Journal articles on the topic 'Multitask regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Multitask regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bernard, Elsa, Yunlong Jiao, Erwan Scornet, Veronique Stoven, Thomas Walter, and Jean-Philippe Vert. "Kernel Multitask Regression for Toxicogenetics." Molecular Informatics 36, no. 10 (September 26, 2017): 1700053. http://dx.doi.org/10.1002/minf.201700053.
Full textXin Gu, Fu-Lai Chung, Hisao Ishibuchi, and Shitong Wang. "Multitask Coupled Logistic Regression and its Fast Implementation for Large Multitask Datasets." IEEE Transactions on Cybernetics 45, no. 9 (September 2015): 1953–66. http://dx.doi.org/10.1109/tcyb.2014.2362771.
Full textTam, Clara M., Dong Zhang, Bo Chen, Terry Peters, and Shuo Li. "Holistic multitask regression network for multiapplication shape regression segmentation." Medical Image Analysis 65 (October 2020): 101783. http://dx.doi.org/10.1016/j.media.2020.101783.
Full textXu, Yong-Li, Di-Rong Chen, and Han-Xiong Li. "Least Square Regularized Regression for Multitask Learning." Abstract and Applied Analysis 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/715275.
Full textFan, Jianqing, Lingzhou Xue, and Hui Zou. "Multitask Quantile Regression Under the Transnormal Model." Journal of the American Statistical Association 111, no. 516 (October 1, 2016): 1726–35. http://dx.doi.org/10.1080/01621459.2015.1113973.
Full textGoncalves, Andre, Priyadip Ray, Braden Soper, David Widemann, Mari Nygård, Jan F. Nygård, and Ana Paula Sales. "Bayesian multitask learning regression for heterogeneous patient cohorts." Journal of Biomedical Informatics: X 4 (December 2019): 100059. http://dx.doi.org/10.1016/j.yjbinx.2019.100059.
Full textZhang, Linjuan, Jiaqi Shi, Lili Wang, and Changqing Xu. "Electricity, Heat, and Gas Load Forecasting Based on Deep Multitask Learning in Industrial-Park Integrated Energy System." Entropy 22, no. 12 (November 30, 2020): 1355. http://dx.doi.org/10.3390/e22121355.
Full textSchwab, David, Puneet Singla, and Sean O’Rourke. "Angles-Only Initial Orbit Determination via Multivariate Gaussian Process Regression." Electronics 11, no. 4 (February 15, 2022): 588. http://dx.doi.org/10.3390/electronics11040588.
Full textZhang, Heng-Chang, Qing Wu, Fei-Yan Li, and Hong Li. "Multitask Learning Based on Least Squares Support Vector Regression for Stock Forecast." Axioms 11, no. 6 (June 15, 2022): 292. http://dx.doi.org/10.3390/axioms11060292.
Full textRuiz, Carlos, Carlos M. Alaíz, and José R. Dorronsoro. "Multitask Support Vector Regression for Solar and Wind Energy Prediction." Energies 13, no. 23 (November 30, 2020): 6308. http://dx.doi.org/10.3390/en13236308.
Full textMajumdar, Subhabrata, and Snigdhansu Chatterjee. "Non-convex penalized multitask regression using data depth-based penalties." Stat 7, no. 1 (2018): e174. http://dx.doi.org/10.1002/sta4.174.
Full textLi, Yi, and A. Adam Ding. "Double‐structured sparse multitask regression with application of statistical downscaling." Environmetrics 30, no. 4 (October 22, 2018): e2534. http://dx.doi.org/10.1002/env.2534.
Full textShi, Meng, Yu Zheng, Youzhen Wu, and Quansheng Ren. "Multitask Attention-Based Neural Network for Intraoperative Hypotension Prediction." Bioengineering 10, no. 9 (August 31, 2023): 1026. http://dx.doi.org/10.3390/bioengineering10091026.
Full textRosli, Mohd Shafie, Nor Shela Saleh, Baharuddin Aris, Maizah Hura Ahmad, and Shaharuddin Md. Salleh. "Ubiquitous Hub for Digital Natives." International Journal of Emerging Technologies in Learning (iJET) 11, no. 02 (February 23, 2016): 29. http://dx.doi.org/10.3991/ijet.v11i02.4993.
Full textHuang, Xiaoying, Yun Tian, Shifeng Zhao, Tao Liu, Wei Wang, and Qingjun Wang. "Direct full quantification of the left ventricle via multitask regression and classification." Applied Intelligence 51, no. 8 (January 15, 2021): 5745–58. http://dx.doi.org/10.1007/s10489-020-02130-3.
Full textZhao, Sicheng, Hongxun Yao, Yue Gao, Rongrong Ji, and Guiguang Ding. "Continuous Probability Distribution Prediction of Image Emotions via Multitask Shared Sparse Regression." IEEE Transactions on Multimedia 19, no. 3 (March 2017): 632–45. http://dx.doi.org/10.1109/tmm.2016.2617741.
Full textZhang, K., J. W. Gray, and B. Parvin. "Sparse multitask regression for identifying common mechanism of response to therapeutic targets." Bioinformatics 26, no. 12 (June 6, 2010): i97—i105. http://dx.doi.org/10.1093/bioinformatics/btq181.
Full textChen, Kai, Feng Huang, and Heming Zhang. "Fan Rotation Speed Real-Time Optimizations of Continuous Annealing Line with Mechanism-Guided Multitask Classification and Regression Model." Journal of Physics: Conference Series 2575, no. 1 (August 1, 2023): 012010. http://dx.doi.org/10.1088/1742-6596/2575/1/012010.
Full textForouzannezhad, Parisa, Dominic Maes, Daniel S. Hippe, Phawis Thammasorn, Reza Iranzad, Jie Han, Chunyan Duan, et al. "Multitask Learning Radiomics on Longitudinal Imaging to Predict Survival Outcomes following Risk-Adaptive Chemoradiation for Non-Small Cell Lung Cancer." Cancers 14, no. 5 (February 26, 2022): 1228. http://dx.doi.org/10.3390/cancers14051228.
Full textWistuba-Hamprecht, Jacqueline, Bernhard Reuter, Rolf Fendel, Stephen L. Hoffman, Joseph J. Campo, Philip L. Felgner, Peter G. Kremsner, Benjamin Mordmüller, and Nico Pfeifer. "Machine learning prediction of malaria vaccine efficacy based on antibody profiles." PLOS Computational Biology 20, no. 6 (June 7, 2024): e1012131. http://dx.doi.org/10.1371/journal.pcbi.1012131.
Full textLi, Jiafeng, Lixia Cao, and Guoliang Zhang. "Research on automatic matching of online mathematics courses and design of teaching activities based on multiobjective optimization algorithm." PeerJ Computer Science 9 (August 21, 2023): e1501. http://dx.doi.org/10.7717/peerj-cs.1501.
Full textHe, Dan, David Kuhn, and Laxmi Parida. "Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction." Bioinformatics 32, no. 12 (June 15, 2016): i37—i43. http://dx.doi.org/10.1093/bioinformatics/btw249.
Full textXu, Beilei, Wencheng Wu, Lei Lin, Rachel Melnyk, and Ahmed Ghazi. "Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning." Electronic Imaging 2021, no. 3 (June 18, 2021): 109–1. http://dx.doi.org/10.2352/issn.2470-1173.2021.3.mobmu-109.
Full textLewin, Collin, Erin Kara, Dan Wilkins, Guglielmo Mastroserio, Javier A. García, Rachel C. Zhang, William N. Alston, et al. "X-Ray Reverberation Mapping of Ark 564 Using Gaussian Process Regression." Astrophysical Journal 939, no. 2 (November 1, 2022): 109. http://dx.doi.org/10.3847/1538-4357/ac978f.
Full textNing, Shuluo, and Hyunsoo Yoon. "A New Model for Building Energy Modeling and Management Using Predictive Analytics: Partitioned Hierarchical Multitask Regression (PHMR)." Indoor Air 2024 (March 11, 2024): 1–11. http://dx.doi.org/10.1155/2024/5595459.
Full textSu, Zhibin, Shige Lin, Luyue Zhang, Yiming Feng, and Wei Jiang. "Multitask Learning-Based Affective Prediction for Videos of Films and TV Scenes." Applied Sciences 14, no. 11 (May 22, 2024): 4391. http://dx.doi.org/10.3390/app14114391.
Full textZhang, Heng-Chang, Qing Wu, and Fei-Yan Li. "Application of online multitask learning based on least squares support vector regression in the financial market." Applied Soft Computing 121 (May 2022): 108754. http://dx.doi.org/10.1016/j.asoc.2022.108754.
Full textLin, Zhaozhou, Qiao Zhang, Shengyun Dai, and Xiaoyan Gao. "Discovering Temporal Patterns in Longitudinal Nontargeted Metabolomics Data via Group and Nuclear Norm Regularized Multivariate Regression." Metabolites 10, no. 1 (January 13, 2020): 33. http://dx.doi.org/10.3390/metabo10010033.
Full textHong, Danfeng, Naoto Yokoya, Jocelyn Chanussot, Jian Xu, and Xiao Xiang Zhu. "Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction." ISPRS Journal of Photogrammetry and Remote Sensing 158 (December 2019): 35–49. http://dx.doi.org/10.1016/j.isprsjprs.2019.09.008.
Full textDaniels, John, Pau Herrero, and Pantelis Georgiou. "A Deep Learning Framework for Automatic Meal Detection and Estimation in Artificial Pancreas Systems." Sensors 22, no. 2 (January 8, 2022): 466. http://dx.doi.org/10.3390/s22020466.
Full textPrzybyła, Piotr, Austin J. Brockmeier, and Sophia Ananiadou. "Quantifying risk factors in medical reports with a context-aware linear model." Journal of the American Medical Informatics Association 26, no. 6 (March 6, 2019): 537–46. http://dx.doi.org/10.1093/jamia/ocz004.
Full textLucena, André, Joana Guedes, Mário Vaz, Luiz Silva, Denisse Bustos, and Erivaldo Souza. "Modeling Energy Expenditure Estimation in Occupational Context by Actigraphy: A Multi Regression Mixed-Effects Model." International Journal of Environmental Research and Public Health 18, no. 19 (October 3, 2021): 10419. http://dx.doi.org/10.3390/ijerph181910419.
Full textWang, Shaofeng, Shuang Liang, Qiao Chang, Li Zhang, Beiwen Gong, Yuxing Bai, Feifei Zuo, Yajie Wang, Xianju Xie, and Yu Gu. "STSN-Net: Simultaneous Tooth Segmentation and Numbering Method in Crowded Environments with Deep Learning." Diagnostics 14, no. 5 (February 26, 2024): 497. http://dx.doi.org/10.3390/diagnostics14050497.
Full textAlarfaj, Abeer Abdulaziz, and Hanan Ahmed Hosni Mahmoud. "Feature Fusion Deep Learning Model for Defects Prediction in Crystal Structures." Crystals 12, no. 9 (September 19, 2022): 1324. http://dx.doi.org/10.3390/cryst12091324.
Full textKumaresan, M., M. Senthil Kumar, and Nehal Muthukumar. "Analysis of mobility based COVID-19 epidemic model using Federated Multitask Learning." Mathematical Biosciences and Engineering 19, no. 10 (2022): 9983–10005. http://dx.doi.org/10.3934/mbe.2022466.
Full textZhao, Chengqian, Dengwang Li, Cheng Feng, and Shuo Li. "OF-UMRN: Uncertainty-guided multitask regression network aided by optical flow for fully automated comprehensive analysis of carotid artery." Medical Image Analysis 70 (May 2021): 101982. http://dx.doi.org/10.1016/j.media.2021.101982.
Full textLiu, Xiaoli, Peng Cao, Jinzhu Yang, and Dazhe Zhao. "Linearized and Kernelized Sparse Multitask Learning for Predicting Cognitive Outcomes in Alzheimer’s Disease." Computational and Mathematical Methods in Medicine 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/7429782.
Full textLafond, Daniel, Benoît Roberge-Vallières, François Vachon, and Sébastien Tremblay. "Judgment Analysis in a Dynamic Multitask Environment: Capturing Nonlinear Policies Using Decision Trees." Journal of Cognitive Engineering and Decision Making 11, no. 2 (August 9, 2016): 122–35. http://dx.doi.org/10.1177/1555343416661889.
Full textZhang, Kun, Pengcheng Lin, Jing Pan, Peixia Xu, Xuechen Qiu, Danny Crookes, Liang Hua, and Lin Wang. "End to End Multitask Joint Learning Model for Osteoporosis Classification in CT Images." Computational Intelligence and Neuroscience 2023 (March 16, 2023): 1–18. http://dx.doi.org/10.1155/2023/3018320.
Full textWang, Hua, Feiping Nie, Heng Huang, Sungeun Kim, Kwangsik Nho, Shannon L. Risacher, Andrew J. Saykin, and Li Shen. "Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort." Bioinformatics 28, no. 2 (December 6, 2011): 229–37. http://dx.doi.org/10.1093/bioinformatics/btr649.
Full textMokhtaridoost, Milad, Philipp G. Maass, and Mehmet Gönen. "Identifying Tissue- and Cohort-Specific RNA Regulatory Modules in Cancer Cells Using Multitask Learning." Cancers 14, no. 19 (October 9, 2022): 4939. http://dx.doi.org/10.3390/cancers14194939.
Full textXie, Qian, Ning Jin, and Shanshan Lu. "Lightweight Football Motion Recognition and Intensity Analysis Using Low-Cost Wearable Sensors." Applied Bionics and Biomechanics 2023 (July 12, 2023): 1–10. http://dx.doi.org/10.1155/2023/2354728.
Full textMoon, Taewon, Woo-Joo Choi, Se-Hun Jang, Da-Seul Choi, and Myung-Min Oh. "Growth Analysis of Plant Factory-Grown Lettuce by Deep Neural Networks Based on Automated Feature Extraction." Horticulturae 8, no. 12 (November 29, 2022): 1124. http://dx.doi.org/10.3390/horticulturae8121124.
Full textBae, Chul-Young, Bo-Seon Kim, Sun-Ha Jee, Jong-Hoon Lee, and Ngoc-Dung Nguyen. "A Study on Survival Analysis Methods Using Neural Network to Prevent Cancers." Cancers 15, no. 19 (September 27, 2023): 4757. http://dx.doi.org/10.3390/cancers15194757.
Full textXu, Hao, Panpan Zhu, Xiaobo Luo, Tianshou Xie, and Liqiang Zhang. "Extracting Buildings from Remote Sensing Images Using a Multitask Encoder-Decoder Network with Boundary Refinement." Remote Sensing 14, no. 3 (January 25, 2022): 564. http://dx.doi.org/10.3390/rs14030564.
Full textDu, Lei, Fang Liu, Kefei Liu, Xiaohui Yao, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, and Li Shen. "Identifying diagnosis-specific genotype–phenotype associations via joint multitask sparse canonical correlation analysis and classification." Bioinformatics 36, Supplement_1 (July 1, 2020): i371—i379. http://dx.doi.org/10.1093/bioinformatics/btaa434.
Full textShin, Changho, Sunghwan Joo, Jaeryun Yim, Hyoseop Lee, Taesup Moon, and Wonjong Rhee. "Subtask Gated Networks for Non-Intrusive Load Monitoring." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1150–57. http://dx.doi.org/10.1609/aaai.v33i01.33011150.
Full textGui, Renzhou, Tongjie Chen, and Han Nie. "Classification of Task-State fMRI Data Based on Circle-EMD and Machine Learning." Computational Intelligence and Neuroscience 2020 (August 1, 2020): 1–10. http://dx.doi.org/10.1155/2020/7691294.
Full textZhan, Lili. "Classification Algorithm for Heterogeneous Network Data Streams Based on Big Data Active Learning." Journal of Applied Mathematics 2022 (October 21, 2022): 1–10. http://dx.doi.org/10.1155/2022/2996725.
Full textWei, Xiaochen, Xiaolei Lv, and Kaiyu Zhang. "Road Extraction in SAR Images Using Ordinal Regression and Road-Topology Loss." Remote Sensing 13, no. 11 (May 25, 2021): 2080. http://dx.doi.org/10.3390/rs13112080.
Full text