to the cucurbiturils family, CBs, assembled respectively by 4 and 6 glycoluril units. Bambusurils are different from cucurbiturils because of their difunctionalized glycolurils. BU[6] are able to encapsulate anions inside their cavity and this property can be useful for the treatment of effluents.A new family of BUs, the allylbambusurils having allyls groups on their macrocyclic portal, has been developed. Their postfunctionalization by oxidation, cross metathesis and thiol-ene coupling has been studied. BU[4] and BU[6] functionalized by respectively 8 and 12 thiols of interest have been prepared.BU[6] are always obtained with an halide inside the cavity. A method using silver hexafluoroantimonate has been developed to remove this halide. Binding constants of these new empty bambusurils have been determined towards severals halide by 1H NMR.Glycobambusurils have been synthesized by thiol- ene coupling with thiosugars. These glycoBUs can lead to multivalent platforms of valency up to 8 for BU[4] and 12 for BU[6]. Inhibition activity of these new platforms has been tested on WaaC enzyme, an heptosyltransferase found in bacterial cell wall. Enzymatic tests show that these glycobambusurils are promising multivalent platforms
Arnaud, Julie. "Ingénierie de lectines de valence, topologie et spécificité contrôlées pour la biologie cellulaire et la biotechnologie." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENV029/document.
Full textThe ability of lectins to specifically recognize glycoconjugates on cell surface makes them excellent biomedical diagnostics tools for diseases associated with glycosylation changes (e.g inflammation, cancer, etc.). Furthermore, because of their interaction with glycosphingolipids, lectins may also be used to study membrane trafficking. However, only small number of lectins are currently available, limiting their use in biotechnology and research. The aim of my thesis was first to develop neolectins with controlled valency and topology to understand the effect of multivalency on the endocytosis mechanism, and second to design lectins with tuned specificity for the recognition of tumor cells.RSL is a fucose binding lectin from the bacterium Ralstonia solanacearum which has a β-propeller structure that is formed by the association of three monomers each having two very similar binding sites. This trimeric and hexavalent protein was chosen as the scaffold structure for the design of neolectins. Trivalent RSLs were created by mutating an amino acid with essential role in fucose binding. Characterization showed that these mutants lost the ability to invaginate the plasma membrane. In addition, monomeric RSL was engineered and a library of more than 13 mutants, with different topologies and valencies, was created. Analysis of these mutants showed that the formation of tubules in the membrane depends mostly on the distance between the sites rather than on the number of sites.Then we developed a bioinformatic protocol to predict the orientation and conformation of fucosylated oligosaccharides in the binding sites of several fucose binding lectins. The relative affinities could be calculated with a good correlation to experimental values. Both the model and the crystal structures of RSL complexed with sialyl Lewis X and Lewis X oligosaccharides indicate a very unusual conformational change of the glycan during the interaction. These studies pave the way for the design of mutants with higher specificity
Achilli, Silvia. "Production recombinante de récepteurs lectines de type C et identification de ligands sélectif : de nouveaux outils pour la modulation du système immunitaire." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAV014/document.
Full textC-type Lectin Receptors (CLRs) are carbohydrate-binding proteins mainly expressed on Antigen Presenting Cells (APCs), including dendritic Cells (DCs), the sentinel of the innate immune system. They recognize pathogens or damaged cells by interacting with glycan features and the encounter between the CLR and its ligand constitutes a necessary step for the activation of the adaptive immune system. This crucial role played by CLRs in the balance of immune responses offers to CLR-glycan interactions pharmaceutical applications. The long-term objective of the research project in which this PhD is included is to use these CLRs as modulators in order to tailor the immune system responses. To do so, neoglyco-conjugates selective to each individual CLR have to be developed.Nine different CLRs were produced in this work: BDCA2, DC-SIGN, DC-SIGNR, dectin-1, dectin-2, langerin, LSECtin, MCL and Mincle.Several approaches have been explored in parallel for CLR production, ranking from bacterial periplasmic targeting, aiming to express soluble and functional protein, to inclusion bodies production into the bacterial cytoplasm, with subsequent protein refolding. Our collection of CLRs were used to screen glycan and glycomimetic arrays, highlighting context-dependent binding and identifying natural ligands or glycomimetics selective to each CLRs. Thus, several CLRs were surprisingly able to differentiate between positional isomers of a given N-Glycan, which opens new questions regarding the biological significance. Moreover, glycomimetics with a selectivity towards dectin-2 over DC-SIGN, DC-SIGNR and langerin CLRs have been identified.To guide the choice of the glycomimetics and estimate their optimisation, diverse biophysical studies were performed to evaluate the strength and specificity of the interaction. This enabled the development of an ultimate ligand selective towards DC-SIGN. A co-crystallised structure of the protein with this ligand revealed an interesting binding mode that also opens new questions.Simultaneously to monovalent ligand optimization, a first step towards the design of a highly defined molecule for cancer vaccination by CLR targeting was made. SPR results revealed potential candidates to exploit and preliminary biological assays were performed. Finally, a strategy for tetrameric lectin engineering as been explored, termed TETRALEC. This tool for screening and lectin characterization, has been obtained with one the lectin of the study, DC-SIGNR, by a site-specific labelling of the lectin. The TETRALEC complex was structurally characterised and functional assays were performed on glycan array and pathogen cells
Bandlow, Victor. "Multivalente Kohlenhydrat-PNA∙DNA-Konjugate zur Charakterisierung von Hämagglutininen und Entwicklung hochpotenter Inhibitoren von Influenza-Viren." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22398.
