Journal articles on the topic 'Multivalent-Ion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multivalent-Ion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Iton, Zachery W. B., and Kimberly A. See. "Multivalent Ion Conduction in Inorganic Solids." Chemistry of Materials 34, no. 3 (January 27, 2022): 881–98. http://dx.doi.org/10.1021/acs.chemmater.1c04178.
Full textProffit, Danielle L., Albert L. Lipson, Baofei Pan, Sang-Don Han, Timothy T. Fister, Zhenxing Feng, Brian J. Ingram, Anthony K. Burrell, and John T. Vaughey. "Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells." MRS Proceedings 1773 (2015): 27–32. http://dx.doi.org/10.1557/opl.2015.590.
Full textRutt, Ann, and Kristin A. Persson. "Expanding the Materials Search Space for Multivalent Cathodes." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 446. http://dx.doi.org/10.1149/ma2022-024446mtgabs.
Full textDong, Liubing, Wang Yang, Wu Yang, Yang Li, Wenjian Wu, and Guoxiu Wang. "Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors." Journal of Materials Chemistry A 7, no. 23 (2019): 13810–32. http://dx.doi.org/10.1039/c9ta02678a.
Full textHasnat, Abul, and Vinay A. Juvekar. "Dynamics of ion-exchange involving multivalent cations." Chemical Engineering Science 52, no. 14 (July 1997): 2439–42. http://dx.doi.org/10.1016/s0009-2509(97)00047-x.
Full textKC, Bilash, Jinglong Guo, Robert Klie, D. Bruce Buchholz, Guennadi Evmenenko, Jae Jin Kim, Timothy Fister, and Brian Ingram. "TEM Analysis of Multivalent Ion Battery Cathode." Microscopy and Microanalysis 26, S2 (July 30, 2020): 3170–72. http://dx.doi.org/10.1017/s1431927620024058.
Full textImanaka, Nobuhito, and Shinji Tamura. "Development of Multivalent Ion Conducting Solid Electrolytes." Bulletin of the Chemical Society of Japan 84, no. 4 (April 15, 2011): 353–62. http://dx.doi.org/10.1246/bcsj.20100178.
Full textSchauser, Nicole S., Ram Seshadri, and Rachel A. Segalman. "Multivalent ion conduction in solid polymer systems." Molecular Systems Design & Engineering 4, no. 2 (2019): 263–79. http://dx.doi.org/10.1039/c8me00096d.
Full textLi, Zhong-Qiu, Yang Wang, Zeng-Qiang Wu, Ming-Yang Wu, and Xing-Hua Xia. "Bioinspired Multivalent Ion Responsive Nanopore with Ultrahigh Ion Current Rectification." Journal of Physical Chemistry C 123, no. 22 (May 13, 2019): 13687–92. http://dx.doi.org/10.1021/acs.jpcc.9b02279.
Full textGates, Leslie, and Niya Sa. "Investigation of Suitability of Electrolytes in a Trivalent System." ECS Meeting Abstracts MA2023-01, no. 1 (August 28, 2023): 425. http://dx.doi.org/10.1149/ma2023-011425mtgabs.
Full textKim, Chaewon, Useul Hwang, Sangjin Lee, and Young-Kyu Han. "First-Principles Dynamics Investigation of Germanium as an Anode Material in Multivalent-Ion Batteries." Nanomaterials 13, no. 21 (October 30, 2023): 2868. http://dx.doi.org/10.3390/nano13212868.
Full textIslam, Shakirul M., Ryan J. Malone, Wenlong Yang, Stephen P. George, Rajendra P. Gautam, Wesley A. Chalifoux, and Christopher J. Barile. "Nanographene Cathode Materials for Nonaqueous Zn-Ion Batteries." Journal of The Electrochemical Society 169, no. 11 (November 1, 2022): 110517. http://dx.doi.org/10.1149/1945-7111/ac9f72.
Full textWang, Bangda, Natsume Koike, Kenta Iyoki, Watcharop Chaikittisilp, Yi Wang, Toru Wakihara, and Tatsuya Okubo. "Insights into the ion-exchange properties of Zn(ii)-incorporated MOR zeolites for the capture of multivalent cations." Physical Chemistry Chemical Physics 21, no. 7 (2019): 4015–21. http://dx.doi.org/10.1039/c8cp06975a.
Full textLiu, Yiyang, Guanjie He, Hao Jiang, Ivan P. Parkin, Paul R. Shearing, and Dan J. L. Brett. "Multivalent Ion Batteries: Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities (Adv. Funct. Mater. 13/2021)." Advanced Functional Materials 31, no. 13 (March 2021): 2170089. http://dx.doi.org/10.1002/adfm.202170089.
Full textBesha, Abreham Tesfaye, Misgina Tilahun Tsehaye, David Aili, Wenjuan Zhang, and Ramato Ashu Tufa. "Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis." Membranes 10, no. 1 (December 31, 2019): 7. http://dx.doi.org/10.3390/membranes10010007.
Full textJing, Benxin, Jie Qiu, and Yingxi Zhu. "Organic–inorganic macroion coacervate complexation." Soft Matter 13, no. 28 (2017): 4881–89. http://dx.doi.org/10.1039/c7sm00955k.
Full textMa, Xinpei, Junye Cheng, Liubing Dong, Wenbao Liu, Jian Mou, Ling Zhao, Jinjie Wang, et al. "Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors." Energy Storage Materials 20 (July 2019): 335–42. http://dx.doi.org/10.1016/j.ensm.2018.10.020.
Full textLi, Matthew, Jun Lu, Xiulei Ji, Yanguang Li, Yuyan Shao, Zhongwei Chen, Cheng Zhong, and Khalil Amine. "Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes." Nature Reviews Materials 5, no. 4 (February 10, 2020): 276–94. http://dx.doi.org/10.1038/s41578-019-0166-4.
Full textNaughton, Elise M., Mingqiang Zhang, Diego Troya, Karen J. Brewer, and Robert B. Moore. "Size dependent ion-exchange of large mixed-metal complexes into Nafion® membranes." Polymer Chemistry 6, no. 38 (2015): 6870–79. http://dx.doi.org/10.1039/c5py00714c.
Full textKim, Kwangnam, and Donald J. Siegel. "Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes." Chemistry of Materials 33, no. 6 (March 8, 2021): 2187–97. http://dx.doi.org/10.1021/acs.chemmater.1c00096.
Full textLiu, Chaofeng. "Aqueous Multivalent Ion Batteries Built on Hydrated Vanadates." ECS Meeting Abstracts MA2020-01, no. 2 (May 1, 2020): 226. http://dx.doi.org/10.1149/ma2020-012226mtgabs.
Full textPark, Min Je, Hooman Yaghoobnejad Asl, and Arumugam Manthiram. "Multivalent-Ion versus Proton Insertion into Battery Electrodes." ACS Energy Letters 5, no. 7 (June 26, 2020): 2367–75. http://dx.doi.org/10.1021/acsenergylett.0c01021.
Full textQuinn, J. F., and F. Caruso. "Multivalent-Ion-Mediated Stabilization of Hydrogen-Bonded Multilayers." Advanced Functional Materials 16, no. 9 (June 6, 2006): 1179–86. http://dx.doi.org/10.1002/adfm.200500530.
Full textWang, Chunlei, Zibing Pan, Huaqi Chen, Xiangjun Pu, and Zhongxue Chen. "MXene-Based Materials for Multivalent Metal-Ion Batteries." Batteries 9, no. 3 (March 17, 2023): 174. http://dx.doi.org/10.3390/batteries9030174.
Full textDai, Fangfang, Risheng Yu, Ruobing Yi, Jian Lan, Rujie Yang, Zhikun Wang, Junlang Chen, and Liang Chen. "Ultrahigh water permeance of a reduced graphene oxide nanofiltration membrane for multivalent metal ion rejection." Chemical Communications 56, no. 95 (2020): 15068–71. http://dx.doi.org/10.1039/d0cc06302a.
Full textSrivastava, Sunita, Anuj Chhabra, and Oleg Gang. "Effect of mono- and multi-valent ionic environments on the in-lattice nanoparticle-grafted single-stranded DNA." Soft Matter 18, no. 3 (2022): 526–34. http://dx.doi.org/10.1039/d1sm01171e.
Full textPark, Haesun, and Peter Zapol. "Thermodynamic and kinetic properties of layered-CaCo2O4 for the Ca-ion batteries: a systematic first-principles study." Journal of Materials Chemistry A 8, no. 41 (2020): 21700–21710. http://dx.doi.org/10.1039/d0ta07573f.
Full textDai, Fangfang, Feng Zhou, Junlang Chen, Shanshan Liang, Liang Chen, and Haiping Fang. "Ultrahigh water permeation with a high multivalent metal ion rejection rate through graphene oxide membranes." Journal of Materials Chemistry A 9, no. 17 (2021): 10672–77. http://dx.doi.org/10.1039/d1ta00647a.
Full textYao, Long, Shunlong Ju, and Xuebin Yu. "Rational surface engineering of MXene@N-doped hollow carbon dual-confined cobalt sulfides/selenides for advanced aluminum batteries." Journal of Materials Chemistry A 9, no. 31 (2021): 16878–88. http://dx.doi.org/10.1039/d1ta03465k.
Full textZhang, Jiaxu, Xiang Wang, Jing Lv, Dong-Sheng Li, and Tao Wu. "A multivalent mixed-metal strategy for single-Cu+-ion-bridged cluster-based chalcogenide open frameworks for sensitive nonenzymatic detection of glucose." Chemical Communications 55, no. 45 (2019): 6357–60. http://dx.doi.org/10.1039/c9cc02905b.
Full textChen, Mei, Jinxing Ma, Zhiwei Wang, Xingran Zhang, and Zhichao Wu. "Insights into iron induced fouling of ion-exchange membranes revealed by a quartz crystal microbalance with dissipation monitoring." RSC Advances 7, no. 58 (2017): 36555–61. http://dx.doi.org/10.1039/c7ra05510b.
Full textLiu, Yi, and Rudolf Holze. "Metal-Ion Batteries." Encyclopedia 2, no. 3 (September 15, 2022): 1611–23. http://dx.doi.org/10.3390/encyclopedia2030110.
Full textMa, Lin, Marshall Schroeder, Glenn Pastel, Oleg Borodin, Travis Pollard, Michael Ding, Janet Ho, Arthur v. Cresce, and Kang Xu. "(Invited) Promises and Challenges of Multivalent Ion Battery Chemistries." ECS Meeting Abstracts MA2022-02, no. 5 (October 9, 2022): 552. http://dx.doi.org/10.1149/ma2022-025552mtgabs.
Full textLiu, Zhexuan, Liping Qin, Xinxin Cao, Jiang Zhou, Anqiang Pan, Guozhao Fang, Shuangyin Wang, and Shuquan Liang. "Ion migration and defect effect of electrode materials in multivalent-ion batteries." Progress in Materials Science 125 (April 2022): 100911. http://dx.doi.org/10.1016/j.pmatsci.2021.100911.
Full textKarapidakis, Emmanuel, and Dimitra Vernardou. "Progress on V2O5 Cathodes for Multivalent Aqueous Batteries." Materials 14, no. 9 (April 29, 2021): 2310. http://dx.doi.org/10.3390/ma14092310.
Full textSchroeder, Marshall A., Lin Ma, Glenn Pastel, and Kang Xu. "The mystery and promise of multivalent metal-ion batteries." Current Opinion in Electrochemistry 29 (October 2021): 100819. http://dx.doi.org/10.1016/j.coelec.2021.100819.
Full textPan, Zhenghui, Ximeng Liu, Jie Yang, Xin Li, Zhaolin Liu, Xian Jun Loh, and John Wang. "Aqueous Rechargeable Multivalent Metal‐Ion Batteries: Advances and Challenges." Advanced Energy Materials 11, no. 24 (May 12, 2021): 2100608. http://dx.doi.org/10.1002/aenm.202100608.
Full textZhang, Zihe, Xu Zhang, Xudong Zhao, Sai Yao, An Chen, and Zhen Zhou. "Computational Screening of Layered Materials for Multivalent Ion Batteries." ACS Omega 4, no. 4 (April 30, 2019): 7822–28. http://dx.doi.org/10.1021/acsomega.9b00482.
Full textKirbawy, S. Alvin, and Marquita K. Hill. "Multivalent ion removal from kraft black liquor by ultrafiltration." Industrial & Engineering Chemistry Research 26, no. 9 (September 1987): 1851–54. http://dx.doi.org/10.1021/ie00069a022.
Full textHübsch, E., G. Fleith, J. Fatisson, P. Labbé, J. C. Voegel, P. Schaaf, and V. Ball. "Multivalent Ion/Polyelectrolyte Exchange Processes in Exponentially Growing Multilayers." Langmuir 21, no. 8 (April 2005): 3664–69. http://dx.doi.org/10.1021/la047258d.
Full textJohnson, Ian D., Aashutosh Mistry, Liang Yin, Megan Murphy, Saul H. Lapidus, Venkat Srinivasan, John T. Vaughey, Jordi Cabana, and Brian J. Ingram. "Ion Transport in Chromite Spinels for Multivalent Battery Applications." ECS Meeting Abstracts MA2020-02, no. 2 (November 23, 2020): 315. http://dx.doi.org/10.1149/ma2020-022315mtgabs.
Full textMcPhee, Brian D. "Apollo, Dionysus, and the Multivalent Birds of Euripides’ Ion." Classical World 110, no. 4 (2017): 475–89. http://dx.doi.org/10.1353/clw.2017.0039.
Full textLi, Yuqi, Yaxiang Lu, Philipp Adelhelm, Maria-Magdalena Titirici, and Yong-Sheng Hu. "Intercalation chemistry of graphite: alkali metal ions and beyond." Chemical Society Reviews 48, no. 17 (2019): 4655–87. http://dx.doi.org/10.1039/c9cs00162j.
Full textHao, Qing-Hai, Qian Chen, Zhen Zheng, Li-Yan Liu, Tie-Ju Liu, Xiao-Hui Niu, Qing-Gong Song, and Hong-Ge Tan. "Molecular dynamics simulations of cylindrical polyelectrolyte brushes in monovalent and multivalent salt solutions." Journal of Theoretical and Computational Chemistry 15, no. 03 (May 2016): 1650026. http://dx.doi.org/10.1142/s0219633616500267.
Full textGao, Qiang, Jeremy Come, Michael Naguib, Stephen Jesse, Yury Gogotsi, and Nina Balke. "Synergetic effects of K+and Mg2+ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2MXene." Faraday Discussions 199 (2017): 393–403. http://dx.doi.org/10.1039/c6fd00251j.
Full textLi, Le, Weizhuo Zhang, Weijie Pan, Mengyu Wang, Hairan Zhang, Duo Zhang, and Dan Zhang. "Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions." Nanoscale 13, no. 46 (2021): 19291–305. http://dx.doi.org/10.1039/d1nr05873h.
Full textStadie, Nicholas P. "(Invited) Zeolite-Templated Carbon As a Model Material for Electrochemical Energy Storage in Nanometre-Spaced Carbon Channels." ECS Meeting Abstracts MA2022-01, no. 7 (July 7, 2022): 659. http://dx.doi.org/10.1149/ma2022-017659mtgabs.
Full textAsselin, Genevieve, Olivia Paden, Weiqi Qiu, Zicheng Yang, and Niya Sa. "Electrochemical Investigation of Kinetics and Mechanisms of Charge Transfer in Nonaqueous Zinc and Magnesium Electrolytes." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 512. http://dx.doi.org/10.1149/ma2022-024512mtgabs.
Full textGulden, Tobias, and Alex Kamenev. "Dynamics of Ion Channels via Non-Hermitian Quantum Mechanics." Entropy 23, no. 1 (January 19, 2021): 125. http://dx.doi.org/10.3390/e23010125.
Full textBui, Hoang Linh, and Chun-Jen Huang. "Tough Polyelectrolyte Hydrogels with Antimicrobial Property via Incorporation of Natural Multivalent Phytic Acid." Polymers 11, no. 10 (October 21, 2019): 1721. http://dx.doi.org/10.3390/polym11101721.
Full text