Full textThe principle of multivalency is omnipresent in nature, which is also used by influenza viruses to bind to epithelial host cells via their surface proteins. This interaction offers an interesting starting point for multivalent inhibitors if the conditions for an efficient interaction with the virus can be deciphered. For this purpose, the hemagglutinin trimer (HA) on viral particles was characterized using carbohydrate-nucleic acid scaffolds and carbohydrate-polyethylene glycol (PEG) scaffolds. Distance-affinity relationships for the interaction of the trimeric HA with the bivalent presentations of the sialyl-LacNAc showed that bivalent PEG conjugates are not capable of a bivalent enhancement of the interactions with the soluble HA ectodomain or with HA on the viral surface, whereby the spatial screening with PNA∙DNA scaffolds resulted in a bimodal distance-affinity relationship. An affinity maximum at a distance of 52 - 59 Å was assigned to simultaneous binding to two canonical binding sites of an HA trimer, with a second affinity maximum at 26 Å indicating the existence of a secondary binding site. In this work the multivalent presentation of carbohydrate ligands on long repetitive DNA templates was demonstrated for the first time. Nucleic acid complexes were obtained which achieved a full inhibition of the virus-induced hemagglutination at a concentration of 10^(-9) M of the template, which corresponds to a 10^7-fold increase in relation to the monovalent sugar. In addition to a highly potent inhibition, distance-optimized bivalent and multivalent binders on nucleic acid structures also revealed subtype-specific inhibition.
Pascal, Yoann. "Dynasweet - Les glycodyn[n]arènes comme ligands multivalents de lectines : une étude par chimie combinatoire dynamique." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1288/document.
Full textSeveral glycoclusters based on calixarenes, pillararenes or fullerenes have been synthesized in our laboratory. They exhibited strong affinities for several lectins through their multivalence and the “glycoside cluster effect”. The prupose of this study was to add a dynamic part to these molecules. We therefore applied the concept of dynamic combinatorial chemistry in which building blocks are able to self-assemble through reversible bonds to generate a library of oligomers. Dithiophenols bearing carbohydrate epitopes can self-assemble through the formation and exchange of disulfide bonds. Their properties in dynamic combinatorial chemistry were studied and the species distribution at the thermodynamic equilibrium revealed the selective formation of cyclotrimers and cyclotetramers named dyn[3]- and dyn[4]arenes. The equilibration in the presence of ConA, used as a model lectin, have led to the amplification of homodyn[3]- and homodyn[4]arenes. These glycodyn[n3,4]arenes have been isolated and their affinities toward ConA measured by ITC in the nanomolar range. Extension of this methodology toward the lectins LecA and LecB of Pseudomonas aeruginosa is in progress
Ligeour, Caroline. "Synthèse de nouveaux glycooligonucléotides et glycoclusters : étude de leurs affinités avec les lectines I et II de Pseudomonas aeruginosa et la lectine de Burkholderia ambifaria." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20211/document.
Full textCarbohydrate-lectin interactions play a key role in various biological processes such as infection by viruses or bacteria. As these interactions are weak, the multivalent association of carbohydrate is necessary to increase the binding constant. We used glycooligonucleotide and DNA chip to study the affinity of diverse compounds to PA-IL and PA-IIL lectins of Pseudomonas aeruginosa and Bambl lectin of Burkholderia ambifaria. Glycooligonucleotides were synthesized with previously prepared building blocks, using automated supported nucleic acid chemistry (phosphoramidites and H-phosphonate) and “Click chemistry” (copper (I) catalyzed 1,3-dipolar cycloaddition, thiol coupling by Michael addition and nucleophilic substitution of bromoacetamide derivative).Glycoclusters showing the better affinities toward the lectins have been synthesized to a hundred milligrams scale in solution without the DNA tag. The synthesis processes in two or three steps and only one final purification. Their interactions with the lectins PA-IL, PA-IIL and BambL were studied by several assays (HIA, ELLA, SPR and ITC). A tetragalactocluster and a tetrafucocluster showed high affinity toward respectively the lectin PA-IL (Kd = 157 nM) and the lectin BambL (Kd = 43 nM)
Curk, Tine. "Modelling multivalent interactons." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/266916.
Full textPadigi, Sudhaprasanna Kumar. "Multivalent Rechargeable Batteries." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2464.
Full textReiter-Scherer, Valentin D. "Multivalency in the interaction of biological polymers." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21711.
Full textThis thesis focuses on studying multivalent interactions between influenza virus hemagglutinin (HA) as well as neuraminidase (NA) of two viral strains (H1N1 and H3N2) and the cellular ligand sialic acid (SA) by using scanning force microscopy and single molecule force spectroscopy (SMFS). Unbinding forces as well as dissociation and association kinetics together with the free energy landscapes were, to the best knowledge for the first time, individually quantified on the single molecule level using SMFS. To this extent, designed synthetic monovalent (SAPEGLA) and multivalent (dPGSA) SA displaying ligands were employed. Surprisingly, the experimental force spectra did not show the log-linear trend predicted by the classical Kramers-Bell-Evans model, but rather follow the more recent Friddle-Noy-De Yoreo model. NA of both viral strains forms a more stable bond with SA than HA, and dissociates 3 to 7 times slower. It is reasoned that the higher stability compensates for the lesser amount of NA compared to HA that is typically found on the viral envelope. The unbinding forces of the cluster of SAPEGLA increased gradually with the number of bonds in the cluster and the dissociation kinetics follow the theoretically predicted trend. The dissociation rate of NA was found to be about 6 times higher than its catalytic rate, indicating that multiple bonds are needed for cleavage of SA. The dissociation rate of N1 is on the same order as that of H3, suggesting that these similarities between the two strains favor transmissibility. The thermal stability of the HA-dPGSA bond is higher than the HA-SAPEGLA reaching that of three to four single bonds, proving specificity and cooperativity. Such an enhancement could not be observed for the binding of NA. This thesis also shows that SMFS could be used as a tool to screen antiviral inhibitors in competitive binding assays, which may contribute insight into the design of antiviral inhibitors on the single molecule level.
Bueno, Robison Poreli Moura. "Um estudo multivalente do Trio de Alberto Nepomuceno." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/27/27157/tde-12032019-113458/.
Full textThis work analyzes the Piano Trio in F sharp minor by the Brazilian composer Alberto Nepomuceno, aiming to constitute a case study that allows a better positioning of the composer\'s work in the period of transition between Brazilian romanticism and modernism. It raises data from the ideological-musical context in which the work is inserted, especially the French notions of progress and its musical consequences in the early twentieth century. The research also presents the theoretical foundations of an analytical proposal that aims to incorporate into the structural analysis the unfolding of musical meaning. It seeks to unite, through the concept of multivalence, the studies of topics, schemata, narrativity and intertextuality. The work presents four multivalent analysis, one for each movement of the work. The results point to a work that constitutes a network of introversive and extroversive musical symbols, which makes a balance between formal and expressive tradition and the use of new sound materials.
Cobo, Cardenete Isidro Felipe. "Glycolipids: synthesis and multivalent systems." Doctoral thesis, Universitat Rovira i Virgili, 2012. http://hdl.handle.net/10803/284152.
Full textLos glicolípidos y particularmente los glicoesfingolípidos son compuestos de interés porque pueden interaccionar con biofactores inhibiendo o interfiriendo en procesos fisiológicos de las células. Por ejemplo, los glicoesfingolípidos que recubren las membranas celulares pueden interaccionar en procesos de reconocimiento con bacterias, virus y toxinas como por ejemplo la toxina del Cólera la cual inicia el proceso de infección a través del reconocimiento de glicolípidos como el GM1. Aunque el uso de antibióticos es el tratamiento más empleado, la resistencia a los antibióticos en zonas endémicas hace necesaria la investigación en síntesis de inhibidores basados en derivados de carbohidratos. Dado que la síntesis de compuestos glicoconjugados que presentan multivalencia ha resultado competitiva en la preparación de inhibidores contra patógenos, en este trabajo se ha estudiado la síntesis de nuevos miméticos basados en -galactosilceramidas; el acoplamiento Sukuki-Miyaura en 2-yodoglicales para obtener nuevos precursores de carbohidratos y el anclado de -galactosilceramidas en suportes como polímeros hiperramificados con el fin de avaluar su inhibición frente la toxina del Cólera.
Glycolipids such as glycosphingolipids are interesting compounds because they can interact with biofactors by inhibiting or interfering in physiological processes on cells. For instance, the glycolipids which present on cellular membranes can interact with bacteria, virus and toxins. In deed, Cholera toxin starts its infective process once it has recognized glycolipids such as GM1. Although the use of antibiotics is the commonest treatment against this disease, the antibiotic resistance in endemic areas makes the investigation in the synthesis of inhibitors based on carbohydrate derivatives necessary. Due to the synthesis of multivalent glycoconjugated compounds have been competitive in order to prepare inhibitors against these pathogens, in the present work we have studied: the synthesis of new mimetics based on -galactosylceramides; the Suzuki-Miyaura cross coupling in 2-iodoglycals in order to obtain new carbohydrate precursors and the anchoring of -galactosylceramides in scaffolds such as hyperbranched polymers in order to evaluate their inhibition binding against to Cholera toxin
Hughes, P. J. "Multivalent ligand recognition by pentraxins." Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1473766/.
Full textBromfield, Stephen M. "Multivalent heparin binding and sensing." Thesis, University of York, 2014. http://etheses.whiterose.ac.uk/7943/.
Full textMehta, Mary Anne. "Multivalent ions in polymer electrolytes." Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/15517.
Full textBrument, Sami. "Ligands multivalents pour l'interaction par effet chélate avec les récepteurs nicotiniques et les lectines AFL et DC-SIGN." Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4029.
Full textCell recognitions are often promoted by multiple and simultaneous interactions between ligands and their specific receptors. This concept of multivalency has inspired the scientific community to increase the affinity of a synthetic ligand for his receptor. Various effects of multivalency have been identified, including the chelate binding mode based on the simultaneous interactions of a ligand with several binding sites of a protein. During this thesis, we have developed three families of multivalent structures to reach a chelate binding mode with three proteins: the nicotinic receptors and the DCSIGN and AFL lectins. Aspergillus fumigatus is a pathogen adhering to the fucosylated receptors through the hexavalent lectin AFL. We have developed di-, hexa and polyvalent fucosides whose affinities for AFL were evaluated by microcalorimetry and cellular assays. We identified a hexavalent ligand able to inhibit the cell adhesion of A. fumigatus spores at micromolar concentrations. DC-SIGN is a tetrameric lectin binding to mannose units, used in an infectious pathway by the cytomegalovirus. Several structures at low and high valency (2, 4 and 89) of mannose allowed us to reach high affinity for this lectin with IC50 in nanomolar range in the cell adhesion tests. Finally, we developed a series of multivalent compounds to interact with the nicotinic receptors for an application in neurodegenerative diseases. These ligands have shown antagonist properties on acetylcholine α7 type receptor
Chekkat, Neïla. "Etude de stratégies innovantes pour augmenter l'efficacité antitumorale de ligands synthétiques de TRAIL-R2 et CD40." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ043/document.
Full textTRAIL (TNF- Related Apoptosis Inducing Ligand) and CD40Ligand, members of the superfamily (SF) of TNF (Tumor Necrosis Factor), appear as attractive targets for cancer therapy. A common feature of members of the TNF-SF is the homotrimeric structure that oligomerized their receptors to induce cell signaling. This multivalent interaction between ligands and receptors is crucial for apoptosis induction.The aims of this thesis is to i) develop multivalent ligands of TRAIL -R2 and CD40 to enhance their antitumor efficacy and to associate them in innovative strategies and ii) to characterize the interactions between ligands and receptors at cell surface to understand the impact of oligomerization on the initiation of apoptosis at membrane level.We used cyclic peptides specific of TRAIL-R2 (TRAILmim/DR5) that we multimerized on innovative chemical scaffolds. We also interested in the state of receptor oligomerization before their contact with the ligand in order to better understand the multivalent interactions. Finally, we characterized using the technique of surface plasmon resonance and biosensor based fluorescence interactions between multivalent ligands and TRAIL- R2.In this work we showed the need to analyze the interactions between ligands and receptors directly on the surface of the cell to improve the development of effective pro -apoptotic ligands
Stein, Benjamin [Verfasser]. "Multivalente Ligandenhüllen kolloidaler Nanopartikel / Benjamin Stein." Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1054328951/34.
Full textKanfar, Nasreddine. "Synthèse d'inhibiteurs multivalents des anhydrases carboniques." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT197/document.
Full textCarbonic anhydrases (CAs, EC. 4.2.1.1) are ubiquitous zinc metalloenzymes which catalyze the reversible hydration of CO2 with formation of bicarbonate and release of a proton. On the 13 active isoforms present in human, some of them are involved in pathological processes. CAs are known for more than 50 years as a therapeutic targets, and some inhibitors are currently in clinic or in (pre)clinical studies for the treatment of glaucoma, epilepsy and cancer. Nevertheless the lack of selectivity against the different isoforms responsible of side-effects requires the development of new strategies. The aim of this work is to develop a new way for CA inhibition by taking advantage of multivalent interaction to selectively and efficiently inhibit CA isoforms. Indeed, multivalent clusters represent an emerging class of compounds for enzymes inhibition. This strategy has been recently developed for CA inhibition and activation, some studies reporting improvements in inhibitory potency and selectivity. In this project, different platforms (peptides, polymers, silica nanoparticles) multifunctional were coated with sulfonamides as inhibitors of CA by bioconjugation. The inhibitory effect and specificity of the multivalency were studied isoforms CA
Porkolab, Vanessa. "Développement de ligands multivalents de nature glycomimétiques dirigés contre les récepteurs lectines de type-C." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAV013/document.
Full textThe innate and acquired immunity components work together to provide efficient protection of organisms. Dendritic cells, sentinel cells of the immunity, are able to capture pathogens through their receptors on the surface and they can present the antigens to lymphocytes T in order to stimulate specific adaptive immune responses. Among these receptors, there is a family named C-type lectin receptors (CLRs), which has an important role in the recognition of pathogenic oligosaccharide motifs. CLRs can be hijacked by many pathogens including HIV. DC-SIGN, one of the CLRs, interacts with the virus and promotes its dissemination. Unlike DC-SIGN, langerin, another CLR, has a protective role against the HIV infection. In this context, DC-SIGN became a promising therapeutic target but it shares ligand specificities with langerin.This work aims to develop highly specific antagonists against DC-SIGN in order to compete with the multivalent glycosylated gp120 protein of HIV. Using the study of the two lectins binding sites as starting point, a rational approach has been exploited to develop highly selective glycomimetics against DC SIGN. The SPR technique was used to investigate multivalent platforms with different valencies as well as ligand presentation in space. The amazing improvement of the affinity observed in some cases can be linked to different mechanisms of multivalent interactions, leading to an avidity phenomenon. On a selected scaffold (RODs), we characterized the different mechanisms responsible for the affinity and/or avidity gains, using a combination of different biophysical techniques (SPR, ITC, fluorescence polarization, AUC). In this work, we highlighted that the topology of this structure can influence the mechanisms of interactions. Overall, different multivalent ligands showed unique affinities for DC-SIGN, reaching the nanomolar affinity range, and they represent the best inhibitors to date.Finally, another CLR has been recently identified as one of the protein involved in the HIV infection as well as DC-SIGN. In a future perspective of glycomimetic development, structural and functional characterization has been done on this new actor involved in the HIV issue
Sieben, Christian. "Host cell invasion by influenza A virus." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16743.
Full textInfluenza virus must enter a host cell to deliver its genome, use the cells reproductive machinery and eventually initiate its replication. The replication cycle of influenza A virus is very complex and still not fully understood. It generally starts with binding of the viral protein hemagglutinin (HA) to its cellular receptor sialic acid (SA). In this work, virus-cell attachment forces were investigated at the single molecule level using intact virus binding to living cells, a set-up that closely mimics the in vivo situation. Cells of different surface SA composition were compared. It could be shown that the unique presentation of the ligand within the cells plasma membrane, rather than the structure of the receptor-glycan itself, strongly affects cellular specificity. The low binding forces as well as the observation of stepwise unbinding events suggest a multivalent interaction type. Based on this finding, inhibitory nanoparticles mimicking the cell surface were constructed. Different particles were evaluated and shown to efficiently inhibit virus infection by ≥ 80 %. Since many molecular details of multivalent interactions remain poorly understood parameters such as ligand spacing and presentation were varied and revealed that the density of ligands as well as the interacting surface plays critical roles for virus inhibition. Upon attachment, the virus enters the cell by endocytosis. Virus trafficking was followed at the single-virus level in living cells. The kinetics of virus transport were visualized using fluorescent marker proteins in combination with specific virus labeling. It was found that the virus needs to progress through early and late endosomal compartments in order to efficiently uncoat and release its genome. Further, the virus delays the endosomal acidification to ensure optimal residence time and fusion in the region close to the host cell nucleus. Drug treatment furthermore unraveled critical factors influencing viral infection efficiency.
Alali, Urjwan. "Chemical synthesis of multivalent chemical probes and their study as modulators of multivalent glycan-protein interactions." Thesis, Amiens, 2018. http://www.theses.fr/2018AMIE0002.
Full textThe present work seeks to investigate the behaviour of glyco- gold nanoparticle towards the hydrolytic action of glycosidase regarding these mutivalenty glyco nanostructures as glycosidase inhibitors. The first part of this study aimed to synthesi simulated vehicles that mimic natural compounds to modulate various specifi carbohydrate – lectin binding interactions. Secondly, synthesis of cyclodextrin specie that showed to be an exceedingly flexible delineation to build multivalent conjugate when the covalent attachment of biodetected sugar entities at specific positions o cyclodextrin were grafted. Click chemistry reaction using cuporous ion – catalyze azide- alkyne cyclo-addition reaction [CUAAC] has been performed herein. To justify the full homogeneinity of our adducts, these reactions have been optimized usin microwave conditions to prepare a library of perglycosylated α , β , γ cyclodextrin that showed an enzymatic effectiveness towards certain enzymes
McKelvie, Nicola D. "The development of multivalent Salmonella vaccines." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327267.
Full textPei, Xue Yuan. "Structural study of multivalent antibody fragments." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310912.
Full textYilmaz, Gokhan. "Synthesis of glycomaterials for multivalent interactions." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/89300/.
Full textBartolami, Eline. "Ingénierie et auto-assemblage de systèmes biomoléculaires multivalents." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2015. http://www.theses.fr/2015ENCM0017.
Full textNatural systems are inspiring in showing that the combination of multiple interactions enables improvement in binding affinity and selectivity for a target. Thus, the design of synthetic and biocompatible multivalent systems is of great importance for biological applications. The work described in this PhD thesis aims at developing novel methodologies for generating functional multivalent systems.In order to engineer multivalent systems for the recognition of oligonucleotides, we elaborated a multi-step synthesis of functionalized α-PNA scaffolds bearing side-groups. This new scaffold can potentially serve for the multi-point sequence-selective recognition of DNA.Multivalent nanoconstructs are emerging tools for enzyme inhibition. In this context, we prepared multivalent clusters of iminosugars – by metal-free click ligations on peptide scaffolds – as candidates for glycosidases inhibition. Although such enzyme inhibitors based on iminosugar clusters were recently reported, their synthesis relies almost exclusively on copper-catalyzed azide-alkyne cycloaddition, which notorious toxicity represents a serious limitation for biological applications. Our approach demonstrates that iminosugar clusters can be prepared in a metal-free fashion and exhibit strong multivalent effects for the inhibition of α-mannosidases. Multivalent biomolecular systems are also candidates for gene delivery application. In this context, the design of dynamic systems is of interest for achieving controlled release. We implemented a self-assembly strategy, using the acylhydrazone click ligation, for the in situ generation of biomolecular clusters starting from peptide scaffolds and modified amino acids building blocks. We showed that, whereas both compounds are ineffective for DNA complexation, the mixed system spontaneously expresses cationic clusters that effectively complex DNA. We further demonstrated that, given the dynamic character of the acylhydrazone ligation, the system is able to a) adapt to the presence of the DNA target by selecting the optimal building blocks for the cluster self-assembly, and b) trigger DNA release by component exchange. This modular and versatile self-assembly approach was further exploited to perform a fragments screening varying molecular structure and valency. Thereby, we identified new and effective vectors for the transfection of siRNA in living cells.The last project described in this manuscript deals with the generation of cage-type peptide nanoconstructs by using a set of orthogonal and chemoselective click ligations. Two cages, based on acylhydrazone ligation on one side and thiol-maleimide on the other, were obtained successfully in one-pot.In summary, this work has led to the development of novel methodologies for the engineering and self-assembly of multivalent biomolecular nanoconstructs for diverse biological applications such as oligonucleotide recognition, delivery and enzyme inhibition
Klenk, Simon. "Engineered Neoglycoproteins as Tools to Study Biologically Relevant Multivalent Interactions." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19658.
Full textIn this thesis, the bacteriophage Qbeta capsid served as a multivalent scaffold and facilitated the generation of a monodisperse multivalent system which was modified with homopropargylglycine as an unnatural amino acid. The introduced alkyne enabled copper-catalyzed alkyne-azide cycloaddition to attach sialic acid groups. The corresponding synthesis of the compatible azide-modified sialic acid derivatives was one of the main tasks of this work. For this purpose, the straightforwardly accessible 5-N-acetyladamantanyl thiosialoside was evaluated as a glycosylation donor in the alpha-selective synthesis of sialosides. Efficient activation of this donor was achieved under optimized conditions at -78°C with N-iodosuccinimide and trifluoromethanesulfonic acid which led to high alpha selectivities and overall yields of the desired sialosides. Particularly azidoethylene glycol-linked sialic acids were synthesized which were used for subsequent bioconjugation reactions to the Qbeta capsid. These synthesized sialic acid-modified Qbeta capsid particles were then thoroughly characterized by multiple biophysical and biological assays regarding their ability to bind to hemagglutinin and to inhibit influenza infection. Low nanomolar affinities were measured in these assays. A very efficient infection inhibition in a comparable concentration range was observed in in vitro cellular, in vivo mouse and ex vivo human model systems. Several pathologically relevant influenza strains could also be bound with the strategy presented here. The monodisperse and defined structure of the Qbeta scaffold additionally allowed for the establishment of a theoretical model describing the underlying binding modes.
Duan, Haohao. "Polymères à activités biologiques : nanoparticules et multivalence." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0114.
Full textNanoparticles based on hyaluronic acid (HA) are widely used in pharmaceutics. They can target the tumor by the interaction with CD44, a biological receptor overexpressed in some cancer cells. In this project, we investigate the potential applications of these nanoparticles in cosmetics, since HA is also an important ingredient for the skin hydration and renewing. Block copolymers based on polypeptides and polysaccharides were synthesized using a combination of ring opening polymerization and “click chemistry”. The nanoparticles were formed by the self-assembly of these block copolymers using a nanoprecipitation process, and their size and morphology were controlled by the experimental conditions. The interaction between nanoparticles and CD44 were measured by surface plasmon resonance(SPR). Compared to free hyaluronic acid chains in solution, the HA-based nanoparticles could interact more efficiently with CD44, thus demonstrating a multivalent effect. The enzymatic degradation of these HA nanoparticles was then evaluated with twohyaluronidases: HYAL1 and SPAM-1. The digestion of the HA nanoparticles was significantly slower than that of free hyaluronic acid. Surprisingly, these HA nanoparticles could even inhibit the activity of the enzyme HYAL1 and protect free HA chains in the solution. Finally, lipopeptide-based ligands of the biological receptor TLR2 were also synthesized and their performances were evaluated by SPR
Vukojicic, Petar. "Affitin-dendrimer conjugates for multivalency-enhanced targeting." Thesis, Nantes, 2019. http://www.theses.fr/2019NANT1002/document.
Full textSmart targeted nanoparticles are powerful devices developed to serve as efficient theranostic tools against severe disorders such as cancer or infectious diseases. Due to important limitations of antibodies as targeting ligands, such as large size and low stability, engineered affinity binding proteins offer an attractive alternative for nanoparticle functionalization. Affitins are small, thermally and chemically stable proteins derived from an archaeal 7 kDa DNA-binding family, with specificity and affinity for their targets comparable to that of antibodies. Gallic acid-triethylene glycol (GATG) dendrimers are monodisperse, synthetic globular tree-like macromolecules prepared in a stepwise fashion (generations) allowing multivalent presentation of targeting ligands. The aim of this project is to combine the targeting properties of Affitins and the versatility and multivalency of dendrimers to obtain Affitin-dendrimer conjugates for biomedical applications. The first goal of this work was to develop a site-specific conjugation method to incorporate Affitins targeting Staphylococcus aureus (S. aureus) and a fluorescent dye for detection and imaging, and then to thoroughly characterize them in terms of size, heterogeneity, composition and affinity. The second goal was to assess the potential of these conjugates to modulate complex multicellular behaviors, such as agglutination and biofilm formation of S. aureus due to enhanced multivalent interactions
Scheibe, Christian. "Multivalente Präsentation von Kohlenhydraten via PNA•DNA-Hybridisierung." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://dx.doi.org/10.18452/16639.
Full textThe interaction between carbohydrates and lectins is relatively weak. Still, it is of great importance in a plethora of biological processes. An enhancement of the binding affinity is often achieved via multivalency, i.e., the formation of several bonds between two binding partners. Besides the number of presented ligands, their spatial alignment is crucial as well. In this study, a molecular ruler was developed that utilizes a modularly assembled PNA/DNA duplex as scaffold and allows the presentation of ligands in space with atomic resolution. The number of presented ligands, the distance between them, and the flexibility of the scaffold that connects them can be nicely modulated and, at the same time, are very well predictable. By using various binding assays it was first shown that this tool is suitable for the spatial screening of carbohydrate-lectin interactions. The determined spatial alignments of the binding sites of Erythrina cristagalli lectin (ECL) und Ricinus communis agglutinin (RCA120) were in agreement with the crystal structure analyses. In addition to the primary binding sites, a potential secondary binding site was identified in the case of RCA120. Afterwards, the tool was used for the spatial screening of a system that is less well characterized. In detail, this was the interaction between selectin and its ligands as it occurs during the leukocyte adhesion cascade as a result of an inflammation. The natural tetrasaccharide sialyl-Lewis-X as well as an artificial DNA aptamer were presented as ligands. It was found that the distance between two bivalently presented ligands had only a minor effect on the binding affinity. Accordingly, the selectin molecules had a high flexibility and/or were not absolutely rigid anchored in the membrane.
Brissonnet, Yoan. "Développements d'iminosucres multivalents et étude de leurs affinités sur les glycosidases." Nantes, 2014. https://archive.bu.univ-nantes.fr/pollux/show/show?id=8fe4cd22-9aed-4531-89d3-669ca2a3b220.
Full textDespite significant research efforts made for the development of monovalent glycosidases inhibitors, few molecules reached the markets. This fact is easily explained by the complexity to obtain an inhibitor which possesses both a strong affinity and selectivity toward the targeted glycosidase. Recently, the possibility to significantly increase these two parameters was shown with multivalent glycosidase inhibitors. The aim of the thesis has been to develop multivalent iminosugars displaying various structural parameters, such as ligand’s topology or valence, in order to study fundamental aspects governing multivalents interactions for the inhibition of glycosidases. The synthesis of low valency ligands (≤ 8) with controlled topology, allowed us to observe a strong increase of affinity and selectivity with -mannosidase from Jack bean (Jbman). Interestingly, a multivalent effect was also observed with a biologically relevant mannosidase from the GH 38 family. AFM and DLS analysis showed the formation of aggregates which potentially explain the increased affinity. Finally, the synthesis of ligands with much higher valencies (between 20 and 900), based on deoxynojirimycin and deoxymannojirimycin was perform to determine the influence of the valency on the affinity towards specific glycosidases. The biological assays made on five glycosidases, mono and oligomerics, allowed used to identify a new enzyme sensitive to multivalency, the alpha-L-fucosidase from thermotoga maritima. During these tests, we observed an increased enzymatic catalysis on three enzymes, demonstrating that ultravalents compounds can also play the role of enzymatic activators, and therefor moduling enzymatic activity
Neranon, Kitjanit. "Synthesis and Applications of Dynamic Multivalent Nanostructures." Doctoral thesis, KTH, Organisk kemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177280.
Full textQC 20151119
Laigre, Eugénie. "Conception, synthèse et étude de modules de reconnaissance multivalents pour des anticorps." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAV038/document.
Full textDespite significant progress in anti-cancer therapy, current treatments are still controversial due to numerous side effects. Targeted immunotherapy recently emerged as an ideal alternative to improve treatment modalities for cancer patients. However, very limited approaches are available today and major issues remain to be addressed. In this context, we are interested in the design of biomolecular structures, innovative and bifunctional, able to hijack endogenous antibodies - which are naturally present in the human blood stream - toward cancer cells without pre-immunisation. Since natural circulating antibodies are polyspecific and have the ability to interact with multiple carbohydrate antigens, we focused on the design of multivalent glycodendrimers, as ligands for endogenous antibodies. The first part of our study consisted in synthesizing several multivalent glycoconjugates, based on peptide scaffolds and obtained by chemoselective ligations. To evaluate their influence on antibodies, the nature of both the carbohydrate and the scaffold, and the valency were varied. Then, in a second part of the study, microarray assays were developed with a model lectin, the Helix Pomatia Agglutinin (HPA). Experimental procedures were designed to determine surface dissociation constant and IC50 values, leading to the identification of high affinity ligands for HPA in the nanomolar range. Microarray assays were confirmed by other analytical methods (BLI, ELLA). Finally, the assays on slides were adapted to human sera screening, in order to identify tridimensional architectures highly affine to sera antibodies. A large panel of glycoconjugates were screened by microarray with around twenty sera, leading to the determination of promising glycosylated structures, as antibody ligands. The latter could be subsequently used for our anti-cancer approach
Lauster, Daniel. "Entwicklung multivalenter Inhibitoren des Eintritts von Influenzaviren in Wirtszellen." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/18802.
Full textInfluenza A virus (IAV) still poses a serious threat to global health and economy of mankind. So far, a universal, long-lasting vaccine could not be developed, and clinically approved drugs are prone to lose activity due to the fast development of resistant strains. Because of this, research on new antiviral compounds and strategies to combat influenza viruses is of great importance for the protection of our society. A promising candidate for the development of novel antiviral drugs is the viral hemagglutinin (HA) protein. HA is present at high density on the viral envelope, which allows binding to sialic acid (SA) molecules on host cells and fusion with their membrane. Following, HA binding molecules have an inhibitory effect at the very first step of the infection cycle, leading to the inability of an infection. Based on a high HA density on the viral surface, SA carrying nanoparticles qualify for the inhibition of a viral infection. Based on this knowledge the study at hand demonstrates the development of new multivalent binders against viral HA and discusses them critically. In contrast to published multivalent sialosides, which are displayed in an undefined fashion on polymer scaffolds, the results of this thesis support the identification of structural requirements for the design of new scaffold systems with an optimal match to the viral surface. Beside sialoside based polymer systems, completely new peptide based systems, based on an HA binding antibody, were developed. Similar to polyglycerolsialosides, such multivalent peptide-decorated polymers were able to achieve nanomolar binding inhibition constants, too. In summary, this thesis enables new insights into the choice of a suitable carrier system, the optimal receptor spacing, and the use of alternative receptors with the ultimate goal of virus neutralization.
Reeh, Philipp. "Dynamic Multivalency For The Recognition Of Protein Surfaces." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/283236.
Full textAssailly, Coralie. "Conception et évaluation d'inhibiteurs multivalents de sialidases bactériennes." Thesis, Nantes, 2020. http://www.theses.fr/2020NANT4057.
Full textSialidases (SA) are expressed by numerous viruses, bacteria and parasites. The catalytic domain (CAT) of bacterial SA is often flanked with a lectinic domain (CBM) that allows the enzyme to anchor to a sialoside surface for increasing its catalytic efficiency. In this work, we designed multivalent thiosialosides targeting both the CAT and CBM domains of SA. The inhibitory activity of the designed sialo-clusters was evaluated on pathogenic SA from S. pneumoniae (NanA), V. cholerae (VcSA) and T. cruzi (TcTS). Strong synergistic effects were observed between NanA and a synthetic polythiosialoside, where each grafted sugar unit has an inhibitory potency up to 3000 times higher than a reference monovalent thiosialoside. An in-depth study of the binding affinity of the multivalent thiosialosides for NanA and the truncated NanA CAT and NanA CBM domains was performed by surface plasmon resonance and by a biochip assay. Insight were provided in the binding mode operating. Then, we developed multivalent compounds based on a more potent inhibitor of the CAT domain, the 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA). Some poly-DANA showed inhibitory levels of the enzymatic activity in the subnanomolar range when assessed against NanA, NanA CAT or the SA from the commensal bacterium B. thetaiotaomicron (BtSA). Binding assays, molecular modeling studies, and crystallographic experiments suggest that this synergistic interactions probably occurs exclusively in the CAT and not the CBM domain. Altogether, these results suggest the interest of using the concept of multivalency to strongly inhibit the binding potency, and the catalytic activity of pathogenic SA
MONI, Lisa. "SINTESI E PROPRIETA’ BIOLOGICHE DI LIGANDI GLICOSIDICI MULTIVALENTI." Doctoral thesis, Università degli studi di Ferrara, 2009. http://hdl.handle.net/11392/2389207.
Full textDalvand, Parastoo. "Multivalent systems based on viologen units : redox behaviour and recognition properties by cucurbit[n]urils." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAF051/document.
Full textSupramolecules based on the recognition of redox-active bipyridiniums by cucurbit[n]uril (CB[n]) have been studied. The investigated systems include a [3]-, a [4]- and a [7]pseudorotaxane, each of them composed of a multimeric viologen-based thread molecule and CB[7] or CB[8]. The physicochemical approach emphasized that these systems can be electrochemically switched between a complexed state, defined by the pseudorotaxanes, and an uncomplexed state comprising their components. The disassembly results from intra/intermolecular pimerization of the viologen radicals.A physicochemical approach of pentacoordinated complexes of a phen-strapped porphyrin with azo-arylimidazoles has been undertaken with the aim to use the photoinduced trans-cis isomerization properties of azo-chromophores to dissociate the complexes. Thermal equilibration reinstates the thermodynamically favoured complexes. The strength and the kinetic properties of these pentacoordinated species have been evaluated
Glanz, Maria. "Chemoselective conjugation of biological active peptides to functional scaffolds." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20223.
Full textSynthetic peptides are a unique class of biomolecules. Due to their complex structure they can bind targets in a highly specific manner and can furthermore exhibit unique properties. Even though they are complex in structure, they are straightforward synthetically accessible. This thesis evolves around the many different aspects, in which biological active peptides can be used, from specific binders to cell penetration tags. Furthermore, the site specific and chemoselective conjugation of an unprotected peptide to a functional scaffold has been addressed. The binding properties of peptides could be used to generate a highly potent virus entry blocker from a viral-membrane-protein binding peptide, which was displayed multivalently on a polymeric nanoparticle. Furthermore, this thesis explored a novel chemoselective reaction, based on the Staudinger phosphonite reaction to conjugate cyclic peptides to eGFP. The covalent attachment of the peptidic ligand promoted efficiently the cellular uptake of protein and its cytosolic distribution. The novel Staudinger induced thiol addition cascade was further successfully used in an intramolecular reaction to macrocyclize peptides in order to induce bioactivity. This could be shown for the synthesis of cyclic cell penetrating peptides, as well as to stabilize the helical structure of a peptidic protein-protein interaction inhibitor. Furthermore, a bioreversible chemoselective conjugation based on a diazo building block, was used to label eGFP with cyclic cell penetrating peptides. First steps to evaluate the potency in vitro were undertaken. Taken together, the versatility of bioactive peptides was demonstrated in multiple applications and the tools to conjugate unprotected peptides to functional scaffolds was extended by the Staudinger induced thiol addition.
Zanini, Diana. "Quantitative multivalent carbohydrate-protein interactions from novel glycodendrimers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0016/NQ28389.pdf.
Full textLin, Wenyuan. "Bodies in action : multivalent agency in haemodialysis practices." Thesis, Lancaster University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429970.
Full textAleksic, Stevan [Verfasser]. "Conformational Dynamics of the Multivalent Targets / Stevan Aleksic." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1176632760/34.
Full textAchazi, Andreas Johannes [Verfasser]. "Theoretical Investigations of Multivalent Reactions / Andreas Johannes Achazi." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1148426264/34.
Full textKeyzer, Evan. "Development of electrolyte salts for multivalent ion batteries." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288431.
Full textHewitt, Sarah Helen. "Multivalent scaffolds for use as protein surface mimetics." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/18027/.
Full textHill, Stephen Andrew. "Carbohydrate-based carbon dots as multivalent glycan platforms." Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.743030.
Full